Palacios Public Git Repository

To checkout Palacios execute

  git clone http://v3vee.org/palacios/palacios.web/palacios.git
This will give you the master branch. You probably want the devel branch or one of the release branches. To switch to the devel branch, simply execute
  cd palacios
  git checkout --track -b devel origin/devel
The other branches are similar.


Release 1.0
[palacios.git] / palacios / src / devices / ramdisk.c
diff --git a/palacios/src/devices/ramdisk.c b/palacios/src/devices/ramdisk.c
new file mode 100644 (file)
index 0000000..5879875
--- /dev/null
@@ -0,0 +1,2608 @@
+/* 
+ *
+ *   Copyright (C) 2002  MandrakeSoft S.A.
+ *
+ *     MandrakeSoft S.A.
+ *     43, rue d'Aboukir
+ *     75002 Paris - France
+ *     http://www.linux-mandrake.com/
+ *     http://www.mandrakesoft.com/
+ *
+ *   This library is free software; you can redistribute it and/or
+ *   modify it under the terms of the GNU Lesser General Public
+ *   License as published by the Free Software Foundation; either
+ *   version 2 of the License, or (at your option) any later version.
+ *
+ *   This library is distributed in the hope that it will be useful,
+ *   but WITHOUT ANY WARRANTY; without even the implied warranty of
+ *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ *   Lesser General Public License for more details.
+ *
+ *  You should have received a copy of the GNU Lesser General Public
+ *  License along with this library; if not, write to the Free Software
+ *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
+ *
+ * Major modifications made for the V3VEE project
+ * 
+ * The V3VEE Project is a joint project between Northwestern University
+ * and the University of New Mexico.  You can find out more at 
+ * http://www.v3vee.org
+ * 
+ * Copyright (c) 2008, Zheng Cui <cuizheng@cs.unm.edu>
+ * Copyright (c) 2008, Jack Lange <jarusl@cs.northwestern.edu>
+ * Copyright (c) 2008, The V3VEE Project <http://www.v3vee.org> 
+ * All rights reserved for original changes
+ * 
+ */
+
+
+#include <devices/ramdisk.h>
+#include <palacios/vmm.h>
+#include <devices/cdrom.h>
+#include <devices/ide.h>
+
+
+#ifndef TRACE_RAMDISK
+#undef PrintTrace
+#define PrintTrace(fmt, args...)
+#endif
+
+
+#ifndef DEBUG_RAMDISK
+#undef PrintDebug
+#define PrintDebug(fmt, args...)
+#endif
+
+
+
+
+
+/*
+ * Data type definitions
+ *
+ */
+#define INDEX_PULSE_CYCLE 10
+
+
+
+
+#define INTR_REASON_BIT_ERR           0x01
+#define UNABLE_FIND_TAT_CHANNEL_ERR   0x02
+#define DRQ_ERR                       0x03
+#define READ_BUF_GT_512               0x04
+
+
+
+#define PRI_DATA_PORT         0x1f0
+#define PRI_FEATURES_PORT     0x1f1
+#define PRI_SECT_CNT_PORT     0x1f2
+#define PRI_SECT_ADDR1_PORT   0x1f3
+#define PRI_SECT_ADDR2_PORT   0x1f4
+#define PRI_SECT_ADDR3_PORT   0x1f5
+#define PRI_DRV_SEL_PORT      0x1f6
+#define PRI_CMD_PORT          0x1f7
+#define PRI_CTRL_PORT         0x3f6
+#define PRI_ADDR_REG_PORT     0x3f7
+
+#define SEC_DATA_PORT         0x170
+#define SEC_FEATURES_PORT     0x171
+#define SEC_SECT_CNT_PORT     0x172
+#define SEC_SECT_ADDR1_PORT   0x173
+#define SEC_SECT_ADDR2_PORT   0x174
+#define SEC_SECT_ADDR3_PORT   0x175
+#define SEC_DRV_SEL_PORT      0x176
+#define SEC_CMD_PORT          0x177
+#define SEC_CTRL_PORT         0x376
+#define SEC_ADDR_REG_PORT     0x377
+
+
+#define PACKET_SIZE 12
+
+
+
+static const char cdrom_str[] = "CD-ROM";
+static const char harddisk_str[] = "HARDDISK";
+static const char none_str[] = "NONE";
+
+
+static inline const char * device_type_to_str(device_type_t type) {
+  switch (type) {
+  case IDE_DISK:
+    return harddisk_str;
+  case IDE_CDROM:
+    return cdrom_str;
+  case IDE_NONE:
+    return none_str;
+  default:
+    return NULL;
+  }
+}
+
+
+static inline void write_features(struct channel_t * channel, uchar_t value) {
+  channel->drives[0].controller.features = value;
+  channel->drives[1].controller.features = value;
+}
+
+
+static inline void write_sector_count(struct channel_t * channel, uchar_t value) {
+  channel->drives[0].controller.sector_count = value;
+  channel->drives[1].controller.sector_count = value;
+}
+
+static inline void write_sector_number(struct channel_t * channel, uchar_t value) {
+  channel->drives[0].controller.sector_no = value;
+  channel->drives[1].controller.sector_no = value;
+}
+
+
+static inline void write_cylinder_low(struct channel_t * channel, uchar_t value) {
+  channel->drives[0].controller.cylinder_no &= 0xff00;
+  channel->drives[0].controller.cylinder_no |= value;
+  channel->drives[1].controller.cylinder_no &= 0xff00;
+  channel->drives[1].controller.cylinder_no |= value;
+}
+
+static inline void write_cylinder_high(struct channel_t * channel, uchar_t value) {
+  ushort_t val2 = value;
+  val2 = val2 << 8;
+  channel->drives[0].controller.cylinder_no &= 0x00ff;
+  channel->drives[0].controller.cylinder_no |= (val2 & 0xff00);
+
+  channel->drives[1].controller.cylinder_no &= 0x00ff;
+  channel->drives[1].controller.cylinder_no |= (val2 & 0xff00);
+}
+
+static inline void write_head_no(struct channel_t * channel, uchar_t value) {
+  channel->drives[0].controller.head_no = value;
+  channel->drives[1].controller.head_no = value;
+}
+
+static inline void write_lba_mode(struct channel_t * channel, uchar_t value) {
+  channel->drives[0].controller.lba_mode = value;
+  channel->drives[1].controller.lba_mode = value;
+}
+
+
+static inline uint_t get_channel_no(struct ramdisk_t * ramdisk, struct channel_t * channel) {
+  return (((uchar_t *)channel - (uchar_t *)(ramdisk->channels)) / sizeof(struct channel_t));
+}
+
+static inline uint_t get_drive_no(struct channel_t * channel, struct drive_t * drive) {
+  return (((uchar_t *)drive - (uchar_t*)(channel->drives)) /  sizeof(struct drive_t));
+}
+
+static inline struct drive_t * get_selected_drive(struct channel_t * channel) {
+  return &(channel->drives[channel->drive_select]);
+}
+
+
+static inline int is_primary_port(struct ramdisk_t * ramdisk, ushort_t port) {
+  switch(port) 
+    {
+    case PRI_DATA_PORT:
+    case PRI_FEATURES_PORT:
+    case PRI_SECT_CNT_PORT:
+    case PRI_SECT_ADDR1_PORT:
+    case PRI_SECT_ADDR2_PORT:
+    case PRI_SECT_ADDR3_PORT:
+    case PRI_DRV_SEL_PORT:
+    case PRI_CMD_PORT:
+    case PRI_CTRL_PORT:
+      return 1;
+    default:
+      return 0;
+    }
+}
+
+
+
+static inline int is_secondary_port(struct ramdisk_t * ramdisk, ushort_t port) {
+  switch(port) 
+    {
+    case SEC_DATA_PORT:
+    case SEC_FEATURES_PORT:
+    case SEC_SECT_CNT_PORT:
+    case SEC_SECT_ADDR1_PORT:
+    case SEC_SECT_ADDR2_PORT:
+    case SEC_SECT_ADDR3_PORT:
+    case SEC_DRV_SEL_PORT:
+    case SEC_CMD_PORT:
+    case SEC_CTRL_PORT:
+      return 1;
+    default:
+      return 0;
+    }
+}
+
+static inline int num_drives_on_channel(struct channel_t * channel) {
+  if ((channel->drives[0].device_type == IDE_NONE) &&
+      (channel->drives[1].device_type == IDE_NONE)) {
+    return 0;
+  } else if ((channel->drives[0].device_type != IDE_NONE) &&
+            (channel->drives[1].device_type != IDE_NONE)) {
+    return 2;
+  } else {
+    return 1;
+  }
+}
+
+
+
+static inline uchar_t extract_bits(uchar_t * buf, uint_t buf_offset, uint_t bit_offset, uint_t num_bits) {
+  uchar_t val = buf[buf_offset];
+  val = val >> bit_offset;
+  val &= ((1 << num_bits) -1);
+  return val;
+}
+
+
+static inline uchar_t get_packet_field(struct channel_t * channel, uint_t packet_offset, uint_t bit_offset, uint_t num_bits) {
+  struct drive_t * drive = get_selected_drive(channel);
+  return extract_bits(drive->controller.buffer, packet_offset, bit_offset, num_bits);
+}
+
+
+static inline uchar_t get_packet_byte(struct channel_t * channel, uint_t offset) {
+  struct drive_t * drive = get_selected_drive(channel);
+  return drive->controller.buffer[offset];
+}
+
+static inline uint16_t get_packet_word(struct channel_t * channel, uint_t offset) {
+  struct drive_t * drive = get_selected_drive(channel);
+  uint16_t val = drive->controller.buffer[offset];
+  val = val << 8;
+  val |= drive->controller.buffer[offset + 1];
+  return val;
+}
+
+
+static inline uint16_t rd_read_16bit(const uint8_t* buf) {
+  return (buf[0] << 8) | buf[1];
+}
+
+
+
+static inline uint32_t rd_read_32bit(const uint8_t* buf) {
+  return (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
+}
+
+////////////////////////////////////////////////////////////////////////////
+
+
+/*
+ * ATAPI routines
+ */
+
+
+static void rd_init_mode_sense_single(struct vm_device * dev, struct channel_t * channel, const void * src, int size);
+
+static void rd_command_aborted(struct vm_device * dev, struct channel_t * channel, unsigned value);
+
+
+
+
+static int handle_atapi_packet_command(struct vm_device * dev, 
+                                      struct channel_t * channel, 
+                                      ushort_t val);
+
+static int rd_init_send_atapi_command(struct vm_device * dev, 
+                                     struct channel_t * channel, 
+                                     Bit8u command, int req_length, 
+                                     int alloc_length, bool lazy);
+
+static void rd_ready_to_send_atapi(struct vm_device * dev, 
+                                  struct channel_t * channel);
+
+static void rd_atapi_cmd_error(struct vm_device * dev, 
+                              struct channel_t * channel, 
+                              sense_t sense_key, asc_t asc);
+
+static void rd_atapi_cmd_nop(struct vm_device * dev, struct channel_t * channel);
+static void rd_identify_ATAPI_drive(struct vm_device * dev, struct channel_t * channel);
+
+
+
+/*
+ * Interrupt handling
+ */
+static void rd_raise_interrupt(struct vm_device * dev, struct channel_t * channel);
+static void rd_lower_irq(struct vm_device *dev, struct channel_t * channel);
+
+
+
+/*
+ * Helper routines
+ */
+
+
+
+#ifdef DEBUG_RAMDISK
+static void rd_print_state(struct ramdisk_t *ramdisk);
+static int check_bit_fields(struct controller_t * controller);
+#endif
+
+
+////////////////////////////////////////////////////////////////////
+
+
+
+
+
+int v3_ramdisk_register_cdrom(struct vm_device * dev, uint_t busID, uint_t driveID, struct cdrom_ops* cd, void * private_data) {
+  struct ramdisk_t * ramdisk  = (struct ramdisk_t *)(dev->private_data);
+  struct channel_t * channel = &(ramdisk->channels[busID]);
+  struct drive_t * drive = &(channel->drives[driveID]);
+  struct controller_t * controller = &(drive->controller);
+
+
+  
+  if (drive->device_type != IDE_NONE) {
+    PrintError("Device already registered at this location\n");
+    return -1;
+  }
+
+
+  channel->irq =  15;
+
+  // Make model string
+  strncpy((char*)(drive->model_no), "V3VEE Ramdisk", 40);
+
+  while (strlen((char *)(drive->model_no)) < 40) {
+    strcat ((char*)(drive->model_no), " ");
+  }
+  
+  PrintDebug("CDROM on target %d/%d\n", busID, driveID);
+  
+  drive->device_type = IDE_CDROM;
+  drive->cdrom.locked = 0;
+  drive->sense.sense_key = SENSE_NONE;
+  drive->sense.asc = 0;
+  drive->sense.ascq = 0;
+  
+  drive->private_data = private_data;
+
+
+#ifdef DEBUG_RAMDISK
+  if (check_bit_fields(controller) == INTR_REASON_BIT_ERR) {
+    PrintError("interrupt reason: bit field error\n");
+    return INTR_REASON_BIT_ERR;
+  }
+#endif
+  
+  controller->sector_count = 0;
+
+  drive->cdrom.cd = cd;
+  
+  PrintDebug("\t\tCD on ata%d-%d: '%s'\n", 
+            busID, 
+            driveID, "");
+  
+  if(drive->cdrom.cd->insert_cdrom(drive->private_data)) {
+    PrintDebug("\t\tMedia present in CD-ROM drive\n");
+    drive->cdrom.ready = 1;
+    drive->cdrom.capacity = drive->cdrom.cd->capacity(drive->private_data);
+    PrintDebug("\t\tCDROM capacity is %d\n", drive->cdrom.capacity);
+  } else {                 
+    PrintDebug("\t\tCould not locate CD-ROM, continuing with media not present\n");
+    drive->cdrom.ready = 0;
+  }
+  
+  return 0;
+}
+
+
+static Bit32u rd_init_hardware(struct ramdisk_t *ramdisk) {
+  uint_t channel_num; 
+  uint_t device;
+  struct channel_t *channels = (struct channel_t *)(&(ramdisk->channels));
+
+  PrintDebug("[rd_init_harddrive]\n");
+
+  for (channel_num = 0; channel_num < MAX_ATA_CHANNEL; channel_num++) {
+    memset((char *)(channels + channel_num), 0, sizeof(struct channel_t));
+  }
+
+  for (channel_num = 0; channel_num < MAX_ATA_CHANNEL; channel_num++){
+    struct channel_t * channel = &(channels[channel_num]);
+
+    channel->ioaddr1 = 0x0;
+    channel->ioaddr2 = 0x0;
+    channel->irq = 0;
+
+    for (device = 0; device < 2; device++){
+      struct drive_t * drive = &(channel->drives[device]);
+      struct controller_t * controller = &(drive->controller);
+
+      controller->status.busy = 0;
+      controller->status.drive_ready = 1;
+      controller->status.write_fault = 0;
+      controller->status.seek_complete = 1;
+      controller->status.drq = 0;
+      controller->status.corrected_data = 0;
+      controller->status.index_pulse = 0;
+      controller->status.index_pulse_count = 0;
+      controller->status.err = 0;
+
+      controller->error_register = 0x01; // diagnostic code: no error
+      controller->head_no = 0;
+      controller->sector_count = 1;
+      controller->sector_no = 1;
+      controller->cylinder_no = 0;
+      controller->current_command = 0x00;
+      controller->buffer_index = 0;
+
+      controller->control.reset = 0;
+      controller->control.disable_irq = 0;
+      controller->reset_in_progress = 0;
+
+      controller->sectors_per_block = 0x80;
+      controller->lba_mode = 0;
+      
+      
+      controller->features = 0;
+       
+      // If not present
+      drive->device_type = IDE_NONE;
+
+      // Make model string
+      strncpy((char*)(drive->model_no), "", 40);
+      while(strlen((char *)(drive->model_no)) < 40) {
+        strcat ((char*)(drive->model_no), " ");
+      }
+
+    }//for device
+  }//for channel
+
+#ifdef DEBUG_RAMDISK
+  rd_print_state(ramdisk);
+#endif
+  return 0;
+}
+
+
+/*
+  static void rd_reset_harddrive(struct ramdisk_t *ramdisk, unsigned type) {
+  return;
+  }
+
+*/
+static void rd_close_harddrive(struct ramdisk_t *ramdisk) {
+  return;
+}
+
+
+////////////////////////////////////////////////////////////////////
+
+
+
+static int read_data_port(ushort_t port, void * dst, uint_t length, struct vm_device * dev) {
+  struct ramdisk_t * ramdisk  = (struct ramdisk_t *)(dev->private_data);
+  struct channel_t * channel = NULL;
+  struct drive_t * drive = NULL;
+  struct controller_t * controller = NULL;
+
+
+
+  if (is_primary_port(ramdisk, port)) {
+    channel = &(ramdisk->channels[0]);
+  } else if (is_secondary_port(ramdisk, port)) {
+    channel = &(ramdisk->channels[1]);
+  } else {
+    PrintError("Invalid Port: %d\n", port);
+    return -1;
+  }
+  
+  drive = get_selected_drive(channel);
+  controller = &(drive->controller);
+
+
+  PrintTrace("[read_data_handler] IO Read at 0x%x, on drive %d/%d current cmd=0x%x\n", 
+            port, 
+            get_channel_no(ramdisk, channel),
+            get_drive_no(channel, drive), 
+            controller->current_command);
+
+  switch (controller->current_command) {
+  case 0xec:    // IDENTIFY DEVICE
+  case 0xa1:
+    {
+
+
+      controller->status.busy = 0;
+      controller->status.drive_ready = 1;
+      controller->status.write_fault = 0;
+      controller->status.seek_complete = 1;
+      controller->status.corrected_data = 0;
+      controller->status.err = 0;
+      
+      /*
+       value32 = controller->buffer[index];
+       index++;
+       
+       if (io_len >= 2) {
+       value32 |= (controller->buffer[index] << 8);
+       index++;
+       }
+       
+       if (io_len == 4) {
+       value32 |= (controller->buffer[index] << 16);
+       value32 |= (controller->buffer[index+1] << 24);
+       index += 2;
+       }
+       
+       controller->buffer_index = index;
+      */
+      /* JRL */
+      memcpy(dst, controller->buffer + controller->buffer_index, length);
+      controller->buffer_index += length;
+      
+      if (controller->buffer_index >= 512) {
+       controller->status.drq = 0;
+      }
+      
+      return length;
+    }
+  case 0xa0: //send packet cmd 
+    {
+      uint_t index = controller->buffer_index;
+
+      
+      PrintTrace("\t\tatapi.command(%02x), index(%d), cdrom.remaining_blocks(%d)\n", 
+                   drive->atapi.command, 
+                   index, 
+                   drive->cdrom.remaining_blocks);
+      
+      // Load block if necessary
+      if (index >= 2048) {
+       
+       if (index > 2048) {
+         PrintError("\t\tindex > 2048 : 0x%x\n", index);
+         return -1;
+       }
+       
+       switch (drive->atapi.command) {
+       case 0x28: // read (10)
+       case 0xa8: // read (12)
+         {
+    
+           if (!(drive->cdrom.ready)) {
+             PrintError("\t\tRead with CDROM not ready\n");
+             return -1;
+           } 
+           
+           drive->cdrom.cd->read_block(drive->private_data, controller->buffer,
+                                       drive->cdrom.next_lba);
+           drive->cdrom.next_lba++;
+           drive->cdrom.remaining_blocks--;
+           
+           
+           if (!(drive->cdrom.remaining_blocks)) {
+             PrintDebug("\t\tLast READ block loaded {CDROM}\n");
+           } else {
+             PrintDebug("\t\tREAD block loaded (%d remaining) {CDROM}\n",
+                        drive->cdrom.remaining_blocks);
+           }
+           
+           // one block transfered, start at beginning
+           index = 0;
+           break;
+         }
+       default: // no need to load a new block
+         break;
+       }
+      }
+    
+
+      /*
+       increment = 0;
+       value32 = controller->buffer[index + increment];
+       increment++;
+       
+       if (io_len >= 2) {
+       value32 |= (controller->buffer[index + increment] << 8);
+       increment++;
+       }
+       
+       if (io_len == 4) {
+       value32 |= (controller->buffer[index + increment] << 16);
+       value32 |= (controller->buffer[index + increment + 1] << 24);
+       increment += 2;
+       }
+
+       controller->buffer_index = index + increment;
+       controller->drq_index += increment;
+
+      */
+      /* JRL: CHECK THAT there is enough data in the buffer to copy.... */
+      {      
+       memcpy(dst, controller->buffer + index, length);
+       
+       controller->buffer_index  = index + length;
+       controller->drq_index += length;
+      }
+      
+      /* *** */
+      
+      if (controller->drq_index >= (unsigned)drive->atapi.drq_bytes) {
+       controller->status.drq = 0;
+       controller->drq_index = 0;
+       
+       drive->atapi.total_bytes_remaining -= drive->atapi.drq_bytes;
+       
+       if (drive->atapi.total_bytes_remaining > 0) {
+         // one or more blocks remaining (works only for single block commands)
+         
+         PrintDebug("\t\tPACKET drq bytes read\n");
+         controller->interrupt_reason.i_o = 1;
+         controller->status.busy = 0;
+         controller->status.drq = 1;
+         controller->interrupt_reason.c_d = 0;
+         
+         // set new byte count if last block
+         if (drive->atapi.total_bytes_remaining < controller->byte_count) {
+           controller->byte_count = drive->atapi.total_bytes_remaining;
+         }
+         drive->atapi.drq_bytes = controller->byte_count;
+         
+         rd_raise_interrupt(dev, channel);
+       } else {
+         // all bytes read
+         PrintDebug("\t\tPACKET all bytes read\n");
+         
+         controller->interrupt_reason.i_o = 1;
+         controller->interrupt_reason.c_d = 1;
+         controller->status.drive_ready = 1;
+         controller->interrupt_reason.rel = 0;
+         controller->status.busy = 0;
+         controller->status.drq = 0;
+         controller->status.err = 0;
+         
+         rd_raise_interrupt(dev, channel);
+       }
+      }
+      return length;
+      break;
+    }
+
+  default:
+    PrintError("\t\tunsupported command: %02x\n", controller->current_command);
+    break;
+  }
+
+  return -1;
+}
+
+
+
+
+static int write_data_port(ushort_t port, void * src, uint_t length, struct vm_device * dev) {
+  struct ramdisk_t * ramdisk  = (struct ramdisk_t *)(dev->private_data);
+  struct channel_t * channel = NULL;
+  struct drive_t * drive = NULL;
+  struct controller_t * controller = NULL;
+
+  if (is_primary_port(ramdisk, port)) {
+    channel = &(ramdisk->channels[0]);
+  } else if (is_secondary_port(ramdisk, port)) {
+    channel = &(ramdisk->channels[1]);
+  } else {
+    PrintError("Invalid Port: %d\n", port);
+    return -1;
+  }
+  
+  drive = get_selected_drive(channel);
+  controller = &(drive->controller);
+
+
+  PrintDebug("[write_data_handler] IO write at 0x%x, current_cmd = 0x%02x\n", 
+            port, controller->current_command);
+
+
+  //PrintDebug("[write_data_handler]\n");
+  switch (controller->current_command) {
+  case 0x30: // WRITE SECTORS
+    PrintError("\t\tneed to implement 0x30(write sector) to port 0x%x\n", port);
+    return -1;
+    
+  case 0xa0: // PACKET
+    
+    if (handle_atapi_packet_command(dev, channel, *(ushort_t *)src) == -1) {
+      PrintError("Error sending atapi packet command in PACKET write to data port\n");
+      return -1;
+    }
+
+    return length;
+    
+  default:
+    PrintError("\t\tIO write(0x%x): current command is %02xh\n", 
+              port, controller->current_command);
+
+    return -1;
+  }
+
+
+  return -1;
+}
+
+
+
+
+
+
+
+static int read_status_port(ushort_t port, void * dst, uint_t length, struct vm_device * dev) {
+  struct ramdisk_t * ramdisk  = (struct ramdisk_t *)(dev->private_data);
+  struct channel_t * channel = NULL;
+  struct drive_t * drive = NULL;
+  struct controller_t * controller = NULL;
+
+
+
+
+  if (is_primary_port(ramdisk, port)) {
+    channel = &(ramdisk->channels[0]);
+  } else if (is_secondary_port(ramdisk, port)) {
+    channel = &(ramdisk->channels[1]);
+  } else {
+    PrintError("Invalid Port: %d\n", port);
+    return -1;
+  }
+  
+  drive = get_selected_drive(channel);
+  controller = &(drive->controller);
+
+  PrintDebug("[read_status_handler] IO read at 0x%x, on drive %d/%d\n", 
+            port, get_channel_no(ramdisk, channel), 
+            channel->drive_select);
+
+
+  if (num_drives_on_channel(channel) == 0) {
+    PrintDebug("Setting value to zero because 0 devices on channel\n");
+    // (mch) Just return zero for these registers
+    memset(dst, 0, length);
+
+  } else {
+    uchar_t val = (
+                  (controller->status.busy << 7)            |
+                  (controller->status.drive_ready << 6)     |
+                  (controller->status.write_fault << 5)     |
+                  (controller->status.seek_complete << 4)   |
+                  (controller->status.drq << 3)             |
+                  (controller->status.corrected_data << 2)  |
+                  (controller->status.index_pulse << 1)     |
+                  (controller->status.err) );
+
+
+    memcpy(dst, &val, length);
+
+    controller->status.index_pulse_count++;
+    controller->status.index_pulse = 0;
+    
+    if (controller->status.index_pulse_count >= INDEX_PULSE_CYCLE) {
+      controller->status.index_pulse = 1;
+      controller->status.index_pulse_count = 0;
+    }
+  }
+  
+  if ((port == SEC_CMD_PORT) || (port == PRI_CMD_PORT)) {
+    rd_lower_irq(dev, channel);
+  }
+  
+  PrintDebug("\t\tRead STATUS = 0x%x\n", *(uchar_t *)dst);
+
+  return length;
+  
+}
+
+
+static int write_cmd_port(ushort_t port, void * src, uint_t length, struct vm_device * dev) {
+  struct ramdisk_t * ramdisk  = (struct ramdisk_t *)(dev->private_data);
+  struct channel_t * channel = NULL;
+  struct drive_t * drive = NULL;
+  struct controller_t * controller = NULL;
+  uchar_t value = *(uchar_t *)src;
+
+  if (length != 1) {
+    PrintError("Invalid Command port write length: %d (port=%d)\n", length, port);
+    return -1;
+  }
+
+  if (is_primary_port(ramdisk, port)) {
+    channel = &(ramdisk->channels[0]);
+  } else if (is_secondary_port(ramdisk, port)) {
+    channel = &(ramdisk->channels[1]);
+  } else {
+    PrintError("Invalid Port: %d\n", port);
+    return -1;
+  }
+  
+  drive = get_selected_drive(channel);
+  controller = &(drive->controller);
+
+
+  PrintDebug("[write_command_handler] IO write at 0x%x, on drive %d/%d (val = 0x%x)\n", 
+            port, get_channel_no(ramdisk, channel), 
+            get_drive_no(channel, drive), 
+            value);
+
+  switch (value) {
+#if 0
+  case 0xec: // IDENTIFY DEVICE
+    {
+
+      if (drive->device_type == IDE_NONE) {
+       PrintError("\t\tError: disk ata%d-%d not present, aborting\n", 
+                  get_channel_no(ramdisk, channel), 
+                  get_drive_no(channel, drive));
+       rd_command_aborted(dev, channel, value);
+       break;
+      } else if (drive->device_type == IDE_CDROM) {
+       PrintDebug("Identifying CDROM...Going to abort????\n");
+       controller->head_no        = 0;
+       controller->sector_count   = 1;
+       controller->sector_no      = 1;
+       controller->cylinder_no    = 0xeb14;
+       rd_command_aborted(dev, channel, 0xec);
+      } else {
+       PrintError("\t\tError: Want to identify HDD!!\n");
+       /*
+         SELECTED_CONTROLLER(channel).current_command = value;
+         SELECTED_CONTROLLER(channel).error_register = 0;
+         
+         // See ATA/ATAPI-4, 8.12
+         SELECTED_CONTROLLER(channel).status.busy  = 0;
+         SELECTED_CONTROLLER(channel).status.drive_ready = 1;
+         SELECTED_CONTROLLER(channel).status.write_fault = 0;
+         SELECTED_CONTROLLER(channel).status.drq   = 1;
+         SELECTED_CONTROLLER(channel).status.err   = 0;
+         
+         SELECTED_CONTROLLER(channel).status.seek_complete = 1;
+         SELECTED_CONTROLLER(channel).status.corrected_data = 0;
+         
+         SELECTED_CONTROLLER(channel).buffer_index = 0;
+         raise_interrupt(channel);
+         identify_drive(channel);
+       */
+      }
+
+    break;
+    }
+#endif
+    // ATAPI commands
+  case 0xa1: // IDENTIFY PACKET DEVICE
+    {
+      if (drive->device_type == IDE_CDROM) {
+       controller->current_command = value;
+       controller->error_register = 0;
+       
+       controller->status.busy = 0;
+       controller->status.drive_ready = 1;
+       controller->status.write_fault = 0;
+       controller->status.drq   = 1;
+       controller->status.err   = 0;
+       
+       controller->status.seek_complete = 1;
+       controller->status.corrected_data = 0;
+       
+       controller->buffer_index = 0;
+       rd_raise_interrupt(dev, channel);
+       rd_identify_ATAPI_drive(dev, channel);
+      } else {
+       PrintError("Identifying non cdrom device not supported - ata %d/%d\n", 
+                  get_channel_no(ramdisk, channel),
+                  get_drive_no(channel, drive));
+       rd_command_aborted(dev, channel, 0xa1);
+      }
+      break;
+    }
+  case 0xa0: // SEND PACKET (atapi)
+    {
+      if (drive->device_type == IDE_CDROM) {
+       // PACKET
+       
+       if (controller->features & (1 << 0)) {
+         PrintError("\t\tPACKET-DMA not supported");
+         return -1;
+       }
+       
+       if (controller->features & (1 << 1)) {
+         PrintError("\t\tPACKET-overlapped not supported");
+         return -1;
+       }
+       
+       // We're already ready!
+       controller->sector_count = 1;
+       controller->status.busy = 0;
+       controller->status.write_fault = 0;
+
+       // serv bit??
+       controller->status.drq = 1;
+       controller->status.err = 0;
+       
+       // NOTE: no interrupt here
+       controller->current_command = value;
+       controller->buffer_index = 0;
+      } else {
+       PrintError("Sending packet to non cdrom device not supported\n");
+       rd_command_aborted (dev, channel, 0xa0);
+      }
+      break;
+    }
+  default:
+    PrintError("\t\tneed translate command %2x - ata %d\%d\n", value, 
+              get_channel_no(ramdisk, channel), 
+              get_drive_no(channel, drive));
+    //return -1;
+    /* JRL THIS NEEDS TO CHANGE */
+    return length;
+
+  }
+  return length;
+}
+
+
+static int write_ctrl_port(ushort_t port, void * src, uint_t length, struct vm_device * dev) {
+  struct ramdisk_t * ramdisk  = (struct ramdisk_t *)(dev->private_data);
+  struct channel_t * channel = NULL;
+  struct drive_t * master_drive = NULL;
+  struct drive_t * slave_drive = NULL;
+  struct controller_t * controller = NULL;
+  uchar_t value = *(uchar_t *)src;
+  rd_bool prev_control_reset;
+
+  if (length != 1) {
+    PrintError("Invalid Status port read length: %d (port=%d)\n", length, port);
+    return -1;
+  }
+
+  if (is_primary_port(ramdisk, port)) {
+    channel = &(ramdisk->channels[0]);
+  } else if (is_secondary_port(ramdisk, port)) {
+    channel = &(ramdisk->channels[1]);
+  } else {
+    PrintError("Invalid Port: %d\n", port);
+    return -1;
+  }
+
+  master_drive = &(channel->drives[0]);
+  slave_drive = &(channel->drives[1]);
+
+  controller = &(get_selected_drive(channel)->controller);
+
+
+  PrintDebug("[write_control_handler] IO write at 0x%x, on drive %d/%d (val = 0x%x)\n", 
+            port, get_channel_no(ramdisk, channel), 
+            channel->drive_select, 
+            value);
+
+  // (mch) Even if device 1 was selected, a write to this register
+  // goes to device 0 (if device 1 is absent)
+  
+  prev_control_reset = controller->control.reset;
+
+
+  if (value & 0x04) {
+    PrintDebug("RESET Signaled\n");
+  }
+
+  master_drive->controller.control.reset         = value & 0x04;
+  slave_drive->controller.control.reset         = value & 0x04;
+
+  // CGS: was: SELECTED_CONTROLLER(channel).control.disable_irq    = value & 0x02;
+  master_drive->controller.control.disable_irq = value & 0x02;
+  slave_drive->controller.control.disable_irq = value & 0x02;
+  
+  PrintDebug("\t\tadpater control reg: reset controller = %d\n",
+               (unsigned) (controller->control.reset) ? 1 : 0);
+  PrintDebug("\t\tadpater control reg: disable_irq(X) = %d\n",
+               (unsigned) (controller->control.disable_irq) ? 1 : 0);
+  
+  if ((!prev_control_reset) && (controller->control.reset)) {
+    uint_t id = 0;
+
+    // transition from 0 to 1 causes all drives to reset
+    PrintDebug("\t\thard drive: RESET\n");
+    
+    // (mch) Set BSY, drive not ready
+    for (id = 0; id < 2; id++) {
+      struct controller_t * ctrl = NULL;
+
+      if (id == 0) {
+       ctrl = &(master_drive->controller);
+      } else if (id == 1) {
+       ctrl = &(slave_drive->controller);
+      }
+
+      ctrl->status.busy           = 1;
+      ctrl->status.drive_ready    = 0;
+      ctrl->reset_in_progress     = 1;
+      
+      ctrl->status.write_fault    = 0;
+      ctrl->status.seek_complete  = 1;
+      ctrl->status.drq            = 0;
+      ctrl->status.corrected_data = 0;
+      ctrl->status.err            = 0;
+      
+      ctrl->error_register = 0x01; // diagnostic code: no error
+      
+      ctrl->current_command = 0x00;
+      ctrl->buffer_index = 0;
+      
+      ctrl->sectors_per_block = 0x80;
+      ctrl->lba_mode          = 0;
+      
+      ctrl->control.disable_irq = 0;
+    }
+
+    rd_lower_irq(dev, channel);
+
+  } else if ((controller->reset_in_progress) &&
+            (!controller->control.reset)) {
+    uint_t id;
+    // Clear BSY and DRDY
+    PrintDebug("\t\tReset complete {%s}\n", device_type_to_str(get_selected_drive(channel)->device_type));
+
+    for (id = 0; id < 2; id++) {
+      struct controller_t * ctrl = NULL;
+      struct drive_t * drv = NULL;
+
+      if (id == 0) {
+       ctrl = &(master_drive->controller);
+       drv = master_drive;
+      } else if (id == 1) {
+       ctrl = &(slave_drive->controller);
+       drv = slave_drive;
+      }
+
+      ctrl->status.busy           = 0;
+      ctrl->status.drive_ready    = 1;
+      ctrl->reset_in_progress     = 0;
+      
+      // Device signature
+      if (drv->device_type == IDE_DISK) {
+       PrintDebug("\t\tdrive %d/%d is harddrive\n", get_channel_no(ramdisk, channel), id);
+       ctrl->head_no        = 0;
+       ctrl->sector_count   = 1;
+       ctrl->sector_no      = 1;
+       ctrl->cylinder_no    = 0;
+      } else {
+       ctrl->head_no        = 0;
+       ctrl->sector_count   = 1;
+       ctrl->sector_no      = 1;
+       ctrl->cylinder_no    = 0xeb14;
+      }
+    }
+  }
+
+  PrintDebug("\t\ts[0].controller.control.disable_irq = %02x\n", 
+            master_drive->controller.control.disable_irq);
+  PrintDebug("\t\ts[1].controller.control.disable_irq = %02x\n", 
+            slave_drive->controller.control.disable_irq);
+  return length;
+}
+
+
+static int read_general_port(ushort_t port, void * dst, uint_t length, struct vm_device * dev) {
+  struct ramdisk_t * ramdisk  = (struct ramdisk_t *)(dev->private_data);
+  struct channel_t * channel = NULL;
+  struct drive_t * drive = NULL;
+  struct controller_t * controller = NULL;
+
+
+  if (length != 1) {
+    PrintError("Invalid Status port read length: %d (port=%d)\n", length, port);
+    return -1;
+  }
+
+  if (is_primary_port(ramdisk, port)) {
+    channel = &(ramdisk->channels[0]);
+  } else if (is_secondary_port(ramdisk, port)) {
+    channel = &(ramdisk->channels[1]);
+  } else {
+    PrintError("Invalid Port: %d\n", port);
+    return -1;
+  }
+  
+  drive = get_selected_drive(channel);
+  controller = &(drive->controller);
+
+
+  PrintDebug("[read_general_handler] IO read addr at %x, on drive %d/%d, curcmd = %02x\n", 
+            port, get_channel_no(ramdisk, channel), 
+            channel->drive_select, 
+            controller->current_command);
+  
+
+  switch (port) {
+  case PRI_FEATURES_PORT:
+  case SEC_FEATURES_PORT: // hard disk error register 0x1f1
+    {    
+      uchar_t val = (drive->device_type == IDE_NONE) ? 0 : controller->error_register;
+      
+      controller->status.err = 0;
+      
+      PrintDebug("\t\tRead FEATURES = 0x%x\n", val);
+
+      *(uchar_t *)dst = val;
+      return length;
+      
+      break;
+    }
+
+  case PRI_SECT_CNT_PORT:
+  case SEC_SECT_CNT_PORT:  // hard disk sector count / interrupt reason 0x1f2
+    {
+      uchar_t val = (drive->device_type == IDE_NONE) ? 0 : controller->sector_count;
+      PrintDebug("\t\tRead SECTOR COUNT = 0x%x\n", val);
+      *(uchar_t *)dst = val;
+      return length;
+
+      break;
+    }
+  case PRI_SECT_ADDR1_PORT:
+  case SEC_SECT_ADDR1_PORT: // sector number 0x1f3
+    { 
+      uchar_t val = (drive->device_type == IDE_NONE) ? 0 : controller->sector_no;
+
+      PrintDebug("\t\tRead SECTOR ADDR1 = 0x%x\n", val);
+
+      *(uchar_t *)dst = val;
+      return length;
+
+      break;
+    }
+
+  case PRI_SECT_ADDR2_PORT:
+  case SEC_SECT_ADDR2_PORT:  // cylinder low 0x1f4  
+    {
+      // -- WARNING : On real hardware the controller registers are shared between drives. 
+      // So we must respond even if the select device is not present. Some OS uses this fact 
+      // to detect the disks.... minix2 for example
+      uchar_t val = (num_drives_on_channel(channel) == 0) ? 0 : (controller->cylinder_no & 0x00ff);
+
+      PrintDebug("\t\tRead SECTOR ADDR2 = 0x%x\n", val);
+
+      *(uchar_t *)dst = val;
+      return length;
+
+      break;      
+  }
+
+  case PRI_SECT_ADDR3_PORT:
+  case SEC_SECT_ADDR3_PORT: // cylinder high 0x1f5
+    {
+      // -- WARNING : On real hardware the controller registers are shared between drives. 
+      // So we must respond even if the select device is not present. Some OS uses this fact 
+      // to detect the disks.... minix2 for example
+      uchar_t val = (num_drives_on_channel(channel) == 0) ? 0 : (controller->cylinder_no >> 8);
+
+      PrintDebug("\t\tRead SECTOR ADDR3 = 0x%x\n", val);
+
+      *(uchar_t *)dst = val;
+      return length;
+
+      break;    
+    }
+  case PRI_DRV_SEL_PORT:
+  case SEC_DRV_SEL_PORT:  // hard disk drive and head register 0x1f6
+    {
+      // b7 Extended data field for ECC
+      // b6/b5: Used to be sector size.  00=256,01=512,10=1024,11=128
+      //   Since 512 was always used, bit 6 was taken to mean LBA mode:
+      //     b6 1=LBA mode, 0=CHS mode
+      //     b5 1
+      // b4: DRV
+      // b3..0 HD3..HD0
+      uchar_t val = ((1 << 7)                          |
+                    ((controller->lba_mode > 0) << 6) |
+                    (1 << 5)                          |            // 01b = 512 sector size
+                    (channel->drive_select << 4)      |
+                    (controller->head_no << 0));
+      
+      PrintDebug("\t\tRead DRIVE SELECT = 0x%x\n", val);
+      *(uchar_t *)dst = val;
+      return length;
+
+      break;
+    }
+ case PRI_ADDR_REG_PORT:
+ case SEC_ADDR_REG_PORT: // Hard Disk Address Register 0x3f7
+   {
+     // Obsolete and unsupported register.  Not driven by hard
+     // disk controller.  Report all 1's.  If floppy controller
+     // is handling this address, it will call this function
+     // set/clear D7 (the only bit it handles), then return
+     // the combined value
+     *(uchar_t *)dst = 0xff;
+     return length;
+    }
+
+  default:
+    PrintError("Invalid Port: %d\n", port);
+    return -1;
+  }
+}
+
+
+
+
+static int write_general_port(ushort_t port, void * src, uint_t length, struct vm_device * dev) {
+  struct ramdisk_t * ramdisk  = (struct ramdisk_t *)(dev->private_data);
+  struct channel_t * channel = NULL;
+  struct drive_t * drive = NULL;
+  struct controller_t * controller = NULL;
+  uchar_t value = *(uchar_t *)src;
+
+  if (length != 1) {
+    PrintError("Invalid Status port read length: %d (port=%d)\n", length, port);
+    return -1;
+  }
+
+  if (is_primary_port(ramdisk, port)) {
+    channel = &(ramdisk->channels[0]);
+  } else if (is_secondary_port(ramdisk, port)) {
+    channel = &(ramdisk->channels[1]);
+  } else {
+    PrintError("Invalid Port: %d\n", port);
+    return -1;
+  }
+  
+  drive = get_selected_drive(channel);
+  controller = &(drive->controller);
+
+
+  PrintDebug("[write_general_handler] IO write to port %x (val=0x%02x), channel = %d\n", 
+            port, value, get_channel_no(ramdisk, channel));
+
+  switch (port) {
+
+  case PRI_FEATURES_PORT:
+  case SEC_FEATURES_PORT: // hard disk write precompensation 0x1f1
+    {
+      write_features(channel, value);
+      break;
+    }
+  case PRI_SECT_CNT_PORT:
+  case SEC_SECT_CNT_PORT: // hard disk sector count 0x1f2
+    {
+      write_sector_count(channel, value);
+      break;
+    }
+  case PRI_SECT_ADDR1_PORT:
+  case SEC_SECT_ADDR1_PORT: // hard disk sector number 0x1f3
+    {
+      write_sector_number(channel, value);
+      break;
+    }
+  case PRI_SECT_ADDR2_PORT:
+  case SEC_SECT_ADDR2_PORT: // hard disk cylinder low 0x1f4
+    {
+      write_cylinder_low(channel, value);
+      break;
+    }
+  case PRI_SECT_ADDR3_PORT:
+  case SEC_SECT_ADDR3_PORT: // hard disk cylinder high 0x1f5
+    {
+      write_cylinder_high(channel, value);
+      break;
+    }
+  case PRI_DRV_SEL_PORT:
+  case SEC_DRV_SEL_PORT: // hard disk drive and head register 0x1f6
+    {
+      // b7 Extended data field for ECC
+      // b6/b5: Used to be sector size.  00=256,01=512,10=1024,11=128
+      //   Since 512 was always used, bit 6 was taken to mean LBA mode:
+      //     b6 1=LBA mode, 0=CHS mode
+      //     b5 1
+      // b4: DRV
+      // b3..0 HD3..HD0
+
+      // 1x1xxxxx
+
+      PrintDebug("\tDrive Select value=%x\n", value);
+
+      if ((value & 0xa0) != 0xa0) { 
+       PrintDebug("\t\tIO write 0x%x (%02x): not 1x1xxxxxb\n", port, (unsigned) value);
+      }
+      
+      write_head_no(channel, value & 0xf);
+      if ((controller->lba_mode == 0) && (((value >> 6) & 1) == 1)) {
+       PrintDebug("\t\tenabling LBA mode\n");
+      }
+
+      write_lba_mode(channel, (value >> 6) & 1);
+
+
+
+      if (drive->cdrom.cd) {
+       PrintDebug("\t\tSetting LBA on CDROM: %d\n", (value >> 6) & 1);
+       drive->cdrom.cd->set_LBA(drive->private_data, (value >> 6) & 1);
+      }
+      
+
+      channel->drive_select = (value >> 4) & 0x01;
+      drive = get_selected_drive(channel);
+
+      if (drive->device_type == IDE_NONE) {
+       PrintError("\t\tError: device set to %d which does not exist! channel = 0x%x\n",
+                  channel->drive_select, get_channel_no(ramdisk, channel));
+
+       controller->error_register = 0x04; // aborted
+       controller->status.err = 1;
+      }
+      
+      break;
+    }
+  default:
+    PrintError("\t\thard drive: io write to unhandled port 0x%x  (value = %c)\n", port, value);
+    //return -1;
+  }
+
+  return length;
+}
+
+
+
+
+static void rd_raise_interrupt(struct vm_device * dev, struct channel_t * channel) {
+  //  struct ramdisk_t * ramdisk = (struct ramdisk_t *)(dev->private_data);
+  struct drive_t * drive = get_selected_drive(channel);
+  struct controller_t * controller = &(drive->controller);
+
+  PrintDebug("[raise_interrupt] disable_irq = 0x%02x\n", controller->control.disable_irq);
+
+  if (!(controller->control.disable_irq)) {
+    PrintDebug("\t\tRaising interrupt %d {%s}\n\n", channel->irq, device_type_to_str(drive->device_type));
+
+    v3_raise_irq(dev->vm, channel->irq);
+  } else {
+    PrintDebug("\t\tRaising irq but irq is disabled\n");
+  }
+  
+  return;
+}
+
+static void rd_lower_irq(struct vm_device *dev, struct channel_t * channel) {
+  PrintDebug("[lower_irq] irq = %d\n", channel->irq);
+  v3_lower_irq(dev->vm, channel->irq);
+}
+
+
+
+
+
+
+
+//////////////////////////////////////////////////////////////////////////
+
+/*
+ * ATAPI subroutines
+ */
+
+
+
+int handle_atapi_packet_command(struct vm_device * dev, struct channel_t * channel, ushort_t value) {
+  struct ramdisk_t * ramdisk  = (struct ramdisk_t *)(dev->private_data);
+  struct drive_t * drive = get_selected_drive(channel);
+  struct controller_t * controller = &(drive->controller);
+
+  if (controller->buffer_index >= PACKET_SIZE) {
+    PrintError("ATAPI packet exceeded maximum length: buffer_index (%d) >= PACKET_SIZE\n", 
+              controller->buffer_index);
+    return -1;
+  }
+
+  controller->buffer[controller->buffer_index] = value;
+  controller->buffer[controller->buffer_index + 1] = (value >> 8);
+  controller->buffer_index += 2;
+  
+  
+  /* if packet completely writtten */
+  if (controller->buffer_index >= PACKET_SIZE) {
+    // complete command received
+    Bit8u atapi_command = controller->buffer[0];
+    
+    PrintDebug("\t\tcdrom: ATAPI command 0x%x started\n", atapi_command);
+    
+    switch (atapi_command) {
+    case 0x00: // test unit ready
+      {
+       PrintDebug("Testing unit ready\n");
+       if (drive->cdrom.ready) {
+         rd_atapi_cmd_nop(dev, channel);
+       } else {
+         PrintError("CDROM not ready in test unit ready\n");
+         rd_atapi_cmd_error(dev, channel, SENSE_NOT_READY, ASC_MEDIUM_NOT_PRESENT);
+       }
+       
+       rd_raise_interrupt(dev, channel);
+       
+       break;
+      }
+    case 0x03:  // request sense
+      {
+       int alloc_length = controller->buffer[4];
+
+       if (rd_init_send_atapi_command(dev, channel, atapi_command, 18, alloc_length, false) == -1) {
+         PrintError("Error sending atapi command in Request Sense\n");
+         return -1;
+       }
+       
+       // sense data
+       controller->buffer[0] = 0x70 | (1 << 7);
+       controller->buffer[1] = 0;
+       controller->buffer[2] = drive->sense.sense_key;
+       controller->buffer[3] = drive->sense.information.arr[0];
+       controller->buffer[4] = drive->sense.information.arr[1];
+       controller->buffer[5] = drive->sense.information.arr[2];
+       controller->buffer[6] = drive->sense.information.arr[3];
+       controller->buffer[7] = 17 - 7;
+       controller->buffer[8] = drive->sense.specific_inf.arr[0];
+       controller->buffer[9] = drive->sense.specific_inf.arr[1];
+       controller->buffer[10] = drive->sense.specific_inf.arr[2];
+       controller->buffer[11] = drive->sense.specific_inf.arr[3];
+       controller->buffer[12] = drive->sense.asc;
+       controller->buffer[13] = drive->sense.ascq;
+       controller->buffer[14] = drive->sense.fruc;
+       controller->buffer[15] = drive->sense.key_spec.arr[0];
+       controller->buffer[16] = drive->sense.key_spec.arr[1];
+       controller->buffer[17] = drive->sense.key_spec.arr[2];
+       
+       rd_ready_to_send_atapi(dev, channel);
+       break;
+      }
+    case 0x1b:  // start stop unit
+      {
+       //bx_bool Immed = (controller->buffer[1] >> 0) & 1;
+       rd_bool LoEj = (controller->buffer[4] >> 1) & 1;
+       rd_bool Start = (controller->buffer[4] >> 0) & 1;
+
+       // stop the disc
+       if ((!LoEj) && (!Start)) { 
+         PrintError("FIXME: Stop disc not implemented\n");
+
+         rd_atapi_cmd_nop(dev, channel);
+         rd_raise_interrupt(dev, channel);
+
+       } else if (!LoEj && Start) { // start (spin up) the disc
+         
+         drive->cdrom.cd->start_cdrom(drive->private_data);
+         
+         PrintError("FIXME: ATAPI start disc not reading TOC\n");
+         rd_atapi_cmd_nop(dev, channel);
+         rd_raise_interrupt(dev, channel);
+
+       } else if (LoEj && !Start) { // Eject the disc
+         rd_atapi_cmd_nop(dev, channel);
+         PrintDebug("Ejecting Disk\n");
+         if (drive->cdrom.ready) {
+           
+           drive->cdrom.cd->eject_cdrom(drive->private_data);
+           
+           drive->cdrom.ready = 0;
+           //bx_options.atadevice[channel][SLAVE_SELECTED(channel)].Ostatus->set(EJECTED);
+           //bx_gui->update_drive_status_buttons();
+         }
+         rd_raise_interrupt(dev, channel);
+
+       } else { // Load the disc
+         // My guess is that this command only closes the tray, that's a no-op for us
+         rd_atapi_cmd_nop(dev, channel);
+         rd_raise_interrupt(dev, channel);
+       }
+       break;
+      }
+    case 0xbd: // mechanism status
+      {
+       uint16_t alloc_length = rd_read_16bit(controller->buffer + 8);
+       
+       if (alloc_length == 0) {
+         PrintError("Zero allocation length to MECHANISM STATUS not impl.\n");
+         return -1;
+       }
+       
+       if (rd_init_send_atapi_command(dev, channel, atapi_command, 8, alloc_length, false) == -1) {
+         PrintError("Error sending atapi command in mechanism status\n");
+         return -1;
+       }
+       
+       controller->buffer[0] = 0; // reserved for non changers
+       controller->buffer[1] = 0; // reserved for non changers
+       
+       controller->buffer[2] = 0; // Current LBA (TODO!)
+       controller->buffer[3] = 0; // Current LBA (TODO!)
+       controller->buffer[4] = 0; // Current LBA (TODO!)
+       
+       controller->buffer[5] = 1; // one slot
+       
+       controller->buffer[6] = 0; // slot table length
+       controller->buffer[7] = 0; // slot table length
+       
+       rd_ready_to_send_atapi(dev, channel);
+       break;
+      }
+    case 0x5a:  // mode sense
+      {
+       uint16_t alloc_length = rd_read_16bit(controller->buffer + 7);
+       
+       Bit8u PC = controller->buffer[2] >> 6;
+       Bit8u PageCode = controller->buffer[2] & 0x3f;
+       
+       switch (PC) {
+       case 0x0: // current values
+         {
+           switch (PageCode) {
+           case 0x01: // error recovery
+             {
+               
+               if (rd_init_send_atapi_command(dev, channel, atapi_command, sizeof(struct error_recovery_t) + 8, alloc_length, false) == -1) {
+                 PrintError("Error sending atapi command in mode sense error recovery\n");
+                 return -1;
+               }
+               
+               rd_init_mode_sense_single(dev, channel, &(drive->cdrom.current.error_recovery),
+                                         sizeof(struct error_recovery_t));
+               rd_ready_to_send_atapi(dev, channel);
+               break;
+             }
+           case 0x2a: // CD-ROM capabilities & mech. status
+             {
+
+               if (rd_init_send_atapi_command(dev, channel, atapi_command, 28, alloc_length, false) == -1) {
+                 PrintError("Error sending atapi command in CDROM caps/mech mode-sense\n");
+                 return -1;
+               }
+
+               rd_init_mode_sense_single(dev, channel, &(controller->buffer[8]), 28);
+               
+               controller->buffer[8] = 0x2a;
+               controller->buffer[9] = 0x12;
+               controller->buffer[10] = 0x00;
+               controller->buffer[11] = 0x00;
+               // Multisession, Mode 2 Form 2, Mode 2 Form 1
+               controller->buffer[12] = 0x70; 
+               controller->buffer[13] = (3 << 5);
+               controller->buffer[14] = (unsigned char) (1 |
+                                                         (drive->cdrom.locked ? (1 << 1) : 0) |
+                                                         (1 << 3) |
+                                                         (1 << 5));
+               controller->buffer[15] = 0x00;
+               controller->buffer[16] = (706 >> 8) & 0xff;
+               controller->buffer[17] = 706 & 0xff;
+               controller->buffer[18] = 0;
+               controller->buffer[19] = 2;
+               controller->buffer[20] = (512 >> 8) & 0xff;
+               controller->buffer[21] = 512 & 0xff;
+               controller->buffer[22] = (706 >> 8) & 0xff;
+               controller->buffer[23] = 706 & 0xff;
+               controller->buffer[24] = 0;
+               controller->buffer[25] = 0;
+               controller->buffer[26] = 0;
+               controller->buffer[27] = 0;
+               rd_ready_to_send_atapi(dev, channel);
+               break;
+             }
+           case 0x0d: // CD-ROM
+           case 0x0e: // CD-ROM audio control
+           case 0x3f: // all
+             {
+               PrintError("Ramdisk: cdrom: MODE SENSE (curr), code=%x not implemented yet\n",
+                        PageCode);
+               rd_atapi_cmd_error(dev, channel, SENSE_ILLEGAL_REQUEST,
+                                  ASC_INV_FIELD_IN_CMD_PACKET);
+               rd_raise_interrupt(dev, channel);
+               break;
+             }
+           default:
+             {
+               // not implemeted by this device
+               PrintError("\t\tcdrom: MODE SENSE PC=%x, PageCode=%x, not implemented by device\n",
+                             PC, PageCode);
+               rd_atapi_cmd_error(dev, channel, SENSE_ILLEGAL_REQUEST,
+                                  ASC_INV_FIELD_IN_CMD_PACKET);
+               rd_raise_interrupt(dev, channel);
+               break;
+             }
+           }
+           break;
+         }
+       case 0x1: // changeable values
+         {
+           switch (PageCode) {
+           case 0x01: // error recovery
+           case 0x0d: // CD-ROM
+           case 0x0e: // CD-ROM audio control
+           case 0x2a: // CD-ROM capabilities & mech. status
+           case 0x3f: // all
+             {
+               PrintError("cdrom: MODE SENSE (chg), code=%x not implemented yet\n",
+                          PageCode);
+               rd_atapi_cmd_error(dev, channel, SENSE_ILLEGAL_REQUEST,
+                                  ASC_INV_FIELD_IN_CMD_PACKET);
+               rd_raise_interrupt(dev, channel);
+               break;
+             }
+           default:
+             {
+               // not implemeted by this device
+               PrintError("Changeable values of mode sense not supported by cdrom\n");
+               PrintDebug("\t\tcdrom: MODE SENSE PC=%x, PageCode=%x, not implemented by device\n",
+                          PC, PageCode);
+               rd_atapi_cmd_error(dev, channel, SENSE_ILLEGAL_REQUEST,
+                                  ASC_INV_FIELD_IN_CMD_PACKET);
+               rd_raise_interrupt(dev, channel);
+               break;
+             }
+           }
+           break;
+         }
+       case 0x2: // default values
+         {
+           switch (PageCode) {
+           case 0x01: // error recovery
+           case 0x0d: // CD-ROM
+           case 0x0e: // CD-ROM audio control
+           case 0x2a: // CD-ROM capabilities & mech. status
+           case 0x3f: // all
+             PrintError("Default values of mode sense not supported by cdrom\n");
+             PrintDebug("cdrom: MODE SENSE (dflt), code=%x\n",
+                      PageCode);
+             return -1;
+             
+           default:
+             {
+               PrintError("Default values of mode sense not implemented in cdrom\n");
+               // not implemeted by this device
+               PrintDebug("cdrom: MODE SENSE PC=%x, PageCode=%x, not implemented by device\n",
+                          PC, PageCode);
+               rd_atapi_cmd_error(dev, channel, SENSE_ILLEGAL_REQUEST,
+                                  ASC_INV_FIELD_IN_CMD_PACKET);
+               rd_raise_interrupt(dev, channel);
+               break;
+             }
+           }
+           break;
+         }
+       case 0x3: // saved values not implemented
+         {
+           PrintError("\t\tSaved values not implemented in mode sense\n");
+           rd_atapi_cmd_error(dev, channel, SENSE_ILLEGAL_REQUEST, ASC_SAVING_PARAMETERS_NOT_SUPPORTED);
+           rd_raise_interrupt(dev, channel);
+           break;
+         }
+       default:
+         {
+           PrintError("Unsupported Mode sense value\n");
+           return -1;
+           break;
+         }
+       }
+       break;
+      }
+    case 0x12: // inquiry
+      { 
+       uint8_t alloc_length = controller->buffer[4];
+       
+       if (rd_init_send_atapi_command(dev, channel, atapi_command, 36, alloc_length, false) == -1) {
+         PrintError("Error sending atapi command in inquiry\n");
+         return -1;
+       }
+       
+       controller->buffer[0] = 0x05; // CD-ROM
+       controller->buffer[1] = 0x80; // Removable
+       controller->buffer[2] = 0x00; // ISO, ECMA, ANSI version
+       controller->buffer[3] = 0x21; // ATAPI-2, as specified
+       controller->buffer[4] = 31; // additional length (total 36)
+       controller->buffer[5] = 0x00; // reserved
+       controller->buffer[6] = 0x00; // reserved
+       controller->buffer[7] = 0x00; // reserved
+       
+       // Vendor ID
+       const char* vendor_id = "VTAB    ";
+       int i;
+       for (i = 0; i < 8; i++) {
+         controller->buffer[8+i] = vendor_id[i];
+       }
+
+       // Product ID
+       const char* product_id = "Turbo CD-ROM    ";
+       for (i = 0; i < 16; i++) {
+         controller->buffer[16+i] = product_id[i];
+       }
+
+       // Product Revision level
+       const char* rev_level = "1.0 "; 
+       for (i = 0; i < 4; i++) {
+         controller->buffer[32 + i] = rev_level[i];
+       }
+
+       rd_ready_to_send_atapi(dev, channel);
+       break;
+      }
+    case 0x25:  // read cd-rom capacity
+      {
+       // no allocation length???
+       if (rd_init_send_atapi_command(dev, channel, atapi_command, 8, 8, false) == -1) {
+         PrintError("Error sending atapi command in read cdrom capacity\n");
+         return -1;
+       }
+       
+       if (drive->cdrom.ready) {
+         uint32_t capacity = drive->cdrom.capacity;
+
+         PrintDebug("\t\tCapacity is %d sectors (%d bytes)\n", capacity, capacity * 2048);
+
+         controller->buffer[0] = (capacity >> 24) & 0xff;
+         controller->buffer[1] = (capacity >> 16) & 0xff;
+         controller->buffer[2] = (capacity >> 8) & 0xff;
+         controller->buffer[3] = (capacity >> 0) & 0xff;
+         controller->buffer[4] = (2048 >> 24) & 0xff;
+         controller->buffer[5] = (2048 >> 16) & 0xff;
+         controller->buffer[6] = (2048 >> 8) & 0xff;
+         controller->buffer[7] = (2048 >> 0) & 0xff;
+
+         rd_ready_to_send_atapi(dev, channel);
+       } else {
+         PrintError("CDROM not ready in read cdrom capacity\n");
+         rd_atapi_cmd_error(dev, channel, SENSE_NOT_READY, ASC_MEDIUM_NOT_PRESENT);
+         rd_raise_interrupt(dev, channel);
+       }
+       break;
+      }
+      
+      
+    case 0xbe:  // read cd
+      {
+       if (drive->cdrom.ready) {
+         PrintError("Read CD with CD present not implemented\n");
+         rd_atapi_cmd_error(dev, channel, SENSE_ILLEGAL_REQUEST, ASC_INV_FIELD_IN_CMD_PACKET);
+         rd_raise_interrupt(dev, channel);
+       } else {
+         PrintError("Drive not ready in read cd with CD present\n");
+         rd_atapi_cmd_error(dev, channel, SENSE_NOT_READY, ASC_MEDIUM_NOT_PRESENT);
+         rd_raise_interrupt(dev, channel);
+       }
+       break;
+      }
+    case 0x43: // read toc
+      { 
+       if (drive->cdrom.ready) {
+         int toc_length = 0;  
+         bool msf = (controller->buffer[1] >> 1) & 1;
+         uint8_t starting_track = controller->buffer[6];
+         
+         uint16_t alloc_length = rd_read_16bit(controller->buffer + 7);
+         
+         uint8_t format = (controller->buffer[9] >> 6);
+         int i;
+
+         PrintDebug("Reading CDROM TOC: Format=%d (byte count=%d) (toc length:%d)\n", 
+                    format, controller->byte_count, toc_length);
+
+         switch (format) {
+         case 0:
+           {
+             if (!(drive->cdrom.cd->read_toc(drive->private_data, controller->buffer,
+                                             &toc_length, msf, starting_track))) {
+               PrintError("CDROM: Reading Table of Contents Failed\n");
+               rd_atapi_cmd_error(dev, channel, SENSE_ILLEGAL_REQUEST,
+                                  ASC_INV_FIELD_IN_CMD_PACKET);
+               rd_raise_interrupt(dev, channel);
+               break;
+             }
+
+
+             if (rd_init_send_atapi_command(dev, channel, atapi_command, toc_length, alloc_length, false) == -1) {
+               PrintError("Failed to init send atapi command in read toc (fmt=%d)\n", format);
+               return -1;
+             }
+
+             rd_ready_to_send_atapi(dev, channel);    
+
+             break;
+           }
+         case 1:
+           // multi session stuff. we ignore this and emulate a single session only
+
+           if (rd_init_send_atapi_command(dev, channel, atapi_command, 12, alloc_length, false) == -1) {
+             PrintError("Failed to init send atapi command in read toc (fmt=%d)\n", format);
+             return -1;
+           }
+           
+           controller->buffer[0] = 0;
+           controller->buffer[1] = 0x0a;
+           controller->buffer[2] = 1;
+           controller->buffer[3] = 1;
+
+           for (i = 0; i < 8; i++) {
+             controller->buffer[4 + i] = 0;
+           }
+
+           rd_ready_to_send_atapi(dev, channel);
+           break;
+           
+         case 2:
+         default:
+           PrintError("(READ TOC) Format %d not supported\n", format);
+           return -1;
+         }
+       } else {
+         PrintError("CDROM not ready in read toc\n");
+         rd_atapi_cmd_error(dev, channel, SENSE_NOT_READY, ASC_MEDIUM_NOT_PRESENT);
+         rd_raise_interrupt(dev, channel);
+       }
+       break;
+      }
+    case 0x28: // read (10)
+    case 0xa8: // read (12)
+      { 
+       
+       uint32_t transfer_length;
+       if (atapi_command == 0x28) {
+         transfer_length = rd_read_16bit(controller->buffer + 7);
+       } else {
+         transfer_length = rd_read_32bit(controller->buffer + 6);
+       }
+
+       uint32_t lba = rd_read_32bit(controller->buffer + 2);
+       
+       if (!(drive->cdrom.ready)) {
+         PrintError("CDROM Error: Not Ready (ATA%d/%d)\n", 
+                    get_channel_no(ramdisk, channel), get_drive_no(channel, drive));
+         rd_atapi_cmd_error(dev, channel, SENSE_NOT_READY, ASC_MEDIUM_NOT_PRESENT);
+         rd_raise_interrupt(dev, channel);
+         break;
+       }
+       
+       if (transfer_length == 0) {
+         PrintError("READ(%d) with transfer length 0, ok\n", 
+                    (atapi_command == 0x28) ? 10 : 12);
+         rd_atapi_cmd_nop(dev, channel);
+         rd_raise_interrupt(dev, channel);
+         break;
+       }
+       
+       if (lba + transfer_length > drive->cdrom.capacity) {
+         PrintError("CDROM Error: Capacity exceeded [capacity=%d] (ATA%d/%d)\n",
+                    drive->cdrom.capacity,
+                    get_channel_no(ramdisk, channel), get_drive_no(channel, drive));
+         rd_atapi_cmd_error(dev, channel, SENSE_ILLEGAL_REQUEST, ASC_LOGICAL_BLOCK_OOR);
+         rd_raise_interrupt(dev, channel);
+         break;
+       }
+       
+       PrintDebug("\t\tcdrom: READ (%d) LBA=%d LEN=%d\n", 
+                  (atapi_command == 0x28) ? 10 : 12, 
+                  lba, transfer_length);
+       
+       // handle command
+       if (rd_init_send_atapi_command(dev, channel, atapi_command, transfer_length * 2048,
+                                      transfer_length * 2048, true) == -1) {
+         PrintError("CDROM Error: Atapi command send error\n");
+         return -1;
+       }
+
+       drive->cdrom.remaining_blocks = transfer_length;
+       drive->cdrom.next_lba = lba;
+       rd_ready_to_send_atapi(dev, channel);
+       break;
+      }
+    case 0x2b:  // seek
+      {
+       uint32_t lba = rd_read_32bit(controller->buffer + 2);
+
+       if (!(drive->cdrom.ready)) {
+         PrintError("CDROM not ready in seek\n");
+         rd_atapi_cmd_error(dev, channel, SENSE_NOT_READY, ASC_MEDIUM_NOT_PRESENT);
+         rd_raise_interrupt(dev, channel);
+         break;
+       }
+       
+       if (lba > drive->cdrom.capacity) {
+         PrintError("LBA is greater than CDROM capacity in seek\n");
+         rd_atapi_cmd_error(dev, channel, SENSE_ILLEGAL_REQUEST, ASC_LOGICAL_BLOCK_OOR);
+         rd_raise_interrupt(dev, channel);
+         break;
+       }
+       
+       PrintError("\t\tcdrom: SEEK (ignored)\n");
+
+       rd_atapi_cmd_nop(dev, channel);
+       rd_raise_interrupt(dev, channel);
+
+       break;
+      }
+    case 0x1e:  // prevent/allow medium removal
+      {
+
+       if (drive->cdrom.ready) {
+         drive->cdrom.locked = controller->buffer[4] & 1;
+         rd_atapi_cmd_nop(dev, channel);
+       } else {
+         PrintError("CD not ready in prevent/allow medium removal\n");
+         rd_atapi_cmd_error(dev, channel, SENSE_NOT_READY, ASC_MEDIUM_NOT_PRESENT);
+       }
+
+       rd_raise_interrupt(dev, channel);
+
+       break;
+      }
+    case 0x42:  // read sub-channel
+      {
+       //bool msf = get_packet_field(channel,1, 1, 1);
+       bool sub_q = get_packet_field(channel,2, 6, 1);
+       //uint8_t data_format = get_packet_byte(channel,3);
+       //uint8_t track_number = get_packet_byte(channel,6);
+       uint16_t alloc_length = get_packet_word(channel,7);
+       
+
+       /*
+         UNUSED(msf);
+         UNUSED(data_format);
+         UNUSED(track_number);
+       */
+       if (!(drive->cdrom.ready)) {
+         PrintError("CDROM not ready in read sub-channel\n");
+         rd_atapi_cmd_error(dev, channel, SENSE_NOT_READY, ASC_MEDIUM_NOT_PRESENT);
+         rd_raise_interrupt(dev, channel);
+       } else {
+         controller->buffer[0] = 0;
+         controller->buffer[1] = 0; // audio not supported
+         controller->buffer[2] = 0;
+         controller->buffer[3] = 0;
+         
+         int ret_len = 4; // header size
+         
+         if (sub_q) { // !sub_q == header only
+           PrintError("Read sub-channel with SubQ not implemented\n");
+           rd_atapi_cmd_error(dev, channel, SENSE_ILLEGAL_REQUEST,
+                              ASC_INV_FIELD_IN_CMD_PACKET);
+           rd_raise_interrupt(dev, channel);
+         }
+         
+         if (rd_init_send_atapi_command(dev, channel, atapi_command, ret_len, alloc_length, false) == -1) {
+           PrintError("Error sending atapi command in read sub-channel\n");
+           return -1;
+         }
+         rd_ready_to_send_atapi(dev, channel);
+       }
+       break;
+      }
+    case 0x51:  // read disc info
+      {
+       // no-op to keep the Linux CD-ROM driver happy
+       PrintError("Error: Read disk info no-op to keep the Linux CD-ROM driver happy\n");
+       rd_atapi_cmd_error(dev, channel, SENSE_ILLEGAL_REQUEST, ASC_INV_FIELD_IN_CMD_PACKET);
+       rd_raise_interrupt(dev, channel);
+       break;
+      }
+    case 0x55: // mode select
+    case 0xa6: // load/unload cd
+    case 0x4b: // pause/resume
+    case 0x45: // play audio
+    case 0x47: // play audio msf
+    case 0xbc: // play cd
+    case 0xb9: // read cd msf
+    case 0x44: // read header
+    case 0xba: // scan
+    case 0xbb: // set cd speed
+    case 0x4e: // stop play/scan
+    case 0x46: // ???
+    case 0x4a: // ???
+      PrintError("ATAPI command 0x%x not implemented yet\n",
+                atapi_command);
+      rd_atapi_cmd_error(dev, channel, SENSE_ILLEGAL_REQUEST, ASC_INV_FIELD_IN_CMD_PACKET);
+      rd_raise_interrupt(dev, channel);
+      break;
+    default:
+      PrintError("Unknown ATAPI command 0x%x (%d)\n",
+                atapi_command, atapi_command);
+      // We'd better signal the error if the user chose to continue
+      rd_atapi_cmd_error(dev, channel, SENSE_ILLEGAL_REQUEST, ASC_INV_FIELD_IN_CMD_PACKET);
+      rd_raise_interrupt(dev, channel);
+      break;
+    }
+  }
+       
+             
+  return 0;
+}
+
+
+
+
+int rd_init_send_atapi_command(struct vm_device * dev, struct channel_t * channel, Bit8u command, int req_length, int alloc_length, bool lazy)
+{
+  struct drive_t * drive = &(channel->drives[channel->drive_select]);
+  struct controller_t * controller = &(drive->controller);
+
+  // controller->byte_count is a union of controller->cylinder_no;
+  // lazy is used to force a data read in the buffer at the next read.
+  
+  PrintDebug("[rd_init_send_atapi_cmd]\n");
+
+  if (controller->byte_count == 0xffff) {
+    controller->byte_count = 0xfffe;
+  }
+
+  if ((controller->byte_count & 1) && 
+      !(alloc_length <= controller->byte_count)) {
+      
+    PrintDebug("\t\tOdd byte count (0x%04x) to ATAPI command 0x%02x, using 0x%x\n", 
+              controller->byte_count, 
+              command, 
+              controller->byte_count - 1);
+    
+    controller->byte_count -= 1;
+  }
+  
+  if (controller->byte_count == 0) {
+    PrintError("\t\tATAPI command with zero byte count\n");
+    return -1;
+  }
+
+  if (alloc_length < 0) {
+    PrintError("\t\tAllocation length < 0\n");
+    return -1;
+  }
+
+  if (alloc_length == 0) {
+    alloc_length = controller->byte_count;
+  }
+  
+  controller->interrupt_reason.i_o = 1;
+  controller->interrupt_reason.c_d = 0;
+  controller->status.busy = 0;
+  controller->status.drq = 1;
+  controller->status.err = 0;
+  
+  // no bytes transfered yet
+  if (lazy) {
+    controller->buffer_index = 2048;
+  } else {
+    controller->buffer_index = 0;
+  }
+
+  controller->drq_index = 0;
+  
+  if (controller->byte_count > req_length) {
+    controller->byte_count = req_length;
+  }
+
+  if (controller->byte_count > alloc_length) {
+    controller->byte_count = alloc_length;
+  }  
+
+  drive->atapi.command = command;
+  drive->atapi.drq_bytes = controller->byte_count;
+  drive->atapi.total_bytes_remaining = (req_length < alloc_length) ? req_length : alloc_length;
+  
+  // if (lazy) {
+  // // bias drq_bytes and total_bytes_remaining
+  // SELECTED_DRIVE(channel).atapi.drq_bytes += 2048;
+  // SELECTED_DRIVE(channel).atapi.total_bytes_remaining += 2048;
+  // }
+
+  return 0;
+}
+
+
+
+void rd_ready_to_send_atapi(struct vm_device * dev, struct channel_t * channel) {
+  PrintDebug("[rd_ready_to_send_atapi]\n");
+  
+  rd_raise_interrupt(dev, channel);
+}
+
+
+
+
+
+void rd_atapi_cmd_error(struct vm_device * dev, struct channel_t * channel, sense_t sense_key, asc_t asc)
+{
+  struct drive_t * drive = &(channel->drives[channel->drive_select]);
+  struct controller_t * controller = &(drive->controller);
+
+
+  struct ramdisk_t *ramdisk = (struct ramdisk_t *)(dev->private_data);
+  PrintError("[rd_atapi_cmd_error]\n");
+  PrintError("Error: atapi_cmd_error channel=%02x key=%02x asc=%02x\n", 
+            get_channel_no(ramdisk, channel), sense_key, asc);
+  
+
+  controller->error_register = sense_key << 4;
+  controller->interrupt_reason.i_o = 1;
+  controller->interrupt_reason.c_d = 1;
+  controller->interrupt_reason.rel = 0;
+  controller->status.busy = 0;
+  controller->status.drive_ready = 1;
+  controller->status.write_fault = 0;
+  controller->status.drq = 0;
+  controller->status.err = 1;
+  
+  drive->sense.sense_key = sense_key;
+  drive->sense.asc = asc;
+  drive->sense.ascq = 0;
+}
+
+
+
+void rd_atapi_cmd_nop(struct vm_device * dev, struct channel_t * channel)
+{
+  struct drive_t * drive = &(channel->drives[channel->drive_select]);
+  struct controller_t * controller = &(drive->controller);
+
+  PrintDebug("[rd_atapi_cmd_nop]\n");
+  controller->interrupt_reason.i_o = 1;
+  controller->interrupt_reason.c_d = 1;
+  controller->interrupt_reason.rel = 0;
+  controller->status.busy = 0;
+  controller->status.drive_ready = 1;
+  controller->status.drq = 0;
+  controller->status.err = 0;
+}
+
+
+
+
+void rd_identify_ATAPI_drive(struct vm_device * dev, struct channel_t * channel)
+{
+  struct drive_t * drive = &(channel->drives[channel->drive_select]);
+  struct controller_t * controller = &(drive->controller);
+
+
+  uint_t i;
+  const char* serial_number = " VT00001\0\0\0\0\0\0\0\0\0\0\0\0";
+  const char* firmware = "ALPHA1  ";
+
+  drive->id_drive[0] = (2 << 14) | (5 << 8) | (1 << 7) | (2 << 5) | (0 << 0); // Removable CDROM, 50us response, 12 byte packets
+
+  for (i = 1; i <= 9; i++) {
+    drive->id_drive[i] = 0;
+  }
+
+  for (i = 0; i < 10; i++) {
+    drive->id_drive[10 + i] = ((serial_number[i * 2] << 8) |
+                              (serial_number[(i * 2) + 1]));
+  }
+
+  for (i = 20; i <= 22; i++) {
+    drive->id_drive[i] = 0;
+  }
+
+  for (i = 0; i < strlen(firmware)/2; i++) {
+    drive->id_drive[23 + i] = ((firmware[i * 2] << 8) |
+                              (firmware[(i * 2) + 1]));
+  }
+  V3_ASSERT((23 + i) == 27);
+  
+  for (i = 0; i < strlen((char *)(drive->model_no)) / 2; i++) {
+    drive->id_drive[27 + i] = ((drive->model_no[i * 2] << 8) |
+                              (drive->model_no[(i * 2) + 1]));
+  }
+  V3_ASSERT((27 + i) == 47);
+
+  drive->id_drive[47] = 0;
+  drive->id_drive[48] = 1; // 32 bits access
+
+  drive->id_drive[49] = (1 << 9); // LBA supported
+
+  drive->id_drive[50] = 0;
+  drive->id_drive[51] = 0;
+  drive->id_drive[52] = 0;
+
+  drive->id_drive[53] = 3; // words 64-70, 54-58 valid
+
+  for (i = 54; i <= 62; i++) {
+    drive->id_drive[i] = 0;
+  }
+
+  // copied from CFA540A
+  drive->id_drive[63] = 0x0103; // variable (DMA stuff)
+  drive->id_drive[64] = 0x0001; // PIO
+  drive->id_drive[65] = 0x00b4;
+  drive->id_drive[66] = 0x00b4;
+  drive->id_drive[67] = 0x012c;
+  drive->id_drive[68] = 0x00b4;
+
+  drive->id_drive[69] = 0;
+  drive->id_drive[70] = 0;
+  drive->id_drive[71] = 30; // faked
+  drive->id_drive[72] = 30; // faked
+  drive->id_drive[73] = 0;
+  drive->id_drive[74] = 0;
+
+  drive->id_drive[75] = 0;
+
+  for (i = 76; i <= 79; i++) {
+    drive->id_drive[i] = 0;
+  }
+
+  drive->id_drive[80] = 0x1e; // supports up to ATA/ATAPI-4
+  drive->id_drive[81] = 0;
+  drive->id_drive[82] = 0;
+  drive->id_drive[83] = 0;
+  drive->id_drive[84] = 0;
+  drive->id_drive[85] = 0;
+  drive->id_drive[86] = 0;
+  drive->id_drive[87] = 0;
+  drive->id_drive[88] = 0;
+
+  for (i = 89; i <= 126; i++) {
+    drive->id_drive[i] = 0;
+  }
+
+  drive->id_drive[127] = 0;
+  drive->id_drive[128] = 0;
+
+  for (i = 129; i <= 159; i++) {
+    drive->id_drive[i] = 0;
+  }
+
+  for (i = 160; i <= 255; i++) {
+    drive->id_drive[i] = 0;
+  }
+
+  // now convert the id_drive array (native 256 word format) to
+  // the controller buffer (512 bytes)
+  Bit16u temp16;
+  for (i = 0; i <= 255; i++) {
+    temp16 = drive->id_drive[i];
+    controller->buffer[i * 2] = temp16 & 0x00ff;
+    controller->buffer[i * 2 + 1] = temp16 >> 8;
+  }
+
+  return;
+}
+
+
+
+
+
+
+
+static 
+void rd_init_mode_sense_single(struct vm_device * dev, 
+                              struct channel_t * channel, const void* src, int size)
+{
+  struct drive_t * drive = &(channel->drives[channel->drive_select]);
+  struct controller_t * controller = &(drive->controller);
+
+  PrintDebug("[rd_init_mode_sense_single]\n");
+
+  // Header
+  controller->buffer[0] = (size + 6) >> 8;
+  controller->buffer[1] = (size + 6) & 0xff;
+  controller->buffer[2] = 0x70; // no media present
+  controller->buffer[3] = 0; // reserved
+  controller->buffer[4] = 0; // reserved
+  controller->buffer[5] = 0; // reserved
+  controller->buffer[6] = 0; // reserved
+  controller->buffer[7] = 0; // reserved
+  
+  // Data
+  memcpy(controller->buffer + 8, src, size);
+}
+
+
+
+static void rd_command_aborted(struct vm_device * dev, 
+                              struct channel_t * channel, unsigned value) {
+  struct drive_t * drive = &(channel->drives[channel->drive_select]);
+  struct controller_t * controller = &(drive->controller);
+
+  PrintError("[rd_command_aborted]\n");
+  PrintError("\t\taborting on command 0x%02x {%s}\n", value, device_type_to_str(drive->device_type));
+
+  controller->current_command = 0;
+  controller->status.busy = 0;
+  controller->status.drive_ready = 1;
+  controller->status.err = 1;
+  controller->error_register = 0x04; // command ABORTED
+  controller->status.drq = 0;
+  controller->status.seek_complete = 0;
+  controller->status.corrected_data = 0;
+  controller->buffer_index = 0;
+
+  rd_raise_interrupt(dev, channel);
+}
+
+
+static int ramdisk_init_device(struct vm_device *dev) {
+  struct ramdisk_t *ramdisk= (struct ramdisk_t *)dev->private_data;
+
+  PrintDebug("Initializing Ramdisk\n");
+
+
+  rd_init_hardware(ramdisk);
+
+
+  v3_dev_hook_io(dev, PRI_CTRL_PORT, 
+                &read_status_port, &write_ctrl_port);
+
+  v3_dev_hook_io(dev, PRI_DATA_PORT, 
+                &read_data_port, &write_data_port);
+  v3_dev_hook_io(dev, PRI_FEATURES_PORT, 
+                &read_general_port, &write_general_port);
+  v3_dev_hook_io(dev, PRI_SECT_CNT_PORT, 
+                &read_general_port, &write_general_port);
+  v3_dev_hook_io(dev, PRI_SECT_ADDR1_PORT, 
+                &read_general_port, &write_general_port);
+  v3_dev_hook_io(dev, PRI_SECT_ADDR2_PORT, 
+                &read_general_port, &write_general_port);
+  v3_dev_hook_io(dev, PRI_SECT_ADDR3_PORT, 
+                &read_general_port, &write_general_port);
+  v3_dev_hook_io(dev, PRI_DRV_SEL_PORT, 
+                &read_general_port, &write_general_port);
+  v3_dev_hook_io(dev, PRI_CMD_PORT, 
+                &read_status_port, &write_cmd_port);
+
+
+  v3_dev_hook_io(dev, SEC_CTRL_PORT, 
+                &read_status_port, &write_ctrl_port);
+
+  v3_dev_hook_io(dev, SEC_DATA_PORT, 
+                &read_data_port, &write_data_port);
+  v3_dev_hook_io(dev, SEC_FEATURES_PORT, 
+                &read_general_port, &write_general_port);
+  v3_dev_hook_io(dev, SEC_SECT_CNT_PORT, 
+                &read_general_port, &write_general_port);
+  v3_dev_hook_io(dev, SEC_SECT_ADDR1_PORT, 
+                &read_general_port, &write_general_port);
+  v3_dev_hook_io(dev, SEC_SECT_ADDR2_PORT, 
+                &read_general_port, &write_general_port);
+  v3_dev_hook_io(dev, SEC_SECT_ADDR3_PORT, 
+                &read_general_port, &write_general_port);
+  v3_dev_hook_io(dev, SEC_DRV_SEL_PORT, 
+                &read_general_port, &write_general_port);
+  v3_dev_hook_io(dev, SEC_CMD_PORT, 
+                &read_status_port, &write_cmd_port);
+  
+  
+
+  v3_dev_hook_io(dev, SEC_ADDR_REG_PORT, 
+                &read_general_port, &write_general_port);
+
+  v3_dev_hook_io(dev, PRI_ADDR_REG_PORT, 
+                &read_general_port, &write_general_port);
+
+
+
+  return 0;
+
+}
+
+
+static int ramdisk_deinit_device(struct vm_device *dev) {
+  struct ramdisk_t *ramdisk = (struct ramdisk_t *)(dev->private_data);
+  rd_close_harddrive(ramdisk);
+  return 0;
+}
+
+static struct vm_device_ops dev_ops = {
+  .init = ramdisk_init_device,
+  .deinit = ramdisk_deinit_device,
+  .reset = NULL,
+  .start = NULL,
+  .stop = NULL,
+};
+
+
+
+
+struct vm_device * v3_create_ramdisk()
+{
+
+  struct ramdisk_t *ramdisk;
+  ramdisk = (struct ramdisk_t *)V3_Malloc(sizeof(struct ramdisk_t));  
+  V3_ASSERT(ramdisk != NULL);  
+
+  PrintDebug("[create_ramdisk]\n");
+
+  struct vm_device * device = v3_create_device("RAMDISK", &dev_ops, ramdisk);
+
+  return device;
+}
+
+
+
+
+#ifdef DEBUG_RAMDISK
+
+static void rd_print_state(struct ramdisk_t * ramdisk) {
+  uchar_t channel; 
+  uchar_t device;
+  struct channel_t * channels = (struct channel_t *)(&(ramdisk->channels));
+
+  /*
+  for (channel = 0; channel < MAX_ATA_CHANNEL; channel++) {
+    memset((char *)(channels + channel), 0, sizeof(struct channel_t));
+  }
+  */
+  PrintDebug("sizeof(*channels) = %d\n", sizeof(*channels));
+  PrintDebug("sizeof(channles->drives[0].controller) = %d\n", sizeof((channels->drives[0].controller)));
+  PrintDebug("sizeof(channles->drives[0].cdrom) = %d\n", sizeof((channels->drives[0].cdrom)));
+  PrintDebug("sizeof(channles->drives[0].sense) = %d\n", sizeof((channels->drives[0].sense)));
+  PrintDebug("sizeof(channles->drives[0].atapi) = %d\n", sizeof((channels->drives[0].atapi)));
+
+
+  PrintDebug("sizeof(channles->drives[0].controller.status) = %d\n", 
+               sizeof((channels->drives[0].controller.status)));
+  PrintDebug("sizeof(channles->drives[0].controller.sector_count) = %d\n", 
+               sizeof((channels->drives[0].controller.sector_count)));
+  PrintDebug("sizeof(channles->drives[0].controller.interrupt_reason) = %d\n", 
+               sizeof((channels->drives[0].controller.interrupt_reason)));
+
+  PrintDebug("sizeof(channles->drives[0].controller.cylinder_no) = %d\n", 
+               sizeof((channels->drives[0].controller.cylinder_no)));
+  PrintDebug("sizeof(channles->drives[0].controller.byte_count) = %d\n", 
+               sizeof((channels->drives[0].controller.byte_count)));
+
+
+  PrintDebug("sizeof(channles->drives[0].controller.control) = %d\n", 
+               sizeof((channels->drives[0].controller.control)));
+
+
+  for (channel = 0; channel < MAX_ATA_CHANNEL; channel++){
+  
+    for (device = 0; device < 2; device++){
+                  
+      // Initialize controller state, even if device is not present
+      PrintDebug("channels[%d].drives[%d].controller.status.busy = %d\n",
+                   channel, device, 
+                   channels[channel].drives[device].controller.status.busy);
+      PrintDebug("channels[%d].drives[%d].controller.status.drive_ready = %d\n", 
+                   channel, device, 
+                   channels[channel].drives[device].controller.status.drive_ready);
+      PrintDebug("channels[%d].drives[%d].controller.status.write_fault = %d\n", 
+                   channel, device, 
+                   channels[channel].drives[device].controller.status.write_fault);
+      PrintDebug("channels[%d].drives[%d].controller.status.seek_complete = %d\n", 
+                   channel, device, 
+                   channels[channel].drives[device].controller.status.seek_complete);
+      PrintDebug("channels[%d].drives[%d].controller.status.drq = %d\n", 
+                   channel, device, 
+                   channels[channel].drives[device].controller.status.drq);
+      PrintDebug("channels[%d].drives[%d].controller.status.corrected_data = %d\n", 
+                   channel, device, 
+                   channels[channel].drives[device].controller.status.corrected_data);
+      PrintDebug("channels[%d].drives[%d].controller.status.index_pulse = %d\n", 
+                   channel, device, 
+                   channels[channel].drives[device].controller.status.index_pulse);
+      PrintDebug("channels[%d].drives[%d].controller.status.index_pulse_count = %d\n", 
+                   channel, device, 
+                   channels[channel].drives[device].controller.status.index_pulse_count);
+      PrintDebug("channels[%d].drives[%d].controller.status.err = %d\n", 
+                   channel, device, 
+                   channels[channel].drives[device].controller.status.err);
+
+
+      PrintDebug("channels[%d].drives[%d].controller.error_register = %d\n", 
+                   channel, device, 
+                   channels[channel].drives[device].controller.error_register);
+      PrintDebug("channels[%d].drives[%d].controller.head_no = %d\n", 
+                   channel, device, 
+                   channels[channel].drives[device].controller.head_no);
+      PrintDebug("channels[%d].drives[%d].controller.sector_count = %d\n", 
+                   channel, device, 
+                   channels[channel].drives[device].controller.sector_count);
+      PrintDebug("channels[%d].drives[%d].controller.sector_no = %d\n", 
+                   channel, device, 
+                   channels[channel].drives[device].controller.sector_no);
+      PrintDebug("channels[%d].drives[%d].controller.cylinder_no = %d\n", 
+                   channel, device, 
+                   channels[channel].drives[device].controller.cylinder_no);
+      PrintDebug("channels[%d].drives[%d].controller.current_command = %02x\n", 
+                   channel, device, 
+                   channels[channel].drives[device].controller.current_command);
+      PrintDebug("channels[%d].drives[%d].controller.buffer_index = %d\n", 
+                   channel, device, 
+                   channels[channel].drives[device].controller.buffer_index);
+
+
+      PrintDebug("channels[%d].drives[%d].controller.control.reset = %d\n", 
+                   channel, device, 
+                   channels[channel].drives[device].controller.control.reset);
+      PrintDebug("channels[%d].drives[%d].controller.control.disable_irq = %d\n", 
+                   channel, device, 
+                   channels[channel].drives[device].controller.control.disable_irq);
+
+
+      PrintDebug("channels[%d].drives[%d].controller.reset_in_progress = %d\n", 
+                   channel, device, 
+                   channels[channel].drives[device].controller.reset_in_progress);
+      PrintDebug("channels[%d].drives[%d].controller.sectors_per_block = %02x\n", 
+                   channel, device, 
+                   channels[channel].drives[device].controller.sectors_per_block); 
+      PrintDebug("channels[%d].drives[%d].controller.lba_mode = %d\n", 
+                   channel, device, 
+                   channels[channel].drives[device].controller.lba_mode); 
+      PrintDebug("channels[%d].drives[%d].controller.features = %d\n", 
+                   channel, device, 
+                   channels[channel].drives[device].controller.features); 
+
+
+      PrintDebug("channels[%d].drives[%d].model_no = %s\n", 
+                   channel, device, 
+                   channels[channel].drives[device].model_no); 
+      PrintDebug("channels[%d].drives[%d].device_type = %d\n", 
+                   channel, device, 
+                   channels[channel].drives[device].device_type); 
+      PrintDebug("channels[%d].drives[%d].cdrom.locked = %d\n", 
+                   channel, device, 
+                   channels[channel].drives[device].cdrom.locked); 
+      PrintDebug("channels[%d].drives[%d].sense.sense_key = %d\n", 
+                   channel, device, 
+                   channels[channel].drives[device].sense.sense_key); 
+      PrintDebug("channels[%d].drives[%d].sense.asc = %d\n", 
+                   channel, device, 
+                   channels[channel].drives[device].sense.asc); 
+      PrintDebug("channels[%d].drives[%d].sense.ascq = %d\n", 
+                   channel, device, 
+                   channels[channel].drives[device].sense.ascq); 
+
+
+
+      PrintDebug("channels[%d].drives[%d].controller.interrupt_reason.c_d = %02x\n", 
+                   channel, device, 
+                   channels[channel].drives[device].controller.interrupt_reason.c_d);
+
+      PrintDebug("channels[%d].drives[%d].controller.interrupt_reason.i_o = %02x\n", 
+                   channel, device, 
+                   channels[channel].drives[device].controller.interrupt_reason.i_o);
+
+      PrintDebug("channels[%d].drives[%d].controller.interrupt_reason.rel = %02x\n", 
+                   channel, device, 
+                   channels[channel].drives[device].controller.interrupt_reason.rel);
+
+      PrintDebug("channels[%d].drives[%d].controller.interrupt_reason.tag = %02x\n", 
+                   channel, device, 
+                   channels[channel].drives[device].controller.interrupt_reason.tag);
+
+      PrintDebug("channels[%d].drives[%d].cdrom.ready = %d\n", 
+                   channel, device, 
+                   channels[channel].drives[device].cdrom.ready);
+      
+    }  //for device
+  }  //for channel
+  
+  return;
+}
+
+
+
+static int check_bit_fields(struct controller_t * controller) {
+  //Check bit fields
+  controller->sector_count = 0;
+  controller->interrupt_reason.c_d = 1;
+  if (controller->sector_count != 0x01) {
+    return INTR_REASON_BIT_ERR;
+  }
+  
+  controller->sector_count = 0;
+  controller->interrupt_reason.i_o = 1;
+  if (controller->sector_count != 0x02) {
+    return INTR_REASON_BIT_ERR;
+  }
+  
+  controller->sector_count = 0;
+  controller->interrupt_reason.rel = 1;
+  if (controller->sector_count != 0x04) {
+    return INTR_REASON_BIT_ERR;
+  }
+  
+  controller->sector_count = 0;
+  controller->interrupt_reason.tag = 3;
+  if (controller->sector_count != 0x18) {
+    return INTR_REASON_BIT_ERR;
+  }
+  
+  return 0;
+}
+
+#endif