Palacios Public Git Repository

To checkout Palacios execute

  git clone http://v3vee.org/palacios/palacios.web/palacios.git
This will give you the master branch. You probably want the devel branch or one of the release branches. To switch to the devel branch, simply execute
  cd palacios
  git checkout --track -b devel origin/devel
The other branches are similar.


Cleanup and sanity-checking of OOB accesses and pointer-to-local issues (Coverity...
[palacios.git] / palacios / src / devices / ide.c
index 4ad0fa9..e9a90a8 100644 (file)
@@ -26,7 +26,7 @@
 #include "ide-types.h"
 #include "atapi-types.h"
 
-#ifndef CONFIG_DEBUG_IDE
+#ifndef V3_CONFIG_DEBUG_IDE
 #undef PrintDebug
 #define PrintDebug(fmt, args...)
 #endif
@@ -110,16 +110,16 @@ struct ide_cd_state {
 };
 
 struct ide_hd_state {
-    int accessed;
+    uint32_t accessed;
 
     /* this is the multiple sector transfer size as configured for read/write multiple sectors*/
-    uint_t mult_sector_num;
+    uint32_t mult_sector_num;
 
     /* This is the current op sector size:
      * for multiple sector ops this equals mult_sector_num
      * for standard ops this equals 1
      */
-    uint_t cur_sector_num;
+    uint64_t cur_sector_num;
 };
 
 struct ide_drive {
@@ -137,11 +137,11 @@ struct ide_drive {
     char model[41];
 
     // Where we are in the data transfer
-    uint_t transfer_index;
+    uint64_t transfer_index;
 
     // the length of a transfer
     // calculated for easy access
-    uint_t transfer_length;
+    uint64_t transfer_length;
 
     uint64_t current_lba;
 
@@ -153,13 +153,25 @@ struct ide_drive {
     uint32_t num_heads;
     uint32_t num_sectors;
 
+
+    struct lba48_state {
+       // all start at zero
+       uint64_t lba;                  
+       uint16_t sector_count;            // for LBA48
+       uint8_t  sector_count_state;      // two step write to 1f2/172 (high first)
+       uint8_t  lba41_state;             // two step write to 1f3
+        uint8_t  lba52_state;             // two step write to 1f4
+        uint8_t  lba63_state;             // two step write to 15
+    } lba48;
+
     void * private_data;
     
     union {
-       uint8_t sector_count;             // 0x1f2,0x172
-       struct atapi_irq_flags irq_flags;
+       uint8_t sector_count;             // 0x1f2,0x172  (ATA)
+       struct atapi_irq_flags irq_flags; // (ATAPI ONLY)
     } __attribute__((packed));
 
+
     union {
        uint8_t sector_num;               // 0x1f3,0x173
        uint8_t lba0;
@@ -206,10 +218,18 @@ struct ide_channel {
     // Control Registers
     struct ide_ctrl_reg ctrl_reg; // [write] 0x3f6,0x376
 
-    struct ide_dma_cmd_reg dma_cmd;
-    struct ide_dma_status_reg dma_status;
-    uint32_t dma_prd_addr;
-    uint_t dma_tbl_index;
+    union {
+       uint8_t dma_ports[8];
+       struct {
+           struct ide_dma_cmd_reg dma_cmd;
+           uint8_t rsvd1;
+           struct ide_dma_status_reg dma_status;
+           uint8_t rsvd2;
+           uint32_t dma_prd_addr;
+       } __attribute__((packed));
+    } __attribute__((packed));
+
+    uint32_t dma_tbl_index;
 };
 
 
@@ -221,6 +241,8 @@ struct ide_internal {
     struct vm_device * pci_bus;
 
     struct pci_device * ide_pci;
+
+    struct v3_vm_info * vm;
 };
 
 
@@ -249,6 +271,18 @@ static inline uint32_t le_to_be_32(const uint32_t val) {
 }
 
 
+static inline int is_lba28(struct ide_channel * channel) {
+    return channel->drive_head.lba_mode && channel->drive_head.rsvd1 && channel->drive_head.rsvd2;
+}
+
+static inline int is_lba48(struct ide_channel * channel) {
+    return channel->drive_head.lba_mode && !channel->drive_head.rsvd1 && !channel->drive_head.rsvd2;
+}
+
+static inline int is_chs(struct ide_channel * channel) {
+    return !channel->drive_head.lba_mode;
+}
+
 static inline int get_channel_index(ushort_t port) {
     if (((port & 0xfff8) == 0x1f0) ||
        ((port & 0xfffe) == 0x3f6) || 
@@ -265,7 +299,12 @@ static inline int get_channel_index(ushort_t port) {
 
 static inline struct ide_channel * get_selected_channel(struct ide_internal * ide, ushort_t port) {
     int channel_idx = get_channel_index(port);    
-    return &(ide->channels[channel_idx]);
+    if (channel_idx >= 0) { 
+       return &(ide->channels[channel_idx]);
+    } else {
+       PrintError(VM_NONE,VCORE_NONE,"ide: Cannot Determine Selected Channel\n");
+       return 0;
+    }
 }
 
 static inline struct ide_drive * get_selected_drive(struct ide_channel * channel) {
@@ -273,17 +312,18 @@ static inline struct ide_drive * get_selected_drive(struct ide_channel * channel
 }
 
 
-static inline int is_lba_enabled(struct ide_channel * channel) {
-    return channel->drive_head.lba_mode;
-}
 
 
 /* Drive Commands */
-static void ide_raise_irq(struct vm_device * dev, struct ide_channel * channel) {
+static void ide_raise_irq(struct ide_internal * ide, struct ide_channel * channel) {
     if (channel->ctrl_reg.irq_disable == 0) {
-       //        PrintError("Raising IDE Interrupt %d\n", channel->irq);
+
+       PrintDebug(ide->vm,VCORE_NONE, "Raising IDE Interrupt %d\n", channel->irq);
+
         channel->dma_status.int_gen = 1;
-        v3_raise_irq(dev->vm, channel->irq);
+        v3_raise_irq(ide->vm, channel->irq);
+    } else {
+       PrintDebug(ide->vm,VCORE_NONE, "IDE Interrupt %d cannot be raised as irq is disabled on channel\n",channel->irq);
     }
 }
 
@@ -292,7 +332,7 @@ static void drive_reset(struct ide_drive * drive) {
     drive->sector_count = 0x01;
     drive->sector_num = 0x01;
 
-    PrintDebug("Resetting drive %s\n", drive->model);
+    PrintDebug(VM_NONE,VCORE_NONE, "Resetting drive %s\n", drive->model);
     
     if (drive->drive_type == BLOCK_CDROM) {
        drive->cylinder = 0xeb14;
@@ -319,7 +359,7 @@ static void channel_reset(struct ide_channel * channel) {
     channel->error_reg.val = 0x01;
 
     // clear commands
-    channel->cmd_reg = 0x00;
+    channel->cmd_reg = 0;  // NOP
 
     channel->ctrl_reg.irq_disable = 0;
 }
@@ -335,16 +375,19 @@ static void channel_reset_complete(struct ide_channel * channel) {
 }
 
 
-static void ide_abort_command(struct vm_device * dev, struct ide_channel * channel) {
+static void ide_abort_command(struct ide_internal * ide, struct ide_channel * channel) {
+
+    PrintDebug(VM_NONE,VCORE_NONE,"Aborting IDE Command\n");
+
     channel->status.val = 0x41; // Error + ready
     channel->error_reg.val = 0x04; // No idea...
 
-    ide_raise_irq(dev, channel);
+    ide_raise_irq(ide, channel);
 }
 
 
-static int dma_read(struct guest_info * core, struct vm_device * dev, struct ide_channel * channel);
-static int dma_write(struct guest_info * core, struct vm_device * dev, struct ide_channel * channel);
+static int dma_read(struct guest_info * core, struct ide_internal * ide, struct ide_channel * channel);
+static int dma_write(struct guest_info * core, struct ide_internal * ide, struct ide_channel * channel);
 
 
 /* ATAPI functions */
@@ -354,26 +397,28 @@ static int dma_write(struct guest_info * core, struct vm_device * dev, struct id
 #include "ata.h"
 
 
-#ifdef CONFIG_DEBUG_IDE
-static void print_prd_table(struct vm_device * dev, struct ide_channel * channel) {
+
+static void print_prd_table(struct ide_internal * ide, struct ide_channel * channel) {
     struct ide_dma_prd prd_entry;
     int index = 0;
 
-    PrintDebug("Dumping PRD table\n");
+    V3_Print(VM_NONE, VCORE_NONE,"Dumping PRD table\n");
 
     while (1) {
        uint32_t prd_entry_addr = channel->dma_prd_addr + (sizeof(struct ide_dma_prd) * index);
-       int ret;
+       int ret = 0;
 
-       ret = v3_read_gpa_memory(&(dev->vm->cores[0]), prd_entry_addr, sizeof(struct ide_dma_prd), (void *)&prd_entry);
+       ret = v3_read_gpa_memory(&(ide->vm->cores[0]), prd_entry_addr, sizeof(struct ide_dma_prd), (void *)&prd_entry);
        
        if (ret != sizeof(struct ide_dma_prd)) {
-           PrintError("Could not read PRD\n");
+           PrintError(VM_NONE, VCORE_NONE, "Could not read PRD\n");
            return;
        }
 
-       PrintDebug("\tPRD Addr: %x, PRD Len: %d, EOT: %d\n", 
-                  prd_entry.base_addr, prd_entry.size, prd_entry.end_of_table);
+       V3_Print(VM_NONE, VCORE_NONE,"\tPRD Addr: %x, PRD Len: %d, EOT: %d\n", 
+                  prd_entry.base_addr, 
+                  (prd_entry.size == 0) ? 0x10000 : prd_entry.size, 
+                  prd_entry.end_of_table);
 
        if (prd_entry.end_of_table) {
            break;
@@ -384,10 +429,10 @@ static void print_prd_table(struct vm_device * dev, struct ide_channel * channel
 
     return;
 }
-#endif
+
 
 /* IO Operations */
-static int dma_read(struct guest_info * core, struct vm_device * dev, struct ide_channel * channel) {
+static int dma_read(struct guest_info * core, struct ide_internal * ide, struct ide_channel * channel) {
     struct ide_drive * drive = get_selected_drive(channel);
     // This is at top level scope to do the EOT test at the end
     struct ide_dma_prd prd_entry = {};
@@ -396,11 +441,11 @@ static int dma_read(struct guest_info * core, struct vm_device * dev, struct ide
     // Read in the data buffer....
     // Read a sector/block at a time until the prd entry is full.
 
-#ifdef CONFIG_DEBUG_IDE
-    print_prd_table(dev, channel);
+#ifdef V3_CONFIG_DEBUG_IDE
+    print_prd_table(ide, channel);
 #endif
 
-    PrintDebug("DMA read for %d bytes\n", bytes_left);
+    PrintDebug(core->vm_info, core, "DMA read for %d bytes\n", bytes_left);
 
     // Loop through the disk data
     while (bytes_left > 0) {
@@ -409,21 +454,26 @@ static int dma_read(struct guest_info * core, struct vm_device * dev, struct ide
        uint_t prd_offset = 0;
        int ret;
 
-       PrintDebug("PRD table address = %x\n", channel->dma_prd_addr);
+       PrintDebug(core->vm_info, core, "PRD table address = %x\n", channel->dma_prd_addr);
 
        ret = v3_read_gpa_memory(core, prd_entry_addr, sizeof(struct ide_dma_prd), (void *)&prd_entry);
 
        if (ret != sizeof(struct ide_dma_prd)) {
-           PrintError("Could not read PRD\n");
+           PrintError(core->vm_info, core, "Could not read PRD\n");
            return -1;
        }
 
-       PrintDebug("PRD Addr: %x, PRD Len: %d, EOT: %d\n", 
+       PrintDebug(core->vm_info, core, "PRD Addr: %x, PRD Len: %d, EOT: %d\n", 
                   prd_entry.base_addr, prd_entry.size, prd_entry.end_of_table);
 
        // loop through the PRD data....
 
-       prd_bytes_left = prd_entry.size;
+       if (prd_entry.size == 0) {
+           // a size of 0 means 64k
+           prd_bytes_left = 0x10000;
+       } else {
+           prd_bytes_left = prd_entry.size;
+       }
 
 
        while (prd_bytes_left > 0) {
@@ -433,28 +483,62 @@ static int dma_read(struct guest_info * core, struct vm_device * dev, struct ide
                bytes_to_write = (prd_bytes_left > HD_SECTOR_SIZE) ? HD_SECTOR_SIZE : prd_bytes_left;
 
 
-               if (ata_read(dev, channel, drive->data_buf, 1) == -1) {
-                   PrintError("Failed to read next disk sector\n");
+               if (ata_read(ide, channel, drive->data_buf, 1) == -1) {
+                   PrintError(core->vm_info, core, "Failed to read next disk sector\n");
                    return -1;
                }
            } else if (drive->drive_type == BLOCK_CDROM) {
                if (atapi_cmd_is_data_op(drive->cd_state.atapi_cmd)) {
                    bytes_to_write = (prd_bytes_left > ATAPI_BLOCK_SIZE) ? ATAPI_BLOCK_SIZE : prd_bytes_left;
 
-                   if (atapi_read_chunk(dev, channel) == -1) {
-                       PrintError("Failed to read next disk sector\n");
+                   if (atapi_read_chunk(ide, channel) == -1) {
+                       PrintError(core->vm_info, core, "Failed to read next disk sector\n");
                        return -1;
                    }
                } else {
-                   PrintDebug("DMA of command packet\n");
-                   PrintError("How does this work???\n");
+                   /*
+                   PrintError(core->vm_info, core, "How does this work (ATAPI CMD=%x)???\n", drive->cd_state.atapi_cmd);
                    return -1;
+                   */
+                   int cmd_ret = 0;
+
+                   //V3_Print(core->vm_info, core, "DMA of command packet\n");
+
                    bytes_to_write = (prd_bytes_left > bytes_left) ? bytes_left : prd_bytes_left;
                    prd_bytes_left = bytes_to_write;
+
+
+                   // V3_Print(core->vm_info, core, "Writing ATAPI cmd OP DMA (cmd=%x) (len=%d)\n", drive->cd_state.atapi_cmd, prd_bytes_left);
+                   cmd_ret = v3_write_gpa_memory(core, prd_entry.base_addr + prd_offset, 
+                                                 bytes_to_write, drive->data_buf); 
+
+                   if (cmd_ret!=bytes_to_write) { 
+                       PrintError(core->vm_info, core, "Failed to write data to memory\n");
+                       return -1;
+                   }
+
+
+
+                   bytes_to_write = 0;
+                   prd_bytes_left = 0;
+                   drive->transfer_index += bytes_to_write;
+
+                   channel->status.busy = 0;
+                   channel->status.ready = 1;
+                   channel->status.data_req = 0;
+                   channel->status.error = 0;
+                   channel->status.seek_complete = 1;
+
+                   channel->dma_status.active = 0;
+                   channel->dma_status.err = 0;
+
+                   ide_raise_irq(ide, channel);
+                   
+                   return 0;
                }
            }
 
-           PrintDebug("Writing DMA data to guest Memory ptr=%p, len=%d\n", 
+           PrintDebug(core->vm_info, core, "Writing DMA data to guest Memory ptr=%p, len=%d\n", 
                       (void *)(addr_t)(prd_entry.base_addr + prd_offset), bytes_to_write);
 
            drive->current_lba++;
@@ -462,11 +546,11 @@ static int dma_read(struct guest_info * core, struct vm_device * dev, struct ide
            ret = v3_write_gpa_memory(core, prd_entry.base_addr + prd_offset, bytes_to_write, drive->data_buf); 
 
            if (ret != bytes_to_write) {
-               PrintError("Failed to copy data into guest memory... (ret=%d)\n", ret);
+               PrintError(core->vm_info, core, "Failed to copy data into guest memory... (ret=%d)\n", ret);
                return -1;
            }
 
-           PrintDebug("\t DMA ret=%d, (prd_bytes_left=%d) (bytes_left=%d)\n", ret, prd_bytes_left, bytes_left);
+           PrintDebug(core->vm_info, core, "\t DMA ret=%d, (prd_bytes_left=%d) (bytes_left=%d)\n", ret, prd_bytes_left, bytes_left);
 
            drive->transfer_index += ret;
            prd_bytes_left -= ret;
@@ -478,14 +562,14 @@ static int dma_read(struct guest_info * core, struct vm_device * dev, struct ide
 
        if (drive->drive_type == BLOCK_DISK) {
            if (drive->transfer_index % HD_SECTOR_SIZE) {
-               PrintError("We currently don't handle sectors that span PRD descriptors\n");
+               PrintError(core->vm_info, core, "We currently don't handle sectors that span PRD descriptors\n");
                return -1;
            }
        } else if (drive->drive_type == BLOCK_CDROM) {
            if (atapi_cmd_is_data_op(drive->cd_state.atapi_cmd)) {
                if (drive->transfer_index % ATAPI_BLOCK_SIZE) {
-                   PrintError("We currently don't handle ATAPI BLOCKS that span PRD descriptors\n");
-                   PrintError("transfer_index=%d, transfer_length=%d\n", 
+                   PrintError(core->vm_info, core, "We currently don't handle ATAPI BLOCKS that span PRD descriptors\n");
+                   PrintError(core->vm_info, core, "transfer_index=%llu, transfer_length=%llu\n", 
                               drive->transfer_index, drive->transfer_length);
                    return -1;
                }
@@ -494,7 +578,7 @@ static int dma_read(struct guest_info * core, struct vm_device * dev, struct ide
 
 
        if ((prd_entry.end_of_table == 1) && (bytes_left > 0)) {
-           PrintError("DMA table not large enough for data transfer...\n");
+           PrintError(core->vm_info, core, "DMA table not large enough for data transfer...\n");
            return -1;
        }
     }
@@ -521,20 +605,20 @@ static int dma_read(struct guest_info * core, struct vm_device * dev, struct ide
        channel->dma_status.err = 0;
     }
 
-    ide_raise_irq(dev, channel);
+    ide_raise_irq(ide, channel);
 
     return 0;
 }
 
 
-static int dma_write(struct guest_info * core, struct vm_device * dev, struct ide_channel * channel) {
+static int dma_write(struct guest_info * core, struct ide_internal * ide, struct ide_channel * channel) {
     struct ide_drive * drive = get_selected_drive(channel);
     // This is at top level scope to do the EOT test at the end
     struct ide_dma_prd prd_entry = {};
     uint_t bytes_left = drive->transfer_length;
 
 
-    PrintDebug("DMA write from %d bytes\n", bytes_left);
+    PrintDebug(core->vm_info, core, "DMA write from %d bytes\n", bytes_left);
 
     // Loop through disk data
     while (bytes_left > 0) {
@@ -543,19 +627,25 @@ static int dma_write(struct guest_info * core, struct vm_device * dev, struct id
        uint_t prd_offset = 0;
        int ret;
        
-       PrintDebug("PRD Table address = %x\n", channel->dma_prd_addr);
+       PrintDebug(core->vm_info, core, "PRD Table address = %x\n", channel->dma_prd_addr);
 
        ret = v3_read_gpa_memory(core, prd_entry_addr, sizeof(struct ide_dma_prd), (void *)&prd_entry);
 
        if (ret != sizeof(struct ide_dma_prd)) {
-           PrintError("Could not read PRD\n");
+           PrintError(core->vm_info, core, "Could not read PRD\n");
            return -1;
        }
 
-       PrintDebug("PRD Addr: %x, PRD Len: %d, EOT: %d\n", 
+       PrintDebug(core->vm_info, core, "PRD Addr: %x, PRD Len: %d, EOT: %d\n", 
                   prd_entry.base_addr, prd_entry.size, prd_entry.end_of_table);
 
-       prd_bytes_left = prd_entry.size;
+
+       if (prd_entry.size == 0) {
+           // a size of 0 means 64k
+           prd_bytes_left = 0x10000;
+       } else {
+           prd_bytes_left = prd_entry.size;
+       }
 
        while (prd_bytes_left > 0) {
            uint_t bytes_to_write = 0;
@@ -567,15 +657,15 @@ static int dma_write(struct guest_info * core, struct vm_device * dev, struct id
            ret = v3_read_gpa_memory(core, prd_entry.base_addr + prd_offset, bytes_to_write, drive->data_buf);
 
            if (ret != bytes_to_write) {
-               PrintError("Faild to copy data from guest memory... (ret=%d)\n", ret);
+               PrintError(core->vm_info, core, "Faild to copy data from guest memory... (ret=%d)\n", ret);
                return -1;
            }
 
-           PrintDebug("\t DMA ret=%d (prd_bytes_left=%d) (bytes_left=%d)\n", ret, prd_bytes_left, bytes_left);
+           PrintDebug(core->vm_info, core, "\t DMA ret=%d (prd_bytes_left=%d) (bytes_left=%d)\n", ret, prd_bytes_left, bytes_left);
 
 
-           if (ata_write(dev, channel, drive->data_buf, 1) == -1) {
-               PrintError("Failed to write data to disk\n");
+           if (ata_write(ide, channel, drive->data_buf, 1) == -1) {
+               PrintError(core->vm_info, core, "Failed to write data to disk\n");
                return -1;
            }
            
@@ -590,12 +680,18 @@ static int dma_write(struct guest_info * core, struct vm_device * dev, struct id
        channel->dma_tbl_index++;
 
        if (drive->transfer_index % HD_SECTOR_SIZE) {
-           PrintError("We currently don't handle sectors that span PRD descriptors\n");
+           PrintError(core->vm_info, core, "We currently don't handle sectors that span PRD descriptors\n");
            return -1;
        }
 
        if ((prd_entry.end_of_table == 1) && (bytes_left > 0)) {
-           PrintError("DMA table not large enough for data transfer...\n");
+           PrintError(core->vm_info, core, "DMA table not large enough for data transfer...\n");
+           PrintError(core->vm_info, core, "\t(bytes_left=%u) (transfer_length=%llu)...\n", 
+                      bytes_left, drive->transfer_length);
+           PrintError(core->vm_info, core, "PRD Addr: %x, PRD Len: %d, EOT: %d\n", 
+                      prd_entry.base_addr, prd_entry.size, prd_entry.end_of_table);
+
+           print_prd_table(ide, channel);
            return -1;
        }
     }
@@ -611,7 +707,7 @@ static int dma_write(struct guest_info * core, struct vm_device * dev, struct id
        channel->dma_status.err = 0;
     }
 
-    ide_raise_irq(dev, channel);
+    ide_raise_irq(ide, channel);
 
     return 0;
 }
@@ -627,53 +723,68 @@ static int dma_write(struct guest_info * core, struct vm_device * dev, struct id
 
 #define DMA_CHANNEL_FLAG  0x08
 
+/*
+  Note that DMA model is as follows:
+
+    1. Write the PRD pointer to the busmaster (DMA engine)
+    2. Start the transfer on the device
+    3. Tell the busmaster to start shoveling data (active DMA)
+*/
+
 static int write_dma_port(struct guest_info * core, ushort_t port, void * src, uint_t length, void * private_data) {
-    struct vm_device * dev = (struct vm_device *)private_data;
-    struct ide_internal * ide = (struct ide_internal *)(dev->private_data);
+    struct ide_internal * ide = (struct ide_internal *)private_data;
     uint16_t port_offset = port & (DMA_CHANNEL_FLAG - 1);
     uint_t channel_flag = (port & DMA_CHANNEL_FLAG) >> 3;
     struct ide_channel * channel = &(ide->channels[channel_flag]);
 
-    PrintDebug("IDE: Writing DMA Port %x (%s) (val=%x) (len=%d) (channel=%d)\n", 
+    PrintDebug(core->vm_info, core, "IDE: Writing DMA Port %x (%s) (val=%x) (len=%d) (channel=%d)\n", 
               port, dma_port_to_str(port_offset), *(uint32_t *)src, length, channel_flag);
 
     switch (port_offset) {
        case DMA_CMD_PORT:
            channel->dma_cmd.val = *(uint8_t *)src;
+           
+           PrintDebug(core->vm_info, core, "IDE: dma command write:  0x%x\n", channel->dma_cmd.val);
 
            if (channel->dma_cmd.start == 0) {
                channel->dma_tbl_index = 0;
            } else {
+               // Launch DMA operation, interrupt at end
+
                channel->dma_status.active = 1;
 
                if (channel->dma_cmd.read == 1) {
-                   // DMA Read
-                   if (dma_read(core, dev, channel) == -1) {
-                       PrintError("Failed DMA Read\n");
+                   // DMA Read the whole thing - dma_read will raise irq
+                   if (dma_read(core, ide, channel) == -1) {
+                       PrintError(core->vm_info, core, "Failed DMA Read\n");
                        return -1;
                    }
                } else {
-                   // DMA write
-                   if (dma_write(core, dev, channel) == -1) {
-                       PrintError("Failed DMA Write\n");
+                   // DMA write the whole thing - dma_write will raiase irw
+                   if (dma_write(core, ide, channel) == -1) {
+                       PrintError(core->vm_info, core, "Failed DMA Write\n");
                        return -1;
                    }
                }
-
-               channel->dma_cmd.val &= 0x09;
+               
+               // DMA complete
+               // Note that guest cannot abort a DMA transfer
+               channel->dma_cmd.start = 0;
            }
 
            break;
            
        case DMA_STATUS_PORT: {
+           // This is intended to clear status
+
            uint8_t val = *(uint8_t *)src;
 
            if (length != 1) {
-               PrintError("Invalid read length for DMA status port\n");
+               PrintError(core->vm_info, core, "Invalid write length for DMA status port\n");
                return -1;
            }
 
-           // weirdness
+           // but preserve certain bits
            channel->dma_status.val = ((val & 0x60) | 
                                       (channel->dma_status.val & 0x01) |
                                       (channel->dma_status.val & ~val & 0x06));
@@ -689,7 +800,7 @@ static int write_dma_port(struct guest_info * core, ushort_t port, void * src, u
            int i = 0;
 
            if (addr_index + length > 4) {
-               PrintError("DMA Port space overrun port=%x len=%d\n", port_offset, length);
+               PrintError(core->vm_info, core, "DMA Port space overrun port=%x len=%d\n", port_offset, length);
                return -1;
            }
 
@@ -697,95 +808,63 @@ static int write_dma_port(struct guest_info * core, ushort_t port, void * src, u
                addr_buf[addr_index + i] = *((uint8_t *)src + i);
            }
 
-           PrintDebug("Writing PRD Port %x (val=%x)\n", port_offset, channel->dma_prd_addr);
+           PrintDebug(core->vm_info, core, "Writing PRD Port %x (val=%x)\n", port_offset, channel->dma_prd_addr);
 
            break;
        }
        default:
-           PrintError("IDE: Invalid DMA Port (%s)\n", dma_port_to_str(port_offset));
-           return -1;
+           PrintError(core->vm_info, core, "IDE: Invalid DMA Port (%d) (%s)\n", port, dma_port_to_str(port_offset));
+           break;
     }
 
     return length;
 }
 
 
-static int read_dma_port(struct guest_info * core, ushort_t port, void * dst, uint_t length, void * private_data) {
-    struct vm_device * dev = (struct vm_device *)private_data;
-    struct ide_internal * ide = (struct ide_internal *)(dev->private_data);
+static int read_dma_port(struct guest_info * core, uint16_t port, void * dst, uint_t length, void * private_data) {
+    struct ide_internal * ide = (struct ide_internal *)private_data;
     uint16_t port_offset = port & (DMA_CHANNEL_FLAG - 1);
     uint_t channel_flag = (port & DMA_CHANNEL_FLAG) >> 3;
     struct ide_channel * channel = &(ide->channels[channel_flag]);
 
-    PrintDebug("Reading DMA port %d (%x) (channel=%d)\n", port, port, channel_flag);
-
-    switch (port_offset) {
-       case DMA_CMD_PORT:
-           *(uint8_t *)dst = channel->dma_cmd.val;
-           break;
-
-       case DMA_STATUS_PORT:
-           if (length != 1) {
-               PrintError("Invalid read length for DMA status port\n");
-               return -1;
-           }
-
-           *(uint8_t *)dst = channel->dma_status.val;
-           break;
-
-       case DMA_PRD_PORT0:
-       case DMA_PRD_PORT1:
-       case DMA_PRD_PORT2:
-       case DMA_PRD_PORT3: {
-           uint_t addr_index = port_offset & 0x3;
-           uint8_t * addr_buf = (uint8_t *)&(channel->dma_prd_addr);
-           int i = 0;
+    PrintDebug(core->vm_info, core, "Reading DMA port %d (%x) (channel=%d)\n", port, port, channel_flag);
 
-           if (addr_index + length > 4) {
-               PrintError("DMA Port space overrun port=%x len=%d\n", port_offset, length);
-               return -1;
-           }
-
-           for (i = 0; i < length; i++) {
-               *((uint8_t *)dst + i) = addr_buf[addr_index + i];
-           }
-
-           break;
-       }
-       default:
-           PrintError("IDE: Invalid DMA Port (%s)\n", dma_port_to_str(port_offset));
-           return -1;
+    if (port_offset + length > 16) {
+       PrintError(core->vm_info, core, "DMA Port Read: Port overrun (port_offset=%d, length=%d)\n", port_offset, length);
+       return -1;
     }
 
-    PrintDebug("\tval=%x (len=%d)\n", *(uint32_t *)dst, length);
+    memcpy(dst, channel->dma_ports + port_offset, length);
+    
+    PrintDebug(core->vm_info, core, "\tval=%x (len=%d)\n", *(uint32_t *)dst, length);
 
     return length;
 }
 
 
 
-static int write_cmd_port(struct guest_info * core, ushort_t port, void * src, uint_t length, struct vm_device * dev) {
-    struct ide_internal * ide = (struct ide_internal *)(dev->private_data);
+static int write_cmd_port(struct guest_info * core, ushort_t port, void * src, uint_t length, void * priv_data) {
+    struct ide_internal * ide = priv_data;
     struct ide_channel * channel = get_selected_channel(ide, port);
     struct ide_drive * drive = get_selected_drive(channel);
 
     if (length != 1) {
-       PrintError("Invalid Write Length on IDE command Port %x\n", port);
+       PrintError(core->vm_info, core, "Invalid Write Length on IDE command Port %x\n", port);
        return -1;
     }
 
-    PrintDebug("IDE: Writing Command Port %x (%s) (val=%x)\n", port, io_port_to_str(port), *(uint8_t *)src);
+    PrintDebug(core->vm_info, core, "IDE: Writing Command Port %x (%s) (val=%x)\n", port, io_port_to_str(port), *(uint8_t *)src);
     
     channel->cmd_reg = *(uint8_t *)src;
     
     switch (channel->cmd_reg) {
 
-       case 0xa1: // ATAPI Identify Device Packet
+       case ATA_PIDENTIFY: // ATAPI Identify Device Packet (CDROM)
            if (drive->drive_type != BLOCK_CDROM) {
                drive_reset(drive);
 
                // JRL: Should we abort here?
-               ide_abort_command(dev, channel);
+               ide_abort_command(ide, channel);
            } else {
                
                atapi_identify_device(drive);
@@ -793,28 +872,29 @@ static int write_cmd_port(struct guest_info * core, ushort_t port, void * src, u
                channel->error_reg.val = 0;
                channel->status.val = 0x58; // ready, data_req, seek_complete
            
-               ide_raise_irq(dev, channel);
+               ide_raise_irq(ide, channel);
            }
            break;
-       case 0xec: // Identify Device
+
+       case ATA_IDENTIFY: // Identify Device
            if (drive->drive_type != BLOCK_DISK) {
                drive_reset(drive);
 
                // JRL: Should we abort here?
-               ide_abort_command(dev, channel);
+               ide_abort_command(ide, channel);
            } else {
                ata_identify_device(drive);
 
                channel->error_reg.val = 0;
                channel->status.val = 0x58;
 
-               ide_raise_irq(dev, channel);
+               ide_raise_irq(ide, channel);
            }
            break;
 
-       case 0xa0: // ATAPI Command Packet
+       case ATA_PACKETCMD: // ATAPI Command Packet (CDROM)
            if (drive->drive_type != BLOCK_CDROM) {
-               ide_abort_command(dev, channel);
+               ide_abort_command(ide, channel);
            }
            
            drive->sector_count = 1;
@@ -830,87 +910,99 @@ static int write_cmd_port(struct guest_info * core, ushort_t port, void * src, u
 
            break;
 
-       case 0x20: // Read Sectors with Retry
-       case 0x21: // Read Sectors without Retry
-           drive->hd_state.cur_sector_num = 1;
+       case ATA_READ:      // Read Sectors with Retry
+       case ATA_READ_ONCE: // Read Sectors without Retry
+       case ATA_MULTREAD:  // Read multiple sectors per ire
+       case ATA_READ_EXT:  // Read Sectors Extended (LBA48)
 
-           if (ata_read_sectors(dev, channel) == -1) {
-               PrintError("Error reading sectors\n");
-               return -1;
+           if (channel->cmd_reg==ATA_MULTREAD) { 
+               drive->hd_state.cur_sector_num = drive->hd_state.mult_sector_num;
+           } else {
+               drive->hd_state.cur_sector_num = 1;
+           }
+
+           if (ata_read_sectors(ide, channel) == -1) {
+               PrintError(core->vm_info, core, "Error reading sectors\n");
+               ide_abort_command(ide,channel);
            }
            break;
 
-       case 0x24: // Read Sectors Extended
-           drive->hd_state.cur_sector_num = 1;
+       case ATA_WRITE:            // Write Sector with retry
+       case ATA_WRITE_ONCE:       // Write Sector without retry
+       case ATA_MULTWRITE:        // Write multiple sectors per irq
+       case ATA_WRITE_EXT:        // Write Sectors Extended (LBA48)
 
-           if (ata_read_sectors_ext(dev, channel) == -1) {
-               PrintError("Error reading extended sectors\n");
-               return -1;
+           if (channel->cmd_reg==ATA_MULTWRITE) { 
+               drive->hd_state.cur_sector_num = drive->hd_state.mult_sector_num;
+           } else {
+               drive->hd_state.cur_sector_num = 1;
+           }
+
+           if (ata_write_sectors(ide, channel) == -1) {
+               PrintError(core->vm_info, core, "Error writing sectors\n");
+               ide_abort_command(ide,channel);
            }
            break;
 
-       case 0xc8: // Read DMA with retry
-       case 0xc9: { // Read DMA
-           uint32_t sect_cnt = (drive->sector_count == 0) ? 256 : drive->sector_count;
+       case ATA_READDMA:            // Read DMA with retry
+       case ATA_READDMA_ONCE:       // Read DMA without retry
+       case ATA_READDMA_EXT:      { // Read DMA (LBA48)
+           uint64_t sect_cnt;
 
-           if (ata_get_lba(dev, channel, &(drive->current_lba)) == -1) {
-               ide_abort_command(dev, channel);
-               return 0;
+           if (ata_get_lba_and_size(ide, channel, &(drive->current_lba), &sect_cnt) == -1) {
+                PrintError(core->vm_info, core, "Error getting LBA for DMA READ\n");
+               ide_abort_command(ide, channel);
+               return length;
            }
            
-           drive->hd_state.cur_sector_num = 1;
+           drive->hd_state.cur_sector_num = 1;  // Not used for DMA
            
            drive->transfer_length = sect_cnt * HD_SECTOR_SIZE;
            drive->transfer_index = 0;
 
-           if (channel->dma_status.active == 1) {
-               // DMA Read
-               if (dma_read(core, dev, channel) == -1) {
-                   PrintError("Failed DMA Read\n");
-                   return -1;
-               }
-           }
+           // Now we wait for the transfer to be intiated by flipping the 
+           // bus-master start bit
            break;
        }
 
-       case 0xca: { // Write DMA
-           uint32_t sect_cnt = (drive->sector_count == 0) ? 256 : drive->sector_count;
+       case ATA_WRITEDMA:        // Write DMA with retry
+       case ATA_WRITEDMA_ONCE:   // Write DMA without retry
+       case ATA_WRITEDMA_EXT:  { // Write DMA (LBA48)
+
+           uint64_t sect_cnt;
 
-           if (ata_get_lba(dev, channel, &(drive->current_lba)) == -1) {
-               ide_abort_command(dev, channel);
-               return 0;
+           if (ata_get_lba_and_size(ide, channel, &(drive->current_lba),&sect_cnt) == -1) {
+               PrintError(core->vm_info,core,"Cannot get lba\n");
+               ide_abort_command(ide, channel);
+               return length;
            }
 
-           drive->hd_state.cur_sector_num = 1;
+           drive->hd_state.cur_sector_num = 1;  // Not used for DMA
 
            drive->transfer_length = sect_cnt * HD_SECTOR_SIZE;
            drive->transfer_index = 0;
 
-           if (channel->dma_status.active == 1) {
-               // DMA Write
-               if (dma_write(core, dev, channel) == -1) {
-                   PrintError("Failed DMA Write\n");
-                   return -1;
-               }
-           }
+           // Now we wait for the transfer to be intiated by flipping the 
+           // bus-master start bit
            break;
        }
-       case 0xe0: // Standby Now 1
-       case 0xe1: // Set Idle Immediate
-       case 0xe2: // Standby
-       case 0xe3: // Set Idle 1
-       case 0xe6: // Sleep Now 1
-       case 0x94: // Standby Now 2
-       case 0x95: // Idle Immediate (CFA)
-       case 0x96: // Standby 2
-       case 0x97: // Set idle 2
-       case 0x99: // Sleep Now 2
+
+       case ATA_STANDBYNOW1: // Standby Now 1
+       case ATA_IDLEIMMEDIATE: // Set Idle Immediate
+       case ATA_STANDBY: // Standby
+       case ATA_SETIDLE1: // Set Idle 1
+       case ATA_SLEEPNOW1: // Sleep Now 1
+       case ATA_STANDBYNOW2: // Standby Now 2
+       case ATA_IDLEIMMEDIATE2: // Idle Immediate (CFA)
+       case ATA_STANDBY2: // Standby 2
+       case ATA_SETIDLE2: // Set idle 2
+       case ATA_SLEEPNOW2: // Sleep Now 2
            channel->status.val = 0;
            channel->status.ready = 1;
-           ide_raise_irq(dev, channel);
+           ide_raise_irq(ide, channel);
            break;
 
-       case 0xef: // Set Features
+       case ATA_SETFEATURES: // Set Features
            // Prior to this the features register has been written to. 
            // This command tells the drive to check if the new value is supported (the value is drive specific)
            // Common is that bit0=DMA enable
@@ -924,27 +1016,25 @@ static int write_cmd_port(struct guest_info * core, ushort_t port, void * src, u
            channel->status.ready = 1;
            channel->status.seek_complete = 1;
            
-           ide_raise_irq(dev, channel);
+           ide_raise_irq(ide, channel);
            break;
 
-       case 0x91:  // Initialize Drive Parameters
-       case 0x10:  // recalibrate?
+       case ATA_SPECIFY:  // Initialize Drive Parameters
+       case ATA_RECAL:  // recalibrate?
            channel->status.error = 0;
            channel->status.ready = 1;
            channel->status.seek_complete = 1;
-           ide_raise_irq(dev, channel);
+           ide_raise_irq(ide, channel);
            break;
-       case 0xc6: { // Set multiple mode (IDE Block mode) 
-           // This makes the drive transfer multiple sectors before generating an interrupt
-           uint32_t tmp_sect_num = drive->sector_num; // GCC SUCKS
 
-           if (tmp_sect_num > MAX_MULT_SECTORS) {
-               ide_abort_command(dev, channel);
-               break;
-           }
+       case ATA_SETMULT: { // Set multiple mode (IDE Block mode) 
+           // This makes the drive transfer multiple sectors before generating an interrupt
 
            if (drive->sector_count == 0) {
+               PrintError(core->vm_info,core,"Attempt to set multiple to zero\n");
                drive->hd_state.mult_sector_num= 1;
+               ide_abort_command(ide,channel);
+               break;
            } else {
                drive->hd_state.mult_sector_num = drive->sector_count;
            }
@@ -952,80 +1042,77 @@ static int write_cmd_port(struct guest_info * core, ushort_t port, void * src, u
            channel->status.ready = 1;
            channel->status.error = 0;
 
-           ide_raise_irq(dev, channel);
+           ide_raise_irq(ide, channel);
 
            break;
        }
-       case 0xc4:  // read multiple sectors
-           drive->hd_state.cur_sector_num = drive->hd_state.mult_sector_num;
+
+       case ATA_DEVICE_RESET: // Reset Device
+           drive_reset(drive);
+           channel->error_reg.val = 0x01;
+           channel->status.busy = 0;
+           channel->status.ready = 1;
+           channel->status.seek_complete = 1;
+           channel->status.write_fault = 0;
+           channel->status.error = 0;
+           break;
+
+       case ATA_CHECKPOWERMODE1: // Check power mode
+           drive->sector_count = 0xff; /* 0x00=standby, 0x80=idle, 0xff=active or idle */
+           channel->status.busy = 0;
+           channel->status.ready = 1;
+           channel->status.write_fault = 0;
+           channel->status.data_req = 0;
+           channel->status.error = 0;
+           break;
+
        default:
-           PrintError("Unimplemented IDE command (%x)\n", channel->cmd_reg);
-           return -1;
+           PrintError(core->vm_info, core, "Unimplemented IDE command (%x)\n", channel->cmd_reg);
+           ide_abort_command(ide, channel);
+           break;
     }
 
     return length;
 }
 
 
-static int write_data_port(struct guest_info * core, ushort_t port, void * src, uint_t length, struct vm_device * dev) {
-    struct ide_internal * ide = (struct ide_internal *)(dev->private_data);
-    struct ide_channel * channel = get_selected_channel(ide, port);
-    struct ide_drive * drive = get_selected_drive(channel);
-
-    //    PrintDebug("IDE: Writing Data Port %x (val=%x, len=%d)\n", 
-    //        port, *(uint32_t *)src, length);
-    
-    memcpy(drive->data_buf + drive->transfer_index, src, length);    
-    drive->transfer_index += length;
-
-    // Transfer is complete, dispatch the command
-    if (drive->transfer_index >= drive->transfer_length) {
-       switch (channel->cmd_reg) {
-           case 0x30: // Write Sectors
-               PrintError("Writing Data not yet implemented\n");
-               return -1;
-               
-           case 0xa0: // ATAPI packet command
-               if (atapi_handle_packet(core, dev, channel) == -1) {
-                   PrintError("Error handling ATAPI packet\n");
-                   return -1;
-               }
-               break;
-           default:
-               PrintError("Unhandld IDE Command %x\n", channel->cmd_reg);
-               return -1;
-       }
-    }
-
-    return length;
-}
 
 
-static int read_hd_data(uint8_t * dst, uint_t length, struct vm_device * dev, struct ide_channel * channel) {
+static int read_hd_data(uint8_t * dst, uint64_t length, struct ide_internal * ide, struct ide_channel * channel) {
     struct ide_drive * drive = get_selected_drive(channel);
-    int data_offset = drive->transfer_index % HD_SECTOR_SIZE;
+    uint64_t data_offset = drive->transfer_index % HD_SECTOR_SIZE;
 
 
+    PrintDebug(VM_NONE,VCORE_NONE, "Read HD data:  transfer_index %llu transfer length %llu current sector numer %llu\n",
+              drive->transfer_index, drive->transfer_length, 
+              drive->hd_state.cur_sector_num);
 
-    if (drive->transfer_index >= drive->transfer_length) {
-       PrintError("Buffer overrun... (xfer_len=%d) (cur_idx=%x) (post_idx=%d)\n",
+    if (drive->transfer_index >= drive->transfer_length && drive->transfer_index>=DATA_BUFFER_SIZE) {
+       PrintError(VM_NONE, VCORE_NONE, "Buffer overrun... (xfer_len=%llu) (cur_idx=%llu) (post_idx=%llu)\n",
                   drive->transfer_length, drive->transfer_index,
                   drive->transfer_index + length);
        return -1;
     }
 
-    
+
+    if (data_offset + length > HD_SECTOR_SIZE) { 
+       PrintError(VM_NONE,VCORE_NONE,"Read spans sectors (data_offset=%llu length=%llu)!\n",data_offset,length);
+    }
+   
+    // For index==0, the read has been done in ata_read_sectors
     if ((data_offset == 0) && (drive->transfer_index > 0)) {
+       // advance to next sector and read it
+       
        drive->current_lba++;
 
-       if (ata_read(dev, channel, drive->data_buf, 1) == -1) {
-           PrintError("Could not read next disk sector\n");
+       if (ata_read(ide, channel, drive->data_buf, 1) == -1) {
+           PrintError(VM_NONE, VCORE_NONE, "Could not read next disk sector\n");
            return -1;
        }
     }
 
     /*
-      PrintDebug("Reading HD Data (Val=%x), (len=%d) (offset=%d)\n", 
+      PrintDebug(VM_NONE, VCORE_NONE, "Reading HD Data (Val=%x), (len=%d) (offset=%d)\n", 
       *(uint32_t *)(drive->data_buf + data_offset), 
       length, data_offset);
     */
@@ -1044,44 +1131,106 @@ static int read_hd_data(uint8_t * dst, uint_t length, struct vm_device * dev, st
        (drive->transfer_index == drive->transfer_length)) {
        if (drive->transfer_index < drive->transfer_length) {
            // An increment is complete, but there is still more data to be transferred...
-           PrintDebug("Integral Complete, still transferring more sectors\n");
+           PrintDebug(VM_NONE, VCORE_NONE, "Increment Complete, still transferring more sectors\n");
            channel->status.data_req = 1;
-
-           drive->irq_flags.c_d = 0;
        } else {
-           PrintDebug("Final Sector Transferred\n");
+           PrintDebug(VM_NONE, VCORE_NONE, "Final Sector Transferred\n");
            // This was the final read of the request
            channel->status.data_req = 0;
-
-           
-           drive->irq_flags.c_d = 1;
-           drive->irq_flags.rel = 0;
        }
 
        channel->status.ready = 1;
-       drive->irq_flags.io_dir = 1;
        channel->status.busy = 0;
 
-       ide_raise_irq(dev, channel);
+       ide_raise_irq(ide, channel);
+    }
+
+
+    return length;
+}
+
+static int write_hd_data(uint8_t * src, uint64_t length, struct ide_internal * ide, struct ide_channel * channel) {
+    struct ide_drive * drive = get_selected_drive(channel);
+    uint64_t data_offset = drive->transfer_index % HD_SECTOR_SIZE;
+
+
+    PrintDebug(VM_NONE,VCORE_NONE, "Write HD data:  transfer_index %llu transfer length %llu current sector numer %llu\n",
+              drive->transfer_index, drive->transfer_length, 
+              drive->hd_state.cur_sector_num);
+
+    if (drive->transfer_index >= drive->transfer_length) {
+       PrintError(VM_NONE, VCORE_NONE, "Buffer overrun... (xfer_len=%llu) (cur_idx=%llu) (post_idx=%llu)\n",
+                  drive->transfer_length, drive->transfer_index,
+                  drive->transfer_index + length);
+       return -1;
+    }
+
+    if (data_offset + length > HD_SECTOR_SIZE) { 
+       PrintError(VM_NONE,VCORE_NONE,"Write spans sectors (data_offset=%llu length=%llu)!\n",data_offset,length);
+    }
+
+    // Copy data into our buffer - there will be room due to
+    // (a) the ata_write test below is flushing sectors
+    // (b) if we somehow get a sector-stradling write (an error), this will
+    //     be OK since the buffer itself is >1 sector in memory
+    memcpy(drive->data_buf + data_offset, src, length);
+
+    drive->transfer_index += length;
+
+    if ((data_offset+length) >= HD_SECTOR_SIZE) {
+       // Write out the sector we just finished
+       if (ata_write(ide, channel, drive->data_buf, 1) == -1) {
+           PrintError(VM_NONE, VCORE_NONE, "Could not write next disk sector\n");
+           return -1;
+       }
+
+       // go onto next sector
+       drive->current_lba++;
     }
 
+    /* This is the trigger for interrupt injection.
+     * For write single sector commands we interrupt after every sector
+     * For multi sector reads we interrupt only at end of the cluster size (mult_sector_num)
+     * cur_sector_num is configured depending on the operation we are currently running
+     * We also trigger an interrupt if this is the last byte to transfer, regardless of sector count
+     */
+    if (((drive->transfer_index % (HD_SECTOR_SIZE * drive->hd_state.cur_sector_num)) == 0) || 
+       (drive->transfer_index == drive->transfer_length)) {
+       if (drive->transfer_index < drive->transfer_length) {
+           // An increment is complete, but there is still more data to be transferred...
+           PrintDebug(VM_NONE, VCORE_NONE, "Increment Complete, still transferring more sectors\n");
+           channel->status.data_req = 1;
+       } else {
+           PrintDebug(VM_NONE, VCORE_NONE, "Final Sector Transferred\n");
+           // This was the final read of the request
+           channel->status.data_req = 0;
+       }
+
+       channel->status.ready = 1;
+       channel->status.busy = 0;
+
+       ide_raise_irq(ide, channel);
+    }
 
     return length;
 }
 
 
 
-static int read_cd_data(uint8_t * dst, uint_t length, struct vm_device * dev, struct ide_channel * channel) {
+static int read_cd_data(uint8_t * dst, uint64_t length, struct ide_internal * ide, struct ide_channel * channel) {
     struct ide_drive * drive = get_selected_drive(channel);
-    int data_offset = drive->transfer_index % ATAPI_BLOCK_SIZE;
-    int req_offset = drive->transfer_index % drive->req_len;
+    uint64_t data_offset = drive->transfer_index % ATAPI_BLOCK_SIZE;
+    //  int req_offset = drive->transfer_index % drive->req_len;
     
     if (drive->cd_state.atapi_cmd != 0x28) {
-        PrintDebug("IDE: Reading CD Data (len=%d) (req_len=%d)\n", length, drive->req_len);
+        PrintDebug(VM_NONE, VCORE_NONE, "IDE: Reading CD Data (len=%llu) (req_len=%u)\n", length, drive->req_len);
+       PrintDebug(VM_NONE, VCORE_NONE, "IDE: transfer len=%llu, transfer idx=%llu\n", drive->transfer_length, drive->transfer_index);
     }
 
-    if (drive->transfer_index >= drive->transfer_length) {
-       PrintError("Buffer Overrun... (xfer_len=%d) (cur_idx=%d) (post_idx=%d)\n", 
+    
+
+    if (drive->transfer_index >= drive->transfer_length && drive->transfer_index>=DATA_BUFFER_SIZE) {
+       PrintError(VM_NONE, VCORE_NONE, "Buffer Overrun... (xfer_len=%llu) (cur_idx=%llu) (post_idx=%llu)\n", 
                   drive->transfer_length, drive->transfer_index, 
                   drive->transfer_index + length);
        return -1;
@@ -1089,8 +1238,8 @@ static int read_cd_data(uint8_t * dst, uint_t length, struct vm_device * dev, st
 
     
     if ((data_offset == 0) && (drive->transfer_index > 0)) {
-       if (atapi_update_data_buf(dev, channel) == -1) {
-           PrintError("Could not update CDROM data buffer\n");
+       if (atapi_update_data_buf(ide, channel) == -1) {
+           PrintError(VM_NONE, VCORE_NONE, "Could not update CDROM data buffer\n");
            return -1;
        }
     }
@@ -1101,7 +1250,7 @@ static int read_cd_data(uint8_t * dst, uint_t length, struct vm_device * dev, st
 
 
     // Should the req_offset be recalculated here?????
-    if ((req_offset == 0) && (drive->transfer_index > 0)) {
+    if (/*(req_offset == 0) &&*/ (drive->transfer_index > 0)) {
        if (drive->transfer_index < drive->transfer_length) {
            // An increment is complete, but there is still more data to be transferred...
            
@@ -1110,12 +1259,14 @@ static int read_cd_data(uint8_t * dst, uint_t length, struct vm_device * dev, st
            drive->irq_flags.c_d = 0;
 
            // Update the request length in the cylinder regs
-           if (atapi_update_req_len(dev, channel, drive->transfer_length - drive->transfer_index) == -1) {
-               PrintError("Could not update request length after completed increment\n");
+           if (atapi_update_req_len(ide, channel, drive->transfer_length - drive->transfer_index) == -1) {
+               PrintError(VM_NONE, VCORE_NONE, "Could not update request length after completed increment\n");
                return -1;
            }
        } else {
            // This was the final read of the request
+
+           drive->req_len = 0;
            channel->status.data_req = 0;
            channel->status.ready = 1;
            
@@ -1126,14 +1277,14 @@ static int read_cd_data(uint8_t * dst, uint_t length, struct vm_device * dev, st
        drive->irq_flags.io_dir = 1;
        channel->status.busy = 0;
 
-       ide_raise_irq(dev, channel);
+       ide_raise_irq(ide, channel);
     }
 
     return length;
 }
 
 
-static int read_drive_id( uint8_t * dst, uint_t length, struct vm_device * dev, struct ide_channel * channel) {
+static int read_drive_id( uint8_t * dst, uint_t length, struct ide_internal * ide, struct ide_channel * channel) {
     struct ide_drive * drive = get_selected_drive(channel);
 
     channel->status.busy = 0;
@@ -1155,26 +1306,27 @@ static int read_drive_id( uint8_t * dst, uint_t length, struct vm_device * dev,
 }
 
 
-static int ide_read_data_port(struct guest_info * core, ushort_t port, void * dst, uint_t length, struct vm_device * dev) {
-    struct ide_internal * ide = (struct ide_internal *)(dev->private_data);
+
+static int read_data_port(struct guest_info * core, ushort_t port, void * dst, uint_t length, void * priv_data) {
+    struct ide_internal * ide = priv_data;
     struct ide_channel * channel = get_selected_channel(ide, port);
     struct ide_drive * drive = get_selected_drive(channel);
 
-       PrintDebug("IDE: Reading Data Port %x (len=%d)\n", port, length);
+    //PrintDebug(core->vm_info, core, "IDE: Reading Data Port %x (len=%d)\n", port, length);
 
-    if ((channel->cmd_reg == 0xec) ||
-       (channel->cmd_reg == 0xa1)) {
-       return read_drive_id((uint8_t *)dst, length, dev, channel);
+    if ((channel->cmd_reg == ATA_IDENTIFY) ||
+       (channel->cmd_reg == ATA_PIDENTIFY)) {
+       return read_drive_id((uint8_t *)dst, length, ide, channel);
     }
 
     if (drive->drive_type == BLOCK_CDROM) {
-       if (read_cd_data((uint8_t *)dst, length, dev, channel) == -1) {
-           PrintError("IDE: Could not read CD Data\n");
+       if (read_cd_data((uint8_t *)dst, length, ide, channel) == -1) {
+           PrintError(core->vm_info, core, "IDE: Could not read CD Data (atapi cmd=%x)\n", drive->cd_state.atapi_cmd);
            return -1;
        }
     } else if (drive->drive_type == BLOCK_DISK) {
-       if (read_hd_data((uint8_t *)dst, length, dev, channel) == -1) {
-           PrintError("IDE: Could not read HD Data\n");
+       if (read_hd_data((uint8_t *)dst, length, ide, channel) == -1) {
+           PrintError(core->vm_info, core, "IDE: Could not read HD Data\n");
            return -1;
        }
     } else {
@@ -1184,17 +1336,55 @@ static int ide_read_data_port(struct guest_info * core, ushort_t port, void * ds
     return length;
 }
 
-static int write_port_std(struct guest_info * core, ushort_t port, void * src, uint_t length, struct vm_device * dev) {
-    struct ide_internal * ide = (struct ide_internal *)(dev->private_data);
+// For the write side, we care both about
+// direct PIO writes to a drive as well as 
+// writes that pass a packet through to an CD
+static int write_data_port(struct guest_info * core, ushort_t port, void * src, uint_t length, void * priv_data) {
+    struct ide_internal * ide = priv_data;
+    struct ide_channel * channel = get_selected_channel(ide, port);
+    struct ide_drive * drive = get_selected_drive(channel);
+
+    PrintDebug(core->vm_info, core, "IDE: Writing Data Port %x (val=%x, len=%d)\n", 
+            port, *(uint32_t *)src, length);
+
+    if (drive->drive_type == BLOCK_CDROM) {
+       if (channel->cmd_reg == ATA_PACKETCMD) { 
+           // short command packet - no check for space... 
+           memcpy(drive->data_buf + drive->transfer_index, src, length);
+           drive->transfer_index += length;
+           if (drive->transfer_index >= drive->transfer_length) {
+               if (atapi_handle_packet(core, ide, channel) == -1) {
+                   PrintError(core->vm_info, core, "Error handling ATAPI packet\n");
+                   return -1;
+               }
+           }
+       } else {
+           PrintError(core->vm_info,core,"Unknown command %x on CD ROM\n",channel->cmd_reg);
+           return -1;
+       }
+    } else if (drive->drive_type == BLOCK_DISK) {
+       if (write_hd_data((uint8_t *)src, length, ide, channel) == -1) {
+           PrintError(core->vm_info, core, "IDE: Could not write HD Data\n");
+           return -1;
+       }
+    } else {
+       // nothing ... do not support writable cd
+    }
+
+    return length;
+}
+
+static int write_port_std(struct guest_info * core, ushort_t port, void * src, uint_t length, void * priv_data) {
+    struct ide_internal * ide = priv_data;
     struct ide_channel * channel = get_selected_channel(ide, port);
     struct ide_drive * drive = get_selected_drive(channel);
            
     if (length != 1) {
-       PrintError("Invalid Write length on IDE port %x\n", port);
+       PrintError(core->vm_info, core, "Invalid Write length on IDE port %x\n", port);
        return -1;
     }
 
-    PrintDebug("IDE: Writing Standard Port %x (%s) (val=%x)\n", port, io_port_to_str(port), *(uint8_t *)src);
+    PrintDebug(core->vm_info, core, "IDE: Writing Standard Port %x (%s) (val=%x)\n", port, io_port_to_str(port), *(uint8_t *)src);
 
     switch (port) {
        // reset and interrupt enable
@@ -1219,65 +1409,163 @@ static int write_port_std(struct guest_info * core, ushort_t port, void * src, u
 
        case PRI_SECT_CNT_PORT:
        case SEC_SECT_CNT_PORT:
+           // update CHS and LBA28 state
            channel->drives[0].sector_count = *(uint8_t *)src;
            channel->drives[1].sector_count = *(uint8_t *)src;
+
+           // update LBA48 state
+           if (is_lba48(channel)) {
+               uint16_t val = *(uint8_t*)src; // top bits zero;
+               if (!channel->drives[0].lba48.sector_count_state) { 
+                   channel->drives[0].lba48.sector_count = val<<8;
+               } else {
+                   channel->drives[0].lba48.sector_count |= val;
+               }
+               channel->drives[0].lba48.sector_count_state ^= 1;
+               if (!channel->drives[1].lba48.sector_count_state) { 
+                   channel->drives[1].lba48.sector_count = val<<8;
+               } else {
+                   channel->drives[1].lba48.sector_count |= val;
+               }
+               channel->drives[0].lba48.sector_count_state ^= 1;
+           }
+           
            break;
 
        case PRI_SECT_NUM_PORT:
        case SEC_SECT_NUM_PORT:
+           // update CHS and LBA28 state
            channel->drives[0].sector_num = *(uint8_t *)src;
            channel->drives[1].sector_num = *(uint8_t *)src;
+
+           // update LBA48 state
+           if (is_lba48(channel)) {
+               uint64_t val = *(uint8_t *)src; // lob off top 7 bytes;
+               if (!channel->drives[0].lba48.lba41_state) { 
+                   channel->drives[0].lba48.lba |= val<<24; 
+               } else {
+                   channel->drives[0].lba48.lba |= val;
+               }
+               channel->drives[0].lba48.lba41_state ^= 1;
+               if (!channel->drives[1].lba48.lba41_state) { 
+                   channel->drives[1].lba48.lba |= val<<24; 
+               } else {
+                   channel->drives[1].lba48.lba |= val;
+               }
+               channel->drives[1].lba48.lba41_state ^= 1;
+           }
+
            break;
        case PRI_CYL_LOW_PORT:
        case SEC_CYL_LOW_PORT:
+           // update CHS and LBA28 state
            channel->drives[0].cylinder_low = *(uint8_t *)src;
            channel->drives[1].cylinder_low = *(uint8_t *)src;
+
+           // update LBA48 state
+           if (is_lba48(channel)) {
+               uint64_t val = *(uint8_t *)src; // lob off top 7 bytes;
+               if (!channel->drives[0].lba48.lba52_state) { 
+                   channel->drives[0].lba48.lba |= val<<32; 
+               } else {
+                   channel->drives[0].lba48.lba |= val<<8;
+               }
+               channel->drives[0].lba48.lba52_state ^= 1;
+               if (!channel->drives[1].lba48.lba52_state) { 
+                   channel->drives[1].lba48.lba |= val<<32; 
+               } else {
+                   channel->drives[1].lba48.lba |= val<<8;
+               }
+               channel->drives[1].lba48.lba52_state ^= 1;
+           }
+
            break;
 
        case PRI_CYL_HIGH_PORT:
        case SEC_CYL_HIGH_PORT:
+           // update CHS and LBA28 state
            channel->drives[0].cylinder_high = *(uint8_t *)src;
            channel->drives[1].cylinder_high = *(uint8_t *)src;
+
+           // update LBA48 state
+           if (is_lba48(channel)) {
+               uint64_t val = *(uint8_t *)src; // lob off top 7 bytes;
+               if (!channel->drives[0].lba48.lba63_state) { 
+                   channel->drives[0].lba48.lba |= val<<40; 
+               } else {
+                   channel->drives[0].lba48.lba |= val<<16;
+               }
+               channel->drives[0].lba48.lba63_state ^= 1;
+               if (!channel->drives[1].lba48.lba63_state) { 
+                   channel->drives[1].lba48.lba |= val<<40; 
+               } else {
+                   channel->drives[1].lba48.lba |= val<<16;
+               }
+               channel->drives[1].lba48.lba63_state ^= 1;
+           }
+
            break;
 
        case PRI_DRV_SEL_PORT:
        case SEC_DRV_SEL_PORT: {
-           channel->drive_head.val = *(uint8_t *)src;
+           struct ide_drive_head_reg nh, oh;
+
+           oh.val = channel->drive_head.val;
+           channel->drive_head.val = nh.val = *(uint8_t *)src;
+
+           // has LBA flipped?
+           if ((oh.val & 0xe0) != (nh.val & 0xe0)) {
+               // reset LBA48 state
+               channel->drives[0].lba48.sector_count_state=0;
+               channel->drives[0].lba48.lba41_state=0;
+               channel->drives[0].lba48.lba52_state=0;
+               channel->drives[0].lba48.lba63_state=0;
+               channel->drives[1].lba48.sector_count_state=0;
+               channel->drives[1].lba48.lba41_state=0;
+               channel->drives[1].lba48.lba52_state=0;
+               channel->drives[1].lba48.lba63_state=0;
+           }
            
-           // make sure the reserved bits are ok..
-           // JRL TODO: check with new ramdisk to make sure this is right...
-           channel->drive_head.val |= 0xa0;
 
            drive = get_selected_drive(channel);
 
            // Selecting a non-present device is a no-no
            if (drive->drive_type == BLOCK_NONE) {
-               PrintDebug("Attempting to select a non-present drive\n");
+               PrintDebug(core->vm_info, core, "Attempting to select a non-present drive\n");
                channel->error_reg.abort = 1;
                channel->status.error = 1;
+           } else {
+               channel->status.busy = 0;
+               channel->status.ready = 1;
+               channel->status.data_req = 0;
+               channel->status.error = 0;
+               channel->status.seek_complete = 1;
+               
+               channel->dma_status.active = 0;
+               channel->dma_status.err = 0;
            }
 
            break;
        }
        default:
-           PrintError("IDE: Write to unknown Port %x\n", port);
+           PrintError(core->vm_info, core, "IDE: Write to unknown Port %x\n", port);
            return -1;
     }
     return length;
 }
 
 
-static int read_port_std(struct guest_info * core, ushort_t port, void * dst, uint_t length, struct vm_device * dev) {
-    struct ide_internal * ide = (struct ide_internal *)(dev->private_data);
+static int read_port_std(struct guest_info * core, ushort_t port, void * dst, uint_t length, void * priv_data) {
+    struct ide_internal * ide = priv_data;
     struct ide_channel * channel = get_selected_channel(ide, port);
     struct ide_drive * drive = get_selected_drive(channel);
     
     if (length != 1) {
-       PrintError("Invalid Read length on IDE port %x\n", port);
+       PrintError(core->vm_info, core, "Invalid Read length on IDE port %x\n", port);
        return -1;
     }
     
-    PrintDebug("IDE: Reading Standard Port %x (%s)\n", port, io_port_to_str(port));
+    PrintDebug(core->vm_info, core, "IDE: Reading Standard Port %x (%s)\n", port, io_port_to_str(port));
 
     if ((port == PRI_ADDR_REG_PORT) ||
        (port == SEC_ADDR_REG_PORT)) {
@@ -1342,11 +1630,11 @@ static int read_port_std(struct guest_info * core, ushort_t port, void * dst, ui
            break;
 
        default:
-           PrintError("Invalid Port: %x\n", port);
+           PrintError(core->vm_info, core, "Invalid Port: %x\n", port);
            return -1;
     }
 
-    PrintDebug("\tVal=%x\n", *(uint8_t *)dst);
+    PrintDebug(core->vm_info, core, "\tVal=%x\n", *(uint8_t *)dst);
 
     return length;
 }
@@ -1380,12 +1668,14 @@ static void init_channel(struct ide_channel * channel) {
     int i = 0;
 
     channel->error_reg.val = 0x01;
+
+    //** channel->features = 0x0;
+
     channel->drive_head.val = 0x00;
     channel->status.val = 0x00;
     channel->cmd_reg = 0x00;
     channel->ctrl_reg.val = 0x08;
 
-
     channel->dma_cmd.val = 0;
     channel->dma_status.val = 0;
     channel->dma_prd_addr = 0;
@@ -1398,31 +1688,28 @@ static void init_channel(struct ide_channel * channel) {
 }
 
 
-static int pci_config_update(uint_t reg_num, void * src, uint_t length, void * private_data) {
-    PrintDebug("PCI Config Update\n");
-    /*    struct vm_device * dev = (struct vm_device *)private_data;
-    struct ide_internal * ide = (struct ide_internal *)(dev->private_data);
+static int pci_config_update(struct pci_device * pci_dev, uint32_t reg_num, void * src, uint_t length, void * private_data) {
+    PrintDebug(VM_NONE, VCORE_NONE, "PCI Config Update\n");
+    /*
+    struct ide_internal * ide = (struct ide_internal *)(private_data);
 
-    PrintDebug("\t\tInterupt register (Dev=%s), irq=%d\n", ide->ide_pci->name, ide->ide_pci->config_header.intr_line);
+    PrintDebug(VM_NONE, VCORE_NONE, info, "\t\tInterupt register (Dev=%s), irq=%d\n", ide->ide_pci->name, ide->ide_pci->config_header.intr_line);
     */
 
     return 0;
 }
 
-static int init_ide_state(struct vm_device * dev) {
-    struct ide_internal * ide = (struct ide_internal *)(dev->private_data);
-    int i;
+static int init_ide_state(struct ide_internal * ide) {
 
     /* 
      * Check if the PIIX 3 actually represents both IDE channels in a single PCI entry 
      */
 
-    for (i = 0; i < 1; i++) {
-       init_channel(&(ide->channels[i]));
+    init_channel(&(ide->channels[0]));
+    ide->channels[0].irq = PRI_DEFAULT_IRQ ;
 
-       // JRL: this is a terrible hack...
-       ide->channels[i].irq = PRI_DEFAULT_IRQ + i;
-    }
+    init_channel(&(ide->channels[1]));
+    ide->channels[1].irq = SEC_DEFAULT_IRQ ;
 
 
     return 0;
@@ -1431,18 +1718,244 @@ static int init_ide_state(struct vm_device * dev) {
 
 
 
-static int ide_free(struct vm_device * dev) {
-    // unhook io ports....
+static int ide_free(struct ide_internal * ide) {
+
     // deregister from PCI?
+
+    V3_Free(ide);
+
     return 0;
 }
 
+#ifdef V3_CONFIG_CHECKPOINT
+
+#include <palacios/vmm_sprintf.h>
+
+static int ide_save_extended(struct v3_chkpt *chkpt, char *id, void * private_data) {
+    struct ide_internal * ide = (struct ide_internal *)private_data;
+    struct v3_chkpt_ctx *ctx=0;
+    int ch_num = 0;
+    int drive_num = 0;
+    char buf[128];
+    
+
+    ctx=v3_chkpt_open_ctx(chkpt,id);
+    
+    if (!ctx) { 
+      PrintError(VM_NONE, VCORE_NONE, "Failed to open context for save\n");
+      goto savefailout;
+    }
+
+    // nothing saved yet
+    
+    v3_chkpt_close_ctx(ctx);ctx=0;
+   
+
+    for (ch_num = 0; ch_num < 2; ch_num++) {
+       struct ide_channel * ch = &(ide->channels[ch_num]);
+
+       snprintf(buf, 128, "%s-%d", id, ch_num);
+
+       ctx = v3_chkpt_open_ctx(chkpt, buf);
+       
+       if (!ctx) { 
+         PrintError(VM_NONE, VCORE_NONE, "Unable to open context to save channel %d\n",ch_num);
+         goto savefailout;
+       }
+
+       V3_CHKPT_SAVE(ctx, "ERROR", ch->error_reg.val, savefailout);
+       V3_CHKPT_SAVE(ctx, "FEATURES", ch->features.val, savefailout);
+       V3_CHKPT_SAVE(ctx, "DRIVE_HEAD", ch->drive_head.val, savefailout);
+       V3_CHKPT_SAVE(ctx, "STATUS", ch->status.val, savefailout);
+       V3_CHKPT_SAVE(ctx, "CMD_REG", ch->cmd_reg, savefailout);
+       V3_CHKPT_SAVE(ctx, "CTRL_REG", ch->ctrl_reg.val, savefailout);
+       V3_CHKPT_SAVE(ctx, "DMA_CMD", ch->dma_cmd.val, savefailout);
+       V3_CHKPT_SAVE(ctx, "DMA_STATUS", ch->dma_status.val, savefailout);
+       V3_CHKPT_SAVE(ctx, "PRD_ADDR", ch->dma_prd_addr, savefailout);
+       V3_CHKPT_SAVE(ctx, "DMA_TBL_IDX", ch->dma_tbl_index, savefailout);
+
+
+
+       v3_chkpt_close_ctx(ctx); ctx=0;
+
+       for (drive_num = 0; drive_num < 2; drive_num++) {
+           struct ide_drive * drive = &(ch->drives[drive_num]);
+           
+           snprintf(buf, 128, "%s-%d-%d", id, ch_num, drive_num);
+
+           ctx = v3_chkpt_open_ctx(chkpt, buf);
+           
+           if (!ctx) { 
+             PrintError(VM_NONE, VCORE_NONE, "Unable to open context to save drive %d\n",drive_num);
+             goto savefailout;
+           }
+
+           V3_CHKPT_SAVE(ctx, "DRIVE_TYPE", drive->drive_type, savefailout);
+           V3_CHKPT_SAVE(ctx, "SECTOR_COUNT", drive->sector_count, savefailout);
+           V3_CHKPT_SAVE(ctx, "SECTOR_NUM", drive->sector_num, savefailout);
+           V3_CHKPT_SAVE(ctx, "CYLINDER", drive->cylinder,savefailout);
+
+           V3_CHKPT_SAVE(ctx, "CURRENT_LBA", drive->current_lba, savefailout);
+           V3_CHKPT_SAVE(ctx, "TRANSFER_LENGTH", drive->transfer_length, savefailout);
+           V3_CHKPT_SAVE(ctx, "TRANSFER_INDEX", drive->transfer_index, savefailout);
+
+           V3_CHKPT_SAVE(ctx, "DATA_BUF",  drive->data_buf, savefailout);
+
+
+           /* For now we'll just pack the type specific data at the end... */
+           /* We should probably add a new context here in the future... */
+           if (drive->drive_type == BLOCK_CDROM) {
+             V3_CHKPT_SAVE(ctx, "ATAPI_SENSE_DATA", drive->cd_state.sense.buf, savefailout);
+             V3_CHKPT_SAVE(ctx, "ATAPI_CMD", drive->cd_state.atapi_cmd, savefailout);
+             V3_CHKPT_SAVE(ctx, "ATAPI_ERR_RECOVERY", drive->cd_state.err_recovery.buf, savefailout);
+           } else if (drive->drive_type == BLOCK_DISK) {
+             V3_CHKPT_SAVE(ctx, "ACCESSED", drive->hd_state.accessed, savefailout);
+             V3_CHKPT_SAVE(ctx, "MULT_SECT_NUM", drive->hd_state.mult_sector_num, savefailout);
+             V3_CHKPT_SAVE(ctx, "CUR_SECT_NUM", drive->hd_state.cur_sector_num, savefailout);
+           } else if (drive->drive_type == BLOCK_NONE) { 
+             // no drive connected, so no data
+           } else {
+             PrintError(VM_NONE, VCORE_NONE, "Invalid drive type %d\n",drive->drive_type);
+             goto savefailout;
+           }
+
+           V3_CHKPT_SAVE(ctx, "LBA48_LBA", drive->lba48.lba, savefailout);
+           V3_CHKPT_SAVE(ctx, "LBA48_SECTOR_COUNT", drive->lba48.sector_count, savefailout);
+           V3_CHKPT_SAVE(ctx, "LBA48_SECTOR_COUNT_STATE", drive->lba48.sector_count_state, savefailout);
+           V3_CHKPT_SAVE(ctx, "LBA48_LBA41_STATE", drive->lba48.lba41_state, savefailout);
+           V3_CHKPT_SAVE(ctx, "LBA48_LBA52_STATE", drive->lba48.lba52_state, savefailout);
+           V3_CHKPT_SAVE(ctx, "LBA48_LBA63_STATE", drive->lba48.lba63_state, savefailout);
+           
+           v3_chkpt_close_ctx(ctx); ctx=0;
+       }
+    }
+
+// goodout:
+    return 0;
+
+ savefailout:
+    PrintError(VM_NONE, VCORE_NONE, "Failed to save IDE\n");
+    if (ctx) {v3_chkpt_close_ctx(ctx); }
+    return -1;
+}
+
+
+
+static int ide_load_extended(struct v3_chkpt *chkpt, char *id, void * private_data) {
+    struct ide_internal * ide = (struct ide_internal *)private_data;
+    struct v3_chkpt_ctx *ctx=0;
+    int ch_num = 0;
+    int drive_num = 0;
+    char buf[128];
+    
+    ctx=v3_chkpt_open_ctx(chkpt,id);
+    
+    if (!ctx) { 
+      PrintError(VM_NONE, VCORE_NONE, "Failed to open context for load\n");
+      goto loadfailout;
+    }
+
+    // nothing saved yet
+    
+    v3_chkpt_close_ctx(ctx);ctx=0;
+   
+
+    for (ch_num = 0; ch_num < 2; ch_num++) {
+       struct ide_channel * ch = &(ide->channels[ch_num]);
+
+       snprintf(buf, 128, "%s-%d", id, ch_num);
+
+       ctx = v3_chkpt_open_ctx(chkpt, buf);
+       
+       if (!ctx) { 
+         PrintError(VM_NONE, VCORE_NONE, "Unable to open context to load channel %d\n",ch_num);
+         goto loadfailout;
+       }
+
+       V3_CHKPT_LOAD(ctx, "ERROR", ch->error_reg.val, loadfailout);
+       V3_CHKPT_LOAD(ctx, "FEATURES", ch->features.val, loadfailout);
+       V3_CHKPT_LOAD(ctx, "DRIVE_HEAD", ch->drive_head.val, loadfailout);
+       V3_CHKPT_LOAD(ctx, "STATUS", ch->status.val, loadfailout);
+       V3_CHKPT_LOAD(ctx, "CMD_REG", ch->cmd_reg, loadfailout);
+       V3_CHKPT_LOAD(ctx, "CTRL_REG", ch->ctrl_reg.val, loadfailout);
+       V3_CHKPT_LOAD(ctx, "DMA_CMD", ch->dma_cmd.val, loadfailout);
+       V3_CHKPT_LOAD(ctx, "DMA_STATUS", ch->dma_status.val, loadfailout);
+       V3_CHKPT_LOAD(ctx, "PRD_ADDR", ch->dma_prd_addr, loadfailout);
+       V3_CHKPT_LOAD(ctx, "DMA_TBL_IDX", ch->dma_tbl_index, loadfailout);
+
+       v3_chkpt_close_ctx(ctx); ctx=0;
+
+       for (drive_num = 0; drive_num < 2; drive_num++) {
+           struct ide_drive * drive = &(ch->drives[drive_num]);
+           
+           snprintf(buf, 128, "%s-%d-%d", id, ch_num, drive_num);
+
+           ctx = v3_chkpt_open_ctx(chkpt, buf);
+           
+           if (!ctx) { 
+             PrintError(VM_NONE, VCORE_NONE, "Unable to open context to load drive %d\n",drive_num);
+             goto loadfailout;
+           }
+
+           V3_CHKPT_LOAD(ctx, "DRIVE_TYPE", drive->drive_type, loadfailout);
+           V3_CHKPT_LOAD(ctx, "SECTOR_COUNT", drive->sector_count, loadfailout);
+           V3_CHKPT_LOAD(ctx, "SECTOR_NUM", drive->sector_num, loadfailout);
+           V3_CHKPT_LOAD(ctx, "CYLINDER", drive->cylinder,loadfailout);
+
+           V3_CHKPT_LOAD(ctx, "CURRENT_LBA", drive->current_lba, loadfailout);
+           V3_CHKPT_LOAD(ctx, "TRANSFER_LENGTH", drive->transfer_length, loadfailout);
+           V3_CHKPT_LOAD(ctx, "TRANSFER_INDEX", drive->transfer_index, loadfailout);
+
+           V3_CHKPT_LOAD(ctx, "DATA_BUF",  drive->data_buf, loadfailout);
+
+           
+           /* For now we'll just pack the type specific data at the end... */
+           /* We should probably add a new context here in the future... */
+           if (drive->drive_type == BLOCK_CDROM) {
+             V3_CHKPT_LOAD(ctx, "ATAPI_SENSE_DATA", drive->cd_state.sense.buf, loadfailout);
+             V3_CHKPT_LOAD(ctx, "ATAPI_CMD", drive->cd_state.atapi_cmd, loadfailout);
+             V3_CHKPT_LOAD(ctx, "ATAPI_ERR_RECOVERY", drive->cd_state.err_recovery.buf, loadfailout);
+           } else if (drive->drive_type == BLOCK_DISK) {
+             V3_CHKPT_LOAD(ctx, "ACCESSED", drive->hd_state.accessed, loadfailout);
+             V3_CHKPT_LOAD(ctx, "MULT_SECT_NUM", drive->hd_state.mult_sector_num, loadfailout);
+             V3_CHKPT_LOAD(ctx, "CUR_SECT_NUM", drive->hd_state.cur_sector_num, loadfailout);
+           } else if (drive->drive_type == BLOCK_NONE) { 
+             // no drive connected, so no data
+           } else {
+             PrintError(VM_NONE, VCORE_NONE, "Invalid drive type %d\n",drive->drive_type);
+             goto loadfailout;
+           }
+
+           V3_CHKPT_LOAD(ctx, "LBA48_LBA", drive->lba48.lba, loadfailout);
+           V3_CHKPT_LOAD(ctx, "LBA48_SECTOR_COUNT", drive->lba48.sector_count, loadfailout);
+           V3_CHKPT_LOAD(ctx, "LBA48_SECTOR_COUNT_STATE", drive->lba48.sector_count_state, loadfailout);
+           V3_CHKPT_LOAD(ctx, "LBA48_LBA41_STATE", drive->lba48.lba41_state, loadfailout);
+           V3_CHKPT_LOAD(ctx, "LBA48_LBA52_STATE", drive->lba48.lba52_state, loadfailout);
+           V3_CHKPT_LOAD(ctx, "LBA48_LBA63_STATE", drive->lba48.lba63_state, loadfailout);
+           
+       }
+    }
+// goodout:
+    return 0;
+
+ loadfailout:
+    PrintError(VM_NONE, VCORE_NONE, "Failed to load IDE\n");
+    if (ctx) {v3_chkpt_close_ctx(ctx); }
+    return -1;
+
+}
+
+
+
+#endif
+
 
 static struct v3_device_ops dev_ops = {
-    .free = ide_free,
-    .reset = NULL,
-    .start = NULL,
-    .stop = NULL,
+    .free = (int (*)(void *))ide_free,
+#ifdef V3_CONFIG_CHECKPOINT
+    .save_extended = ide_save_extended,
+    .load_extended = ide_load_extended
+#endif
 };
 
 
@@ -1466,7 +1979,7 @@ static int connect_fn(struct v3_vm_info * vm,
 
 
     if ((!type_str) || (!drive_str) || (!bus_str)) {
-       PrintError("Incomplete IDE Configuration\n");
+       PrintError(vm, VCORE_NONE, "Incomplete IDE Configuration\n");
        return -1;
     }
 
@@ -1477,12 +1990,15 @@ static int connect_fn(struct v3_vm_info * vm,
     drive = &(channel->drives[drive_num]);
 
     if (drive->drive_type != BLOCK_NONE) {
-       PrintError("Device slot (bus=%d, drive=%d) already occupied\n", bus_num, drive_num);
+       PrintError(vm, VCORE_NONE, "Device slot (bus=%d, drive=%d) already occupied\n", bus_num, drive_num);
        return -1;
     }
 
-    strncpy(drive->model, model_str, sizeof(drive->model) - 1);
-    
+    if (model_str != NULL) {
+       strncpy(drive->model, model_str, sizeof(drive->model));
+       drive->model[sizeof(drive->model)-1] = 0;
+    }
+
     if (strcasecmp(type_str, "cdrom") == 0) {
        drive->drive_type = BLOCK_CDROM;
 
@@ -1500,7 +2016,7 @@ static int connect_fn(struct v3_vm_info * vm,
        drive->num_heads = 16;
        drive->num_cylinders = (ops->get_capacity(private_data) / HD_SECTOR_SIZE) / (drive->num_sectors * drive->num_heads);
     } else {
-       PrintError("invalid IDE drive type\n");
+       PrintError(vm, VCORE_NONE, "invalid IDE drive type\n");
        return -1;
     }
  
@@ -1520,91 +2036,110 @@ static int connect_fn(struct v3_vm_info * vm,
 
 
 static int ide_init(struct v3_vm_info * vm, v3_cfg_tree_t * cfg) {
-    struct ide_internal * ide  = (struct ide_internal *)V3_Malloc(sizeof(struct ide_internal));  
+    struct ide_internal * ide  = NULL;
     char * dev_id = v3_cfg_val(cfg, "ID");
+    int ret = 0;
 
-    PrintDebug("IDE: Initializing IDE\n");
-    memset(ide, 0, sizeof(struct ide_internal));
+    PrintDebug(vm, VCORE_NONE, "IDE: Initializing IDE\n");
+
+    ide = (struct ide_internal *)V3_Malloc(sizeof(struct ide_internal));
+
+    if (ide == NULL) {
+       PrintError(vm, VCORE_NONE, "Error allocating IDE state\n");
+       return -1;
+    }
 
+    memset(ide, 0, sizeof(struct ide_internal));
 
+    ide->vm = vm;
     ide->pci_bus = v3_find_dev(vm, v3_cfg_val(cfg, "bus"));
 
     if (ide->pci_bus != NULL) {
        struct vm_device * southbridge = v3_find_dev(vm, v3_cfg_val(cfg, "controller"));
 
        if (!southbridge) {
-           PrintError("Could not find southbridge\n");
+           PrintError(vm, VCORE_NONE, "Could not find southbridge\n");
+           V3_Free(ide);
            return -1;
        }
 
        ide->southbridge = (struct v3_southbridge *)(southbridge->private_data);
+    } else {
+       PrintError(vm,VCORE_NONE,"Strange - you don't have a PCI bus\n");
     }
 
-    PrintDebug("IDE: Creating IDE bus x 2\n");
+    PrintDebug(vm, VCORE_NONE, "IDE: Creating IDE bus x 2\n");
 
-    struct vm_device * dev = v3_allocate_device(dev_id, &dev_ops, ide);
+    struct vm_device * dev = v3_add_device(vm, dev_id, &dev_ops, ide);
 
-    if (v3_attach_device(vm, dev) == -1) {
-       PrintError("Could not attach device %s\n", dev_id);
+    if (dev == NULL) {
+       PrintError(vm, VCORE_NONE, "Could not attach device %s\n", dev_id);
+       V3_Free(ide);
        return -1;
     }
 
-    if (init_ide_state(dev) == -1) {
-       PrintError("Failed to initialize IDE state\n");
+    if (init_ide_state(ide) == -1) {
+       PrintError(vm, VCORE_NONE, "Failed to initialize IDE state\n");
+       v3_remove_device(dev);
        return -1;
     }
 
-    PrintDebug("Connecting to IDE IO ports\n");
-
-    v3_dev_hook_io(dev, PRI_DATA_PORT, 
-                  &ide_read_data_port, &write_data_port);
-    v3_dev_hook_io(dev, PRI_FEATURES_PORT, 
-                  &read_port_std, &write_port_std);
-    v3_dev_hook_io(dev, PRI_SECT_CNT_PORT, 
-                  &read_port_std, &write_port_std);
-    v3_dev_hook_io(dev, PRI_SECT_NUM_PORT, 
-                  &read_port_std, &write_port_std);
-    v3_dev_hook_io(dev, PRI_CYL_LOW_PORT, 
-                  &read_port_std, &write_port_std);
-    v3_dev_hook_io(dev, PRI_CYL_HIGH_PORT, 
-                  &read_port_std, &write_port_std);
-    v3_dev_hook_io(dev, PRI_DRV_SEL_PORT, 
-                  &read_port_std, &write_port_std);
-    v3_dev_hook_io(dev, PRI_CMD_PORT, 
-                  &read_port_std, &write_cmd_port);
-
-    v3_dev_hook_io(dev, SEC_DATA_PORT, 
-                  &ide_read_data_port, &write_data_port);
-    v3_dev_hook_io(dev, SEC_FEATURES_PORT, 
-                  &read_port_std, &write_port_std);
-    v3_dev_hook_io(dev, SEC_SECT_CNT_PORT, 
-                  &read_port_std, &write_port_std);
-    v3_dev_hook_io(dev, SEC_SECT_NUM_PORT, 
-                  &read_port_std, &write_port_std);
-    v3_dev_hook_io(dev, SEC_CYL_LOW_PORT, 
-                  &read_port_std, &write_port_std);
-    v3_dev_hook_io(dev, SEC_CYL_HIGH_PORT, 
-                  &read_port_std, &write_port_std);
-    v3_dev_hook_io(dev, SEC_DRV_SEL_PORT, 
-                  &read_port_std, &write_port_std);
-    v3_dev_hook_io(dev, SEC_CMD_PORT, 
-                  &read_port_std, &write_cmd_port);
+    PrintDebug(vm, VCORE_NONE, "Connecting to IDE IO ports\n");
+
+    ret |= v3_dev_hook_io(dev, PRI_DATA_PORT, 
+                         &read_data_port, &write_data_port);
+    ret |= v3_dev_hook_io(dev, PRI_FEATURES_PORT, 
+                         &read_port_std, &write_port_std);
+    ret |= v3_dev_hook_io(dev, PRI_SECT_CNT_PORT, 
+                         &read_port_std, &write_port_std);
+    ret |= v3_dev_hook_io(dev, PRI_SECT_NUM_PORT, 
+                         &read_port_std, &write_port_std);
+    ret |= v3_dev_hook_io(dev, PRI_CYL_LOW_PORT, 
+                         &read_port_std, &write_port_std);
+    ret |= v3_dev_hook_io(dev, PRI_CYL_HIGH_PORT, 
+                         &read_port_std, &write_port_std);
+    ret |= v3_dev_hook_io(dev, PRI_DRV_SEL_PORT, 
+                         &read_port_std, &write_port_std);
+    ret |= v3_dev_hook_io(dev, PRI_CMD_PORT, 
+                         &read_port_std, &write_cmd_port);
+
+    ret |= v3_dev_hook_io(dev, SEC_DATA_PORT, 
+                         &read_data_port, &write_data_port);
+    ret |= v3_dev_hook_io(dev, SEC_FEATURES_PORT, 
+                         &read_port_std, &write_port_std);
+    ret |= v3_dev_hook_io(dev, SEC_SECT_CNT_PORT, 
+                         &read_port_std, &write_port_std);
+    ret |= v3_dev_hook_io(dev, SEC_SECT_NUM_PORT, 
+                         &read_port_std, &write_port_std);
+    ret |= v3_dev_hook_io(dev, SEC_CYL_LOW_PORT, 
+                         &read_port_std, &write_port_std);
+    ret |= v3_dev_hook_io(dev, SEC_CYL_HIGH_PORT, 
+                         &read_port_std, &write_port_std);
+    ret |= v3_dev_hook_io(dev, SEC_DRV_SEL_PORT, 
+                         &read_port_std, &write_port_std);
+    ret |= v3_dev_hook_io(dev, SEC_CMD_PORT, 
+                         &read_port_std, &write_cmd_port);
   
 
-    v3_dev_hook_io(dev, PRI_CTRL_PORT, 
-                  &read_port_std, &write_port_std);
+    ret |= v3_dev_hook_io(dev, PRI_CTRL_PORT, 
+                         &read_port_std, &write_port_std);
 
-    v3_dev_hook_io(dev, SEC_CTRL_PORT, 
-                  &read_port_std, &write_port_std);
+    ret |= v3_dev_hook_io(dev, SEC_CTRL_PORT, 
+                         &read_port_std, &write_port_std);
   
 
-    v3_dev_hook_io(dev, SEC_ADDR_REG_PORT, 
-                  &read_port_std, &write_port_std);
+    ret |= v3_dev_hook_io(dev, SEC_ADDR_REG_PORT, 
+                         &read_port_std, &write_port_std);
 
-    v3_dev_hook_io(dev, PRI_ADDR_REG_PORT, 
-                  &read_port_std, &write_port_std);
+    ret |= v3_dev_hook_io(dev, PRI_ADDR_REG_PORT, 
+                         &read_port_std, &write_port_std);
 
 
+    if (ret != 0) {
+       PrintError(vm, VCORE_NONE, "Error hooking IDE IO port\n");
+       v3_remove_device(dev);
+       return -1;
+    }
 
 
     if (ide->pci_bus) {
@@ -1614,7 +2149,7 @@ static int ide_init(struct v3_vm_info * vm, v3_cfg_tree_t * cfg) {
        struct pci_device * pci_dev = NULL;
        int i;
 
-       PrintDebug("Connecting IDE to PCI bus\n");
+       V3_Print(vm, VCORE_NONE, "Connecting IDE to PCI bus\n");
 
        for (i = 0; i < 6; i++) {
            bars[i].type = PCI_BAR_NONE;
@@ -1627,14 +2162,15 @@ static int ide_init(struct v3_vm_info * vm, v3_cfg_tree_t * cfg) {
 
        bars[4].io_read = read_dma_port;
        bars[4].io_write = write_dma_port;
-       bars[4].private_data = dev;
+       bars[4].private_data = ide;
 
        pci_dev = v3_pci_register_device(ide->pci_bus, PCI_STD_DEVICE, 0, sb_pci->dev_num, 1, 
                                         "PIIX3_IDE", bars,
-                                        pci_config_update, NULL, NULL, dev);
+                                        pci_config_update, NULL, NULL, NULL, ide);
 
        if (pci_dev == NULL) {
-           PrintError("Failed to register IDE BUS %d with PCI\n", i); 
+           PrintError(vm, VCORE_NONE, "Failed to register IDE BUS %d with PCI\n", i); 
+           v3_remove_device(dev);
            return -1;
        }
 
@@ -1661,12 +2197,13 @@ static int ide_init(struct v3_vm_info * vm, v3_cfg_tree_t * cfg) {
     }
 
     if (v3_dev_add_blk_frontend(vm, dev_id, connect_fn, (void *)ide) == -1) {
-       PrintError("Could not register %s as frontend\n", dev_id);
+       PrintError(vm, VCORE_NONE, "Could not register %s as frontend\n", dev_id);
+       v3_remove_device(dev);
        return -1;
     }
     
 
-    PrintDebug("IDE Initialized\n");
+    PrintDebug(vm, VCORE_NONE, "IDE Initialized\n");
 
     return 0;
 }
@@ -1677,10 +2214,10 @@ device_register("IDE", ide_init)
 
 
 
-int v3_ide_get_geometry(struct vm_device * ide_dev, int channel_num, int drive_num, 
+int v3_ide_get_geometry(void * ide_data, int channel_num, int drive_num, 
                        uint32_t * cylinders, uint32_t * heads, uint32_t * sectors) {
 
-    struct ide_internal * ide  = (struct ide_internal *)(ide_dev->private_data);  
+    struct ide_internal * ide  = ide_data;  
     struct ide_channel * channel = &(ide->channels[channel_num]);
     struct ide_drive * drive = &(channel->drives[drive_num]);