Palacios Public Git Repository

To checkout Palacios execute

  git clone http://v3vee.org/palacios/palacios.web/palacios.git
This will give you the master branch. You probably want the devel branch or one of the release branches. To switch to the devel branch, simply execute
  cd palacios
  git checkout --track -b devel origin/devel
The other branches are similar.


timer interface updates to allow state cleanup on exit
[palacios.git] / palacios / src / palacios / vmm_time.c
index e7d5cfe..48a1579 100644 (file)
 #define PrintDebug(fmt, args...)
 #endif
 
+/* Overview 
+ *
+ * Time handling in VMMs is challenging, and Palacios uses the highest 
+ * resolution, lowest overhead timer on modern CPUs that it can - the 
+ * processor timestamp counter (TSC). Note that on somewhat old processors
+ * this can be problematic; in particular, older AMD processors did not 
+ * have a constant rate timestamp counter in the face of power management
+ * events. However, the latest Intel and AMD CPUs all do (should...) have a 
+ * constant rate TSC, and Palacios relies on this fact.
+ * 
+ * Basically, Palacios keeps track of three quantities as it runs to manage
+ * the passage of time:
+ * (1) The host timestamp counter - read directly from HW and never written
+ * (2) A monotonic guest timestamp counter used to measure the progression of
+ *     time in the guest. This is computed using an offsets from (1) above.
+ * (3) The actual guest timestamp counter (which can be written by
+ *     writing to the guest TSC MSR - MSR 0x10) from the monotonic guest TSC.
+ *     This is also computed as an offset from (2) above when the TSC and
+ *     this offset is updated when the TSC MSR is written.
+ *
+ * The value used to offset the guest TSC from the host TSC is the *sum* of all
+ * of these offsets (2 and 3) above
+ * 
+ * Because all other devices are slaved off of the passage of time in the guest,
+ * it is (2) above that drives the firing of other timers in the guest, 
+ * including timer devices such as the Programmable Interrupt Timer (PIT).
+ *
+ * Future additions:
+ * (1) Add support for temporarily skewing guest time off of where it should
+ *     be to support slack simulation of guests. The idea is that simulators
+ *     set this skew to be the difference between how much time passed for a 
+ *     simulated feature and a real implementation of that feature, making 
+ *     pass at a different rate from real time on this core. The VMM will then
+ *     attempt to move this skew back towards 0 subject to resolution/accuracy
+ *     constraints from various system timers.
+ *   
+ *     The main effort in doing this will be to get accuracy/resolution 
+ *     information from each local timer and to use this to bound how much skew
+ *     is removed on each exit.
+ */
+
+
 static int handle_cpufreq_hcall(struct guest_info * info, uint_t hcall_id, void * priv_data) {
     struct vm_time * time_state = &(info->time_state);
 
-    info->vm_regs.rbx = time_state->cpu_freq;
+    info->vm_regs.rbx = time_state->guest_cpu_freq;
 
     PrintDebug("Guest request cpu frequency: return %ld\n", (long)info->vm_regs.rbx);
     
@@ -39,90 +81,52 @@ static int handle_cpufreq_hcall(struct guest_info * info, uint_t hcall_id, void
 
 
 
-void v3_init_time(struct guest_info * info) {
-    struct vm_time * time_state = &(info->time_state);
-
-    time_state->cpu_freq = V3_CPU_KHZ();
-    time_state->pause_time = 0;
-    time_state->last_update = 0;
-    time_state->host_offset = 0;
-    time_state->offset_sum = 0;
-
-    INIT_LIST_HEAD(&(time_state->timers));
-    time_state->num_timers = 0;
-
-    v3_register_hypercall(info->vm_info, TIME_CPUFREQ_HCALL, handle_cpufreq_hcall, NULL);
-}
-
 int v3_start_time(struct guest_info * info) {
     /* We start running with guest_time == host_time */
     uint64_t t = v3_get_host_time(&info->time_state); 
 
     PrintDebug("Starting initial guest time as %llu\n", t);
     info->time_state.last_update = t;
-    info->time_state.pause_time = t;
+    info->time_state.initial_time = t;
     info->yield_start_cycle = t;
     return 0;
 }
 
-int v3_pause_time(struct guest_info * info) {
-    V3_ASSERT(info->time_state.pause_time == 0);
-    info->time_state.pause_time = v3_get_guest_time(&info->time_state);
-    PrintDebug("Time paused at guest time as %llu\n", 
-              info->time_state.pause_time);
-    return 0;
-}
+// If the guest is supposed to run slower than the host, yield out until
+// the host time is appropriately far along;
+int v3_adjust_time(struct guest_info * info) {
+    struct vm_time * time_state = &(info->time_state);
 
-/* Use a control-theoretic approach, specifically a PI control approach,
- * to adjust host_offset towards 0. Overall control documentation in 
- * palacios/docs/time_control.tex Control parameters are P and I, 
- * broken into rational numbers
- */
+    if (time_state->host_cpu_freq == time_state->guest_cpu_freq) {
+       time_state->guest_host_offset = 0;
+    } else {
+       uint64_t guest_time, guest_elapsed, desired_elapsed;
+       uint64_t host_time, target_host_time;
 
-/* These numbers need to be actually determined by pole placement work. They're 
- * just blind guesses for now, which is a really bad idea. :) */
-#define P_NUM 1
-#define P_DENOM 2
-#define I_NUM 1
-#define I_DENOM 20
-
-void adjust_time_offset(struct guest_info * info) {
-    /* Set point for control: Desired offset = 0; 
-     * Error = host_offset - 0 = host_offset */
-
-    sint64_t adjust;
-
-    /* Update the integral of the errror */
-    info->time_state.offset_sum += info->time_state.host_offset;
-    adjust = (P_NUM * info->time_state.host_offset) / P_DENOM +
-       (I_NUM * info->time_state.offset_sum) / I_DENOM;
-
-    /* We may want to constrain *adjust* because of
-     * resolution/accuracy constraints. Explore that later. */
-    info->time_state.host_offset -= adjust;
-    return;
-}
-
-int v3_resume_time(struct guest_info * info) {
-    uint64_t t = v3_get_host_time(&info->time_state);
-    V3_ASSERT(info->time_state.pause_time != 0);
-    info->time_state.host_offset = 
-       (sint64_t)info->time_state.pause_time - (sint64_t)t;
-#ifdef CONFIG_TIME_TSC_OFFSET_ADJUST
-    adjust_time_offset(info);
-#endif
-    info->time_state.pause_time = 0;
-    PrintDebug("Time resumed paused at guest time as %llu "
-              "offset %lld from host time.\n", t, info->time_state.host_offset);
+       guest_time = v3_get_guest_time(time_state);
+
+       /* Compute what host time this guest time should correspond to. */
+       guest_elapsed = (guest_time - time_state->initial_time);
+       desired_elapsed = (guest_elapsed * time_state->host_cpu_freq) / time_state->guest_cpu_freq;
+       target_host_time = time_state->initial_time + desired_elapsed;
+
+       /* Yield until that host time is reached */
+       host_time = v3_get_host_time(time_state);
+       while (host_time < target_host_time) {
+           v3_yield(info);
+           host_time = v3_get_host_time(time_state);
+       }
 
+       time_state->guest_host_offset = (sint64_t)guest_time - (sint64_t)host_time;
+    }
     return 0;
 }
 
-int v3_add_timer(struct guest_info * info, struct vm_timer_ops * ops, 
-            void * private_data) {
-    struct vm_timer * timer = NULL;
-    timer = (struct vm_timer *)V3_Malloc(sizeof(struct vm_timer));
+struct v3_timer * v3_add_timer(struct guest_info * info, 
+                              struct v3_timer_ops * ops, 
+                              void * private_data) {
+    struct v3_timer * timer = NULL;
+    timer = (struct v3_timer *)V3_Malloc(sizeof(struct v3_timer));
     V3_ASSERT(timer != NULL);
 
     timer->ops = ops;
@@ -131,11 +135,10 @@ int v3_add_timer(struct guest_info * info, struct vm_timer_ops * ops,
     list_add(&(timer->timer_link), &(info->time_state.timers));
     info->time_state.num_timers++;
 
-    return 0;
+    return timer;
 }
 
-
-int v3_remove_timer(struct guest_info * info, struct vm_timer * timer) {
+int v3_remove_timer(struct guest_info * info, struct v3_timer * timer) {
     list_del(&(timer->timer_link));
     info->time_state.num_timers--;
 
@@ -144,7 +147,7 @@ int v3_remove_timer(struct guest_info * info, struct vm_timer * timer) {
 }
 
 void v3_update_timers(struct guest_info * info) {
-    struct vm_timer * tmp_timer;
+    struct v3_timer * tmp_timer;
     uint64_t old_time = info->time_state.last_update;
     uint64_t cycles;
 
@@ -152,6 +155,173 @@ void v3_update_timers(struct guest_info * info) {
     cycles = info->time_state.last_update - old_time;
 
     list_for_each_entry(tmp_timer, &(info->time_state.timers), timer_link) {
-       tmp_timer->ops->update_timer(info, cycles, info->time_state.cpu_freq, tmp_timer->private_data);
+       tmp_timer->ops->update_timer(info, cycles, info->time_state.guest_cpu_freq, tmp_timer->private_data);
+    }
+}
+
+/* 
+ * Handle full virtualization of the time stamp counter.  As noted
+ * above, we don't store the actual value of the TSC, only the guest's
+ * offset from monotonic guest's time. If the guest writes to the TSC, we
+ * handle this by changing that offset.
+ *
+ * Possible TODO: Proper hooking of TSC read/writes?
+ */ 
+
+int v3_rdtsc(struct guest_info * info) {
+    uint64_t tscval = v3_get_guest_tsc(&info->time_state);
+    info->vm_regs.rdx = tscval >> 32;
+    info->vm_regs.rax = tscval & 0xffffffffLL;
+    return 0;
+}
+
+int v3_handle_rdtsc(struct guest_info * info) {
+    v3_rdtsc(info);
+    
+    info->vm_regs.rax &= 0x00000000ffffffffLL;
+    info->vm_regs.rdx &= 0x00000000ffffffffLL;
+
+    info->rip += 2;
+    
+    return 0;
+}
+
+int v3_rdtscp(struct guest_info * info) {
+    int ret;
+    /* First get the MSR value that we need. It's safe to futz with
+     * ra/c/dx here since they're modified by this instruction anyway. */
+    info->vm_regs.rcx = TSC_AUX_MSR; 
+    ret = v3_handle_msr_read(info);
+    if (ret) return ret;
+    info->vm_regs.rcx = info->vm_regs.rax;
+
+    /* Now do the TSC half of the instruction */
+    ret = v3_rdtsc(info);
+    if (ret) return ret;
+    
+    return 0;
+}
+
+
+int v3_handle_rdtscp(struct guest_info * info) {
+
+    v3_rdtscp(info);
+    
+    info->vm_regs.rax &= 0x00000000ffffffffLL;
+    info->vm_regs.rcx &= 0x00000000ffffffffLL;
+    info->vm_regs.rdx &= 0x00000000ffffffffLL;
+
+    info->rip += 3;
+    
+    return 0;
+}
+
+static int tsc_aux_msr_read_hook(struct guest_info *info, uint_t msr_num, 
+                                struct v3_msr *msr_val, void *priv) {
+    struct vm_time * time_state = &(info->time_state);
+
+    V3_ASSERT(msr_num == TSC_AUX_MSR);
+    msr_val->lo = time_state->tsc_aux.lo;
+    msr_val->hi = time_state->tsc_aux.hi;
+
+    return 0;
+}
+
+static int tsc_aux_msr_write_hook(struct guest_info *info, uint_t msr_num, 
+                             struct v3_msr msr_val, void *priv) {
+    struct vm_time * time_state = &(info->time_state);
+
+    V3_ASSERT(msr_num == TSC_AUX_MSR);
+    time_state->tsc_aux.lo = msr_val.lo;
+    time_state->tsc_aux.hi = msr_val.hi;
+
+    return 0;
+}
+
+static int tsc_msr_read_hook(struct guest_info *info, uint_t msr_num,
+                            struct v3_msr *msr_val, void *priv) {
+    uint64_t time = v3_get_guest_tsc(&info->time_state);
+
+    V3_ASSERT(msr_num == TSC_MSR);
+    msr_val->hi = time >> 32;
+    msr_val->lo = time & 0xffffffffLL;
+    
+    return 0;
+}
+
+static int tsc_msr_write_hook(struct guest_info *info, uint_t msr_num,
+                            struct v3_msr msr_val, void *priv) {
+    struct vm_time * time_state = &(info->time_state);
+    uint64_t guest_time, new_tsc;
+    V3_ASSERT(msr_num == TSC_MSR);
+    new_tsc = (((uint64_t)msr_val.hi) << 32) | (uint64_t)msr_val.lo;
+    guest_time = v3_get_guest_time(time_state);
+    time_state->tsc_guest_offset = (sint64_t)new_tsc - (sint64_t)guest_time; 
+
+    return 0;
+}
+
+
+static int init_vm_time(struct v3_vm_info *vm_info) {
+    int ret;
+
+    PrintDebug("Installing TSC MSR hook.\n");
+    ret = v3_hook_msr(vm_info, TSC_MSR, 
+                     tsc_msr_read_hook, tsc_msr_write_hook, NULL);
+
+    PrintDebug("Installing TSC_AUX MSR hook.\n");
+    if (ret) return ret;
+    ret = v3_hook_msr(vm_info, TSC_AUX_MSR, tsc_aux_msr_read_hook, 
+                     tsc_aux_msr_write_hook, NULL);
+    if (ret) return ret;
+
+    PrintDebug("Registering TIME_CPUFREQ hypercall.\n");
+    ret = v3_register_hypercall(vm_info, TIME_CPUFREQ_HCALL, 
+                               handle_cpufreq_hcall, NULL);
+    return ret;
+}
+
+void v3_init_time(struct guest_info * info) {
+    struct vm_time * time_state = &(info->time_state);
+    v3_cfg_tree_t * cfg_tree = info->core_cfg_data;
+    static int one_time = 0;
+    char *khz;
+
+    time_state->host_cpu_freq = V3_CPU_KHZ();
+    khz = v3_cfg_val(cfg_tree, "khz");
+    if (khz) {
+       time_state->guest_cpu_freq = atoi(khz);
+       PrintDebug("Core %d CPU frequency requested at %d khz.\n", 
+                  info->cpu_id, time_state->guest_cpu_freq);
+    }
+    
+    if (!khz || time_state->guest_cpu_freq > time_state->host_cpu_freq) {
+       time_state->guest_cpu_freq = time_state->host_cpu_freq;
+    }
+    PrintDebug("Core %d CPU frequency set to %d KHz (host CPU frequency = %d KHz).\n", info->cpu_id, time_state->guest_cpu_freq, time_state->host_cpu_freq);
+
+    time_state->initial_time = 0;
+    time_state->last_update = 0;
+    time_state->guest_host_offset = 0;
+    time_state->tsc_guest_offset = 0;
+
+    INIT_LIST_HEAD(&(time_state->timers));
+    time_state->num_timers = 0;
+    
+    time_state->tsc_aux.lo = 0;
+    time_state->tsc_aux.hi = 0;
+
+    if (!one_time) {
+       init_vm_time(info->vm_info);
+       one_time = 1;
     }
 }
+
+
+
+
+
+
+
+
+