
1

Towards Virtual Passthrough I/O
on Commodity Devices

Lei Xia, Jack Lange, Peter Dinda
{lxia, jarusl, pdinda}@northwestern.edu

Department of
Electrical Engineering and Computer Science

Northwestern University

http://v3vee.org/
http://www.presciencelab.org/

2

Overview
• VPIO: A modeling-based approach to high

performance I/O virtualization for commodity
devices
– Models could be provided by HW vendors

• Intermediate option between passthrough
I/O, and emulated I/O

• Promising initial results
• Work in progress

2

3

Outline

I/O virtualization techniques
Idea of VPIO
Palacios VMM
VPIO system
Device Model
Discussion
Conclusion

3

4

I/O virtualization – full emulated I/O

4

No guest software
change
Easy Migration
All New Device Drivers
High performance
overhead

[Sugerman01]

5

I/O virtualization – paravirtualized I/O

[Barham03, Levasseur04]

Performance
Reuse Device Driver
Change guest device driver

6

I/O virtualization – Passthrough I/O

Native performance
Guest responsible for device
driver
Specialized hardware
support

Self-virtualizing devices
Migration

[Liu06, Raj07,Shafer07]

7

I/O virtualization – Direct-Mapped I/O

Reusablity/multiplexing
Security Issue

7

Guest OS

VMM

Device

Mapping

8

VPIO Goals

• Achieve safe and secure direct-
mapped I/O

• With reusability/multiplexing
• To support commodity devices

– No self-virtualized features
• Without losing too much performance

– Expect a little more performance
overhead compared to pass-through IO

9

Two Requirements For VPIO

• Inexpensive formal model of device
– Building model easier than building device

driver
– Inexpensive to drive such model

• Device can be context-switched

9

10

Core Idea of VPIO
• VMM maintains a formal model of device

– keeps track of the physical device status
– driven by guest/device interactions

• Model can determines
– Reusable state – whether device is currently

serially reusable
– DMA – whether a DMA is about to starting and

what memory locations will be used
– Other interesting states

11

Introducing Palacios
• New VMM for HPC, architecture, systems, teaching,

and other uses
– Fully Open Source, BSD License

• Type I VMM, embeddable into existing kernels
• Operating System independent

– Kitten HPC OS (Sandia National Labs)
– GeekOS (University of Maryland)

• Implemented using Hardware Virtualization
Extensions

• Part of the V3VEE project
– Collaboration between NU and UNM
– http://www.v3vee.org

• Available at:
– http://www.v3vee.org/download 11

12

Palacios Overview
• Supports 32 and 64 bit environments

– Hosts and Guests
– Currently supports Linux Guests

• Currently uses AMD SVM extensions
– partial Intel VT support

• Full hardware virtualization
– Does not use paravirtualization
– Includes complement of virtual devices

• More details:
– J. Lange, P. Dinda, “An Introduction to the Palacios Virtual

Machine Monitor---Release 1.0”, Northwestern University EECS
Technical Report NWU-EECS-08-11, November, 2008.

– See us for more info

13

Palacios Details
• Virtualization Interface

– Hook IO Ports
– Hook Memory Regions
– Hook interrupts
– Handle VMExits

• Host Interface
– Access standard OS facilities

• (debugging, memory allocation)
– Hook host events

• Interrupts, timer, keyboard, etc…

• Can use shadow or nested paging

14

Palacios People
• Northwestern University

– Jack Lange (Lead Ph.D student)
– Lei Xia (Ph.D student)
– Peter Dinda (PI, Project Lead)

• University of New Mexico
– Zheng Cui (Ph.D student)
– Patrick Bridges (PI)

• Others
– Trammell Hudson and Kevin Pedreti (Sandia)

15

Guest OS

Unmodified
Driver

Device Modeling Monitor (DMM)

Physical Device

Palacios VMM

Hooked I/O
Unhooked I/O
Interrupt
DMA

Guest OS

Unmodified
Driver

VPIO In Context Of Palacios

16

Current Status

• VPIO is a work in progress
• What is implemented in Palacios

– hook I/O ports
– hook memory address (byte)

• What is tested outside
– Device Model embedded and tested on QEMU

PC emulator version 0.9.1

16

17

Device requests and interrupts

• Guest talks to device by IN/OUT
– Memory-mapped I/O will be similar
– hooked I/O list, a list of I/O port operations for

read/write or both. VMM intercepts these I/Os
– I/O port reads/writes drive model and HW
– unhooked I/O list (ideally as large as possible)

• Interrupts
– All physical interrupts are handled by VMM
– Interrupts drive model and are also delivered to guest

17

18

DMA
• DMA is initiated directly on physical device by guest

– DMM is aware of guest’s DMA operations due to hooked
ports

– DMA destination physical address is checked before the
physical DMA operation is performed

– If validated, let DMA occur, otherwise, deny it.
• Dealing with DMA failure

– How to notify the guest?
– Ignore the DMA?
– Machine Check Exception?

• Challenge: Dealing with physical address
translations

18

19

Device Multiplexing

• Context switch between guests
– Switching when device in reusable state
– Device context (related registers, model)
– If not owning device, guest’s operation requests

are suspended
• Challenge: Device handoff on interrupt

– Handle incoming packet for NIC
– Coming back later

19

20

Cost of VPIO – Experimental
Setup

• Guests’ I/Os performance overhead
– Palacios running on Qemu and HP system
– Qemu PC emulator 0.9.1
– HP ML115 1.8GHz, AMD Opteron 1210

20

21

Issue: Cost of exits (Palacios / AMD SVM)

530

23976 22906

33582

1308 1218
0

5000

10000

15000

20000

25000

30000

35000

40000

1

C
yc

le
s

Unhooked I/O -QEMU
Hooked I/O - QEMU
VMM Exit - QEMU
Device Context Switch - QEMU
Hooked I/O - HP
VMM Exit - HP

21

22

VPIO Issue 1/2 : Exit Costs

• Fundamental issue: O(1000) cycle exits.
• Try to minimize number of hooked I/O ports

– Model is cheaper in terms of exits than an emulated
device

– Not all I/O ports are needed to drive model

22

23

VPIO Issue 2/2 : Model
• Can we build such models?

– Is it feasible to build the model?
– How easy to build such model, easier than device

driver?
• How expensive are they to run?

23

24

Device Model

• Not for verification, not a complete behavioral
model

• Only used to determine…
– Whether and when the device is reusable
– Whether DMA is to be initiated
– What device requests are needed to update model

• State machine, with extra information
– Events: device requests, interrupts
– Checking functions, triggered by state transition
– State transition is approved or denied

24

25

Experimental Setup

• Testing setup
– Embedded model in QEMU PC emulator version

0.9.1
– Tested model on a set of network applications

running in guest OS on Qemu

25

26

NE2K NIC Example

Checking Function

26

Model is small
~700 LOC

27

NE2K Model Performance

27

Only a small fraction of I/Os are needed
to drive model, Great!

Windows XP sp2
Ubuntu Linux 6.*

28

Experience with NE2K Model

• Only about 1 in 30 I/O port reads/writes
need to be intercepted to drive the model

• Average non-exit cost of updating the
model is ~100 cycles
– And could be done in parallel with device

execution

28

29

Challenges

• VM exit performance is primary concern
– Further reduce I/O operations intercepted
– Move model into guest

– Either cooperatively or by code injection

• Handling incoming device input
• Network card receive when incorrect guest has

control of NIC

• Hardware manufacturers could provide
models along with device drivers

29

30

Summary
• VPIO: A modeling-based approach to high

performance I/O virtualization for commodity
devices

• Intermediate option between passthrough I/O
and emulated I/O

• Promising initial results
• Work in progress

30

31

Thanks!
Questions??

lxia@northwestern.edu
http://www.cs.northwestern.edu/~lxi990/

http://v3vee.org/
http://www.presciencelab.org/

