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OS and 
runtime 
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The runtime IS the kernel, built within a kernel framework 

Everything is in kernel space 

HRT has full access to the hardware 
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OUR PROPOSED MODEL:
THE HYBRID RUNTIME (HRT)

HRT 

HRT can control HW access 

HRT can pick its own abstractions 
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node HW

user mode 

kernel mode 

OUR PROPOSED MODEL:
THE HYBRID RUNTIME (HRT)

HRT 

MORE POWER! 
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We built a kernel framework
to support HRTs

We ported an existing, 
complex parallel runtime

We ported our framework to 
cutting-edge many-core hardware

We evaluated our port on 
a standard HPC benchmark

NAUTILUS

LEGION

XEON PHI

HPCG

legion.stanford.edu!
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Legion  Processor Count (Cores) 

11% average speedup

XEON PHI + NAUTILUS + LEGION + HPCG
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runtime 
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threads sync. events 
HW 
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Hardware 

user mode 

kernel mode 

Nautilus primitives & utilities (HRT can use or not use any of them) 

aerokernel
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runtime 
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HW 
info bootstrap paging timers IRQs console 

Hardware 

user mode 

kernel mode 

Kernel 
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MINIMAL LIGHTWEIGHT PRIMITIVES

FULL HARDWARE ACCESS

VERY FAST BOOT TIMES
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à modest speedups

give runtime control
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very simple modification:

MUCH more to come here

à modest speedups

give runtime control
over interrupts in its
task scheduler
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in addition to Legion, 
we have 2 other high-level, parallel runtimes

running as HRTs

NESL: VCODE interpreter running as HRT

NDPC: home-grown, co-designed HRT
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INTEGRATING THE HRT WITH A LEGACY OS
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HVMTHE HYBRID VIRTUAL MACHINE
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parallel app

hybrid runtime!

user mode 

kernel mode parallel app

parallel runtimeuser mode 

kernel mode parallel runtime

general OS

node hardware

Hybrid Virtual Machine (HVM)!

general virtualization 
model

specialized virtualization 
model

Legacy functionality from the 
Regular OS via the HVM!

Regular OS (ROS) 
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LINUX FORK + EXEC ~ 714µs

HVM + HRT CORE BOOT ~ 61µs  
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LINUX FORK + EXEC ~ 714µs

HVM + HRT CORE BOOT ~ 61µs  

HRT boot is CHEAP!



NAUTILUS + XEON PHI
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11% average speedup

XEON PHI + NAUTILUS + LEGION + HPCG



my website
halek.co


our development blog 

haltloop.com


our lab
presciencelab.org


the Hobbes project

xstack.sandia.gov/hobbes

Kyle Hale                 Peter Dinda

A CASE FOR TRANSFORMING !
PARALLEL RUNTIMES  
INTO OS KERNELS

follow us here for:

-  experience report on 

building OS for Phi

-   philix release (soon)
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node hardware
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This is the performance path, 
through the HRT!
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parallel app

hybrid runtime!

user mode 

kernel mode parallel app

parallel runtimeuser mode 

kernel mode parallel runtime

general OS

node hardware

Hybrid Virtual Machine (HVM)!

general virtualization 
model

specialized virtualization 
model

We can boot these things very 
quickly!!
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node hardware

Hybrid Virtual Machine (HVM)!

general virtualization 
model
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model

parallel app

hybrid runtime!

parallel app

hybrid runtime!

parallel app

hybrid runtime!

several auxiliary HRTs spawned in!
less than a millisecond  !
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port of NESL 

-  nested data parallel language 
    aimed at vector machines
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port of NESL 

-  nested data parallel language 
    aimed at vector machines

 
-  we can run unmodified NESL programs
     in our kernel-mode VCODE interpreter
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the first co-designed HRT: NDPC
-  Nested Data Parallelism in C/C++
-  subset of NESL
-  fork/join parallelism over 
    flattened vector processing
-  allows us to explore runtime/kernel
     co-design
-   e.g. smart kernel-mode thread fork 
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hybrid runtime!
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kernel mode parallel app

parallel runtimeuser mode 

kernel mode parallel runtime
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node hardware

Hybrid Virtual Machine (HVM)!

general virtualization 
model

specialized virtualization 
model

parallel app

hybrid runtime!

parallel app

hybrid runtime!

parallel app

hybrid runtime!

several auxiliary HRTs spawned in!
less than a millisecond  !

Regular OS (ROS) 

specialized virtualization 
model

specialized virtualization 
model

specialized virtualization 
model
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•  follow our blog
•  use our tool (philix) to boot it and 

leverage MPSS stack


