
Multiverse

Multiverse: Automatic Hybridization of Runtime Systems
 Kyle C. Hale, Conor Hetland, and Peter Dinda | {kh, ch}@u.northwestern.edu, pdinda@northwestern.edu

A Hybrid Runtime (HRT) is a transformation of a traditional parallel runtime into a
specialized operating system kernel. HRTs enjoy unfettered access to the hardware
and determine their own abstractions to that hardware.

The Hybrid Virtual Machine (HVM) makes it possible to create VMs that are internally
partitioned between a “regular OS” (ROS) and an HRT. They allow the HRT to leverage
legacy functionality inside the ROS, and they allow a user to easily create and launch
HRTs from the ROS.

Hybrid Runtimes

•  HRTs can be very fast, but they require a manual port to kernel mode. This requires domain
knowledge at the level of a runtime developer and at the level of a kernel developer

•  Even for an experienced kernel developer, porting a complex parallel runtime to kernel-mode
is an error-prone process. Porting can be difficult and laborious!

•  Much of this functionality is not on critical path!

Why Automatic Hybridization?

[1] K. Hale, C. Hetland, and P. Dinda. Automatic Hybridization of Runtime Systems. In Proceedings of the 25th

International ACM Symposium on High-Performance Parallel and Distributed Computing (HPDC ‘16).

[2] K. Hale and P. Dinda. Enabling Hybrid Parallel Runtimes Through Kernel and Virtualization Support. In

Proceedings of the 12th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(VEE ‘16).

[3] K. Hale and P. Dinda. A Case for Transforming Parallel Runtimes into Operating System Kernels. In Proceedings

of the 24th International ACM Symposium on High-Performance Parallel and Distributed Computing (HPDC
‘15).

[4] J. Lange, P. Dinda, K. Hale, L. Xia. An Introduction to the Palacios Virtual Machine Monitor Release 1.3. Tech.

Rep. NWU-EECS-11-10, Dept. of EECS, Northwestern Univ. (2011).

References

Acknowledgements
This project is made possible by support from the United States National Science Foundation through grant CCF-1533560 and
from Sandia National Laboratories through the Hobbes Project, which is funded by the 2013 Exascale Operating and Runtime
Systems Program under the Office of Advanced Scientific Computing Research in the United States Department Of Energy’s
Office of Science.

•  Racket is the most widely used dialect of Scheme
•  Includes challenging features typical of a dynamic, high-level language. Many make heavy use of

Linux ABI: system calls, memory mapping, processes, threads, signals, etc.
•  We automatically hybridize Racket with Multiverse. The user can interact with the Racket REPL in

the standard fashion

Small Performance Overhead

•  With Multiverse, when a new HRT context is
created, the Aerokernel is booted transparently
on a remote set of cores

•  Right: The Aerokernel binary is included in the
runtime’s executable when compiled with our
toolchain

•  The boot initialization is requested by the
Multiverse runtime layer on the ROS side

Reducing Forwarded Events

•  We introduced Multiverse, a system that automatically hybridizes existing
runtime systems

•  Runtime developers rebuild their system with our toolchain. It can then
operate in a state of split execution, where most of the execution occurs in
an accelerated, HRT environment

•  Multiverse adds little to no overhead, allowing the developer to start with
a working system in kernel mode. The developer can then incrementally
port legacy functionality to the HRT, reducing the number of events
forwarded to the ROS

Summary

split-execution in Multiverse

merged address space

•  Merged address space allows HRT to leverage code/
data mapped into the ROS virtual address space

•  We can, for example, use shared user-space libraries
in the HRT that are mapped into the ROS process
without implementing dynamic linking functionality
in the Aerokernel

•  The HRT can operate on data structures that have
been constructed in the ROS

•  Higher-half addresses (where the kernel code/data is
mapped) are distinct for ROS and HRT

Left: Performance of hybridized
Racket (with Multiverse) for a
set of benchmarks from the
Language Benchmark Game
compared to Racket in a VM and
Racket running on native Linux.
Overheads are very small. In all
but two cases, the light-weight
environment provided by the
HRT actually increases
performance over Virtual.

Right: The primary source of
overhead in Multiverse comes from
forwarded events. The two
benchmarks above that are made
slower from overhead incur most of it
from page faults. The figure on the
right shows that the overheads for
typical forwarded events are roughly
1500 cycles for each event.

•  These bars show the benchmarks that
perform worse with Multiverse initially

•  We introduce a change to the Racket
runtime that eagerly faults in pages
when mapping large chunks of memory

•  This reduces the occurrence of page
faults, which in turn reduces the
number of events forwarded from
HRT to ROS

•  Performance of the hybridized version
of Racket is now better than virtual

•  The point of this exercise is to show
that the overheads of Multiverse can be
eliminated by reducing the number of
forwarded events

General Purpose OS
(Linux)

HVM Library

Parallel Runtime

Parallel App

 AeroKernel
 (Nautilus)

 HVM Library

 Parallel Runtime

 Parallel App

merged address space

VMM

accelerated HRT

(1)

(2)

(3)

(4)

ROS HRT

Main
thread

Partner
thread

HRT
thread

Nested
HRT

thread

(1)

(2) (3)

(4)
(5)

libs

AeroKernel binary

stack

Virtual address space
for control process (ROS core)

libs
.text
.data

heap AeroKernel-managed
memory

HRT core physical memory

Loaded AeroKernel

Multiboot
and

VMM info structures

ROS Kernel

(Linux)

Application
+ Runtime
Code and

Data

0xffff800000000000

0xffffffffffffffff

0x00007fffffffffff

0x0000000000000000

Canonical
“lower
half”

Canonical
“higher
half”

Application
+ Runtime
Code and

Data

ROS Virtual
Address
Space

HRT Virtual
Address
Space

Physical
Address
Space

HRT Private

ROS + HRT
Shared

ROS + HRT
Shared

HRT Private

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

mmap

mun
map

La
te

nc
y

(c
yc

le
s)

Virtual
Multiverse

 0

 10

 20

 30

 40

 50

fan
nk

uc
h-r

ed
ux

bin
ary

-tre
e-2 fas

ta
fas

ta-
3

nb
od

y

sp
ec

tra
l-n

orm

man
de

lbr
ot-

2

R
un

tim
e

(s
)

Native
Virtual

Multiverse

 0

 10

 20

 30

 40

 50

 60

nb
od

y

sp
ec

tra
l-n

orm

R
un

tim
e

(s
)

Native-prefault
Virtual-prefault

Multiverse-prefault

•  In Multiverse, the runtime begins
execution in the ROS. The runtime
creates an HRT context through either
explicit or implicit invocations

•  Once an HRT context is created, the
system is in a state of split execution

•  During split execution, exceptional
events on the HRT side (page faults,
system calls, and some others) are
forwarded to the ROS

•  Each HRT execution context is paired with a
partner thread on the ROS, which handles
events forwarded over event channels. HRT
contexts with their partner threads comprise
execution groups

•  Nested threads share event channels with their
parent

•  HRT contexts are (by default) created whenever
a new pthread is created in the runtime

Parallel&App&

Parallel&Run,me&

General&Kernel&

Node&HW&

User%Mode%

Kernel%Mode%

Parallel&App&

Hybrid&Run,me&
(HRT)&

Node&HW&

User%Mode%

Kernel%Mode%

Parallel&Run,me&

General&Kernel&

Node&HW&

User%Mode%

Kernel%Mode%

Parallel&App&

Hybrid&Run,me&
(HRT)&

User%Mode%

Kernel%Mode%

Hybrid&Virtual&Machine&(HVM)&

Specialized&
Virtualiza,on&
Model&

Pe
rf
or
m
an

ce
*P
at
h*

Parallel&App&

Legacy*Path*

(a) Current Model (b) Hybrid Runtime Model

(c) Hybrid Runtime Model Within a Hybrid Virtual Machine

Pe
rf
or
m
an

ce
*P
at
h*

General&
Virtualiza,on&
Model&

•  We showed in previous work that by porting a legacy parallel runtime to an HRT
environment, we can increase the performance of a real parallel runtime system by as
much as 40% [2, 3]

•  The HRT is composed of the runtime and a thin kernel framework layer called an
Aerokernel

•  Aerokernels are designed to be simple, light-weight, and very fast. We designed and
implemented the Nautilus Aerokernel, which is used in conjunction with Multiverse

overhead added for forwarded system calls

~1500 cycles

interactions within an execution group

Aerokernel boot process

Building an Aerokernel to support a parallel runtime system (manual port to HRT)

add	
func(on	 rebuild	 boot	 works?	

no

yes
done	

http://nautilus.halek.co

fast path on HW

fast path under
virtualization

Need	an	easier	way	to	go	from	legacy	run4me	system	to	HRT+HVM-capable	run4me	
	

