
����������	�
��
����
�	�
�	�������	����
��	��������
�	

���������	
����

��������������

�������	���	����

������	����	 !�!�∀#	∃���������	%�������&�����	��	�	

∋��(!�(�)��!��	∗������

+���∀	������

,�∀����

	 			 ������	 �������
�	 ��
������	 ����	 ������	 �
������
���	 �������	 �
	 �	
�����	 ��	 �������
�	

�����
��	 ��
�	 ���	 �
����	 ��	 ��������	 ���������	 ��������������	 ����	 ���������
	 ������	 �������	

��
�	 �������	 �����
�	 �������
�����
�	 ���	 ����	 ��
������	 ����	 ���������	 ��	 �	 ����	 ���
	

�
����������	�����
��	����	 �����������	�����	 !	 �������
����	 ���	
�	 ��������
�	 �����
	 ��	

��∀�	��
�����#�����	�������
�	����������
�	�����	���������	������	���	����
��	��	����	���������
�	

����������	 ���	 �������	 �����
�	 �������
�����
�	 ��	 ��	 �����������	 ��	 ��	 ����	 ��	 �����	 ��������	

���������

	 ����	 ������	 ���������	 ���	 �������	 ��	 �������
�	 ����	 �	 ��
�����	 ∃%&�	 ������∋	 �
�	 ���	

�������
��
�	�������	�����
�	�������
�����
	∃!(������∋	��	�����������	��������	��
��������	

!(������)�	 ∗���#�
#����	 ��������	 ��
������	 ����∀�	 ��	 �����
�	 ����	 �
����������	 ����	 ����	

�
��������
�	 �������
�	 ��
����	 ����	 ��
����
�+	 ��������	 ����∀�	 ������
	 �����	 �����	 ���	 ������	

������#�����	,�	 ��������	 ����	 ��������	 ��	 −.�	 ����	 ��	 ����∀��	 ������	 ���	 ��
����	 ��	 �������	

��������	 ���∀��	 �������	 �������	 ��	 �������
�	 ������#����	 −.�	 ����	 ����∀�+	 �����	 �
��	 �
����	

��
����	��
����
�	���	���
�����	���������	��	�	��
���	���������	��
��

	 	/�����	��	���	���	����������	 ������	 �
�	 �����	��	���	��
������	!(������	�������
��	%&�	

������)�	 �������
�	 ����������
�	 �
������	 �
	 ����	 �����	 ��	 ����
	 �������+	 �������	 �����	 �������	

����	�����������	�������������	��
����#����	��
�������	����	��	��
��
�����
��	����	��	
��	���	

����	��	∀��
��#�����	��������	����	 ������	��	����	��	���	����	�����	���
�	��	����
�
�	��������	

���∀��

	 	 	 	����
��	��	���	�������
�����
	����	��	!(������	��	�������	����
�
�	��	��������	0��������	

−.�	����1	��������	�����	�������	�������	���∀	��������	�
	������	�
�������
��	�������
�	�����
�	

����	�
���	�
���
����
�	�
	�
����	��
����
	�����	�����	�����	���	���������	��	���	��
����	�������	

�
�	���	����	���	������	��	�������(�
�	���	�����
���	��	���	����������
�

	 	 /�
�����	 ��	 ������	 ����	 �����
�
��	 ��	 !(������	 �
����������	 ��	 �����
���	 ��������
��	

������
��∀�	�����	��

��	��	�������	��	������	�������
�	�������	�����	,�	����	����	�������	��	

��
�����
�	�	������#����	��
����	�
��	�	��������	�
�	���������
��
�
���
�����

−�.��/∀#		��������	���������
��	��
����
��	���������
��	������

����	���∗���	���	���������	���������	��	���	2����
��	����
��	/��
�����
	∃2�/∋	���	���
�	2�#3435678�	���	�����	�
�	

��
������
�	��
���
��	�
	����	������
�	���	�����	��	���	������	�
�	������	
��	��	�
���������	��	�������
��
�	���	��������	

���������	������	���������	��	��������	��	�
�	��	�����	����
�(����
��	��	���	9���	�����
��
��

Scheme with Futures: Incremental Parallelization in a

Language Virtual Machine

James Swaine

December 2009

Department of Electrical Engineering and Computer Science

Northwestern University

Evanston, IL 60201

Submitted in partial fulVllment of the requirements

for the degree of Master of Science in Computer Science

Thesis Committee:

Peter Dinda, Northwestern University

Robby Findler, Northwestern University

Matthew Flatt, University of Utah

Copyright c© 2009 James Swaine

Keywords: parallel programming, functional programming, Scheme

Acknowledgements

I would like to thank my advisors, Peter Dinda and Robby Findler, for their immense help and support for

this work. Also, many thanks to Matthew Flatt, whose knowledge of the inner workings of the MzScheme

implementation, as well as his code contributions to the futures implementation itself, were invaluable. I’d

also like to thank Kevin Tew, whose insight based on his own experiences with MzScheme was very helpful.

His code contributions are also greatly appreciated.

Thanks to Casey Klein, who was a great source of both information on all things Scheme, and good advice

in general.

I must also thank my dog, Kernel, who has kept me company through many late nights.

And Vnally, I am deeply grateful to my family - my wife Shasta, and my mother, father, and sister. Their

support and encouragement has been endless throughout the whole process.

i

Contents

1 Introduction 1

1.1 Parallelizing Virtual Machines . 2

1.1.1 Solution 1: RetroVt Existing Code . 2

1.1.2 Solution 2: Start From Scratch . 3

1.1.3 Solution 3: Incremental Parallelization . 3

1.2 Parallel Scheme With Futures . 4

1.3 Thesis Overview . 5

1.4 Code Availability . 5

2 Parallel Scheme with Futures 6

2.1 The PLT Scheme Language . 6

2.2 Parallel Extensions . 7

2.3 Synchronization . 7

2.3.1 Nested Futures . 8

2.4 Semantics . 9

3 Implementation 10

3.1 The MzScheme Virtual Machine . 10

3.2 Separating Safe From Unsafe . 10

3.2.1 Blocking Operations . 12

3.3 Mapping Futures to Operating System Threads . 14

3.4 JIT Compilation . 15

3.4.1 Unsafe Operation Detection . 16

3.4.2 Thread-Local Tables . 17

3.5 Garbage Collection . 17

3.5.1 Parallel Allocation . 18

3.5.2 Rendezvous . 20

3.5.3 Multiple Return Values . 21

3.5.4 Exceptions . 22

4 Performance Evaluation 26

5 Related Work 31

ii

6 Conclusion and Future Work 34

6.1 Generalizing the Approach . 34

6.2 Future Work . 35

iii

Listings

2.1 Signatures of the future and touch operations. 7

2.2 Parallel code with a race condition. 7

2.3 Using touch as a synchronization tool. 8

2.4 Parallel quicksort algorithm using futures. 8

3.1 Synchronizing global variables with registers in JIT code. 11

3.2 Sample parallel code with blocking calls. 14

3.3 Typical primitive trap handler. 16

3.4 JIT pseudocode modiVed to use a thread-local table. 17

3.5 Typical exception handling code in MzScheme. 23

3.6 Detecting exceptional conditions in a parallel future. 25

iv

List of Figures

3.1 Parallel threads in MzScheme. 13

3.2 Execution timeline for single-future program with a blocking call. 14

3.3 The lifetime of a parallel future thread. 15

3.4 Parallel fast-path allocation with multiple threads. 19

3.5 Atomic slow-path page allocation. 20

3.6 The rendezvous mechanism for stop-the-world garbage collection. 21

4.1 Performance results for image convolution (left) and mergesort (right). 30

4.2 Performance results for sparse matrix-vector multiplication. 30

v

Chapter 1

Introduction

Higher-level scripting languages can greatly improve developer productivity. By automating the handling

of many low-level concerns, these languages eliminate costly errors caused by invalid memory references,

incorrect error code checking, and bounds checking omissions. The programmer is free to focus on program

logic - what it does, instead of how it is done.

For decades, similar eUorts to raise the abstraction bar have been devoted to the realm of parallel com-

puting. Many languages have been created speciVcally to address this problem, but few exist which present

a uniVed, high-level programming model for building both sequential and parallel programs. In the scripting

language domain, even fewer such languages exist. In many cases it is necessary to write portions of an

application using a high-level sequential language, and others in some lower-level parallel language. As we

attempt to take advantage of parallelism in application logic by writing code which can use the potential of

multicore processors, the multi-language mixture becomes more confused and diXcult to understand.

We would like to have the ability to write parallel programs with popular scripting languages, but are of-

ten limited by their virtual machine implementations. Many scripting languages were originally implemented

during a time when uniprocessor machines were ubiquitous; thus, implementers saw no compelling reason to

allow multiple OS-level threads to execute simultaneously “in the runtime”. Such languages typically either

use a global interpreter lock or a green threads implementation to enforce this restriction.

1

CHAPTER 1. INTRODUCTION 2

1.1 Parallelizing Virtual Machines

Though threading libraries in this class of “single-threaded” scripting languages are useful for designing con-

current programs, they have little use if we are interested in writing parallel programs. We can propose to

extend a language with new constructs for parallel programming, but must deal with the problem of adapting

a pervasively sequential runtime implementation to support them (we use the terms “virtual machine” and

“runtime” interchangeably throughout this thesis). Critical runtime services must be modiVed such that they

can be safely executed concurrently by multiple threads. The sequential runtime implementation may be

fraught with shared global variables to which reads and writes are not synchronized; it may be necessary to

designate many portions of code as critical sections; some functions, such as garbage collection, may require

all threads to halt before proceeding. In languages supporting rich control-Wow structures such as continua-

tions, implementation code may often assume that only one program stack exists - if we are to preserve the

semantics of these features, the implementation must be aware that an application-level continuation might

span multiple OS-level threads and hence multiple program stacks.

1.1.1 Solution 1: RetroVt Existing Code

If we are to support parallel constructs, we must address the problem of synchronized access to shared global

variables. Because operating system threads within a process all share a common address space, all threads

retain access to globally deVned variables and may attempt to read or write them simultaneously, often

leaving data corrupted or in some undeVned state. One possible solution to this problem is to employ locks to

synchronize access to both global variables and critical code sections, ensuring that these operations involving

them are executed atomically. Though this may be a tractable approach depending on implementation code

size, prior work has shown that synchronization code is notoriously diXcult to both implement and debug

correctly [14]. This diXculty is only exacerbated when we are attempting to retroVt existing code to be

thread-safe; often the thread-safety requirement may require us to design code diUerently.

CHAPTER 1. INTRODUCTION 3

1.1.2 Solution 2: Start From Scratch

It may be tempting to consider rewriting the code completely, freshly designing an implementation that can

support multiple threads. More programmers can be employed to accomplish this goal, because they are not

required to be intimately familiar with the low-level implementation details of the original sequential version

(if one exists at all).

While by no means an unrealistic option, and indeed a requirement for those who wish to build new

parallel languages, this approach still suUers from a number of drawbacks. The decision to start anew with

a fresh codebase can be a dangerous one, as it foregoes the reuse of any existing code in the original virtual

machine implementation. Though some reusemay be possible, it can only be done in limited form - otherwise,

we might have chosen solution 1. As the new codebase grows, the further it diverges from the original one,

and the less opportunity there is for reuse.

Though the original code is indeed limited by its sequential nature, it is important to preserve because

of the guarantees it may give us regarding correctness. If the virtual machine was written suXciently long

ago that its original implementers gave little or no consideration to the potential requirement of supporting

multicore architectures, then we may reasonably assume that the codebase has positively evolved over many

years of bug discovery by the user community. We are eUectively deprecating stable, correct code in favor

of new code in which bugs are sure to be endemic, a problem which is only compounded by the diXculty

inherent in producing correct multithreaded code.

Languages such as Java and C# beneVt from this approach - both use runtimes which have been designed

“from the ground up” with concurrency in mind. But this illustrates another issue with the rewriting ap-

proach, which is also true of the retroVtting-based one: it often requires the support of a large corporation

for funding, manpower, and quality assurance testing. We believe that this should not a prerequisite for

successfully building parallel runtimes.

1.1.3 Solution 3: Incremental Parallelization

The Vrst contribution of this thesis is an alternative strategy for runtime parallelization which we apply to

the MzScheme machine. This approach is based on a partitioning of the set of functions provided by the

CHAPTER 1. INTRODUCTION 4

runtime into two distinct subsets: S, the set of functions which are already reentrant and are safe to execute

in parallel, and U, the set of non-reentrant/unsafe functions. If we are unsure about the safety of a particular

function, we conservatively assign it to U.

Given that this distinction can be made for all runtime functions (or rather, all functions which may be

required by any user application), we can modify the implementation to allow for a restricted form of parallel

execution. We use a single operating system thread, the runtime thread, to initialize the virtual machine as

usual, and isolate all unsafe operations to that thread throughout the lifetime of the user program. Other

OS-level threads are used to execute parallel code wherever indicated by the programmer, but these parallel

threads depend on the runtime thread to do any unsafe work they might require.

We targeted the natural divide between JIT compiler-generated code and runtime implementation code

as the boundary between safe and unsafe code in MzScheme. A typical JIT-generated machine code block in

MzScheme is a sequence of instructions interspersed with call instructions which target C functions deVned

in the runtime implementation. These functions are generally sophisticated ones which cannot be inlined

by the JIT compiler, and often have the most destructive side eUects for internal virtual machine state. We

modiVed the JIT compiler to eliminate generation of inlined code which directly alters or reads shared runtime

state to enable the assignment of all JIT-generated code (between call instructions) to S.

With this rudimentary model for parallel execution in place, we next embarked on the “incremental”

portion of the work. Achieving any degree of scalability in user programs is impossible if U is either large

or contains functions which are likely to be frequently required by all programs, regardless of how creatively

we write them. We used a process of incremental parallelization, in which we moved closer to a scalable

implementation through a continuous cycle of writing test programs, identifying unavoidable bottleneck

functions, and parallelizing them.

1.2 Parallel Scheme With Futures

The second contribution of this thesis is Parallel Scheme with Futures, a set of parallel extensions to the

PLT Scheme programming language. Parallel Scheme is the product of our work in applying the previously

CHAPTER 1. INTRODUCTION 5

described approach in MzScheme.

1.3 Thesis Overview

The remainder of this thesis is organized as follows:

• Chapter 2 brieWy reviews prior work related to parallel programming in general, with an emphasis on

implementation work in scripting and functional language virtual machine environments.

• Chapter 3 presents future and touch, two fundamental language extensions added to the PLT language

to enable parallel program development, and informally describes the semantics of these constructs.

• Chapter 4 explains in detail the process of modifying the MzScheme virtual machine to accommodate

new parallel operators in PLT Scheme.

• Chapter 5 oUers rudimentary performance measurements for several microbenchmarks written using

parallel futures in PLT Scheme.

• Chapter 6 concludes the thesis and oUers suggestions for future work.

1.4 Code Availability

Complete code for the latest version of the futures API is available via the PLT Scheme website:

http://svn.plt-scheme.org/

Chapter 2

Parallel Scheme with Futures

In this section we introduce the implementation language, PLT Scheme, as well as its underlying virtual exe-

cution environment. We describe the constructs added to the language to enable explicit parallel programming

and their accompanying semantics.

2.1 The PLT Scheme Language

PLT Scheme [19] is a functional, untyped scripting language loosely based on the well-known Scheme lan-

guage. The platform-independent distribution includes the MzScheme virtual machine, a graphical integrated

development environment itself written in PLT Scheme [10], teaching utilities for use in introductory pro-

gramming courses, and a host of other tools. The base language is accompanied by a rich set of libraries

encompassing most of the functionality seen in standard libraries of other popular programming environ-

ments (JDK, C++ STL, Haskell prelude, etc.). Library functions in PLT Scheme are typically written in either

PLT itself, or in less common circumstances, as C or C++ functions and exposed to PLT programs via a built-

in interoperability layer. PLT Scheme also oUers a powerful macro system [11] which allows users to both

extend the language to encapsulate common programming idioms and create entirely new languages useful

in specialized domains [21, 12, 18].

6

CHAPTER 2. PARALLEL SCHEME WITH FUTURES 7

(future ([thunk : () -> any]) : future?

(touch ([f : future]) : any?)

Listing 2.1: Signatures of the future and touch operations.

(let* ([x 3]

[f1 (future (lambda () (set! x 4) x))]

[f2 (future (lambda () (set! x 5) x))])

(touch f1)

(touch f2)

(print x))

Listing 2.2: Parallel code with a race condition.

2.2 Parallel Extensions

We add two basic language constructs to the PLT language: future and touch. These constructs allow the

development of parallel programs using a familiar fork/join programming model found in many threading

libraries. The deVnitions of these constructs are shown in Listing 2.1.

The future construct accepts a parameterless λ-expression as its argument, the body of which will be

executed in parallel. This function returns immediately to the caller, in a similar vein as pthread_create

in the Pthreads API or Delegate.BeginInvoke() in C#. The caller receives a future descriptor, an opaque

structure which uniquely identiVes the spawned future.

The touch construct is roughly analogous to a join operation in the Pthreads library, or Delegate.EndInvoke()

in C#. The calling thread supplies a future descriptor as an argument. This call will block until the future the

parallel computation has completed, and will return the result value.

2.3 Synchronization

Currently, the futures API does not oUer any synchronization constructs. Because the existing PLT Scheme

threading module is generally orthogonal to the futures API, none of the tools oUered by the threading module

for designing concurrent applications will work eUectively with futures. Consider the program in Listing 2.2.

CHAPTER 2. PARALLEL SCHEME WITH FUTURES 8

(let* ([x 3]

[f1 (future (lambda () (set! x 4)))]

[ret (touch f1)]

[f2 (future (lambda () (set! x 5)))])

(print (touch f2)))

Listing 2.3: Using touch as a synchronization tool.

(define (qsort nums)

(let ([len (length nums)])

(cond

[(<= len 1) nums]

[else

(let* ([mid (quotient len 2)]

[pivot (list-ref nums mid)]

[sublists (partition nums pivot)]

[f1 (future (lambda () (qsort (first sublists))))]

[f2 (future (lambda () (qsort (third sublists))))])

(append

(touch f1)

(second sublists)

(touch f2)))])))

Listing 2.4: Parallel quicksort algorithm using futures.

The programmer has no means of controlling the order in which the variable x is modiVed. In cases such

as these (though a contrived example), it is generally a good idea to decompose parallel computations into

smaller ones, eUectively using touch as a synchronization tool. For example, again in our contrived example,

if we wish to force x to be set to 4 before 5, we modify the code to look like Listing 2.3.

2.3.1 Nested Futures

Futures can be nested, in which parallel tasks spawn other parallel tasks in order to evenly distribute a

workload across all available processors. Consider the (naive) quicksort algorithm deVned in Listing 2.4,

which recursively spawns parallel tasks to sort segments of the input list.

CHAPTER 2. PARALLEL SCHEME WITH FUTURES 9

2.4 Semantics

Informally, (future (lambda () (...))) may or may not begin executing code within the supplied λ-

expression in parallel on a future thread. The decision whether to execute a future in parallel may be based

on a number of factors, including implementation-speciVc details, number of processors available, platform,

and the nature of the computation. Though the futures API includes utilities to assist programmers in un-

derstanding what speciVc programs may be doing “under the hood”, in general, it should always be assumed

that a future and its spawning thread are not synchronized until an explicit touch call.

Chapter 3

Implementation

This section describes the implementation strategy for parallel futures in the MzScheme machine implemen-

tation, along with the challenges faced in implementing this strategy. Several features speciVc to PLT Scheme

presented us with interesting obstacles - we enumerate them here and explain the solutions we developed to

overcome them.

3.1 The MzScheme Virtual Machine

MzScheme is the C implementation of the PLT Scheme language virtual machine. Source code for the core

of the runtime measures at roughly 100 KLOC, and includes a garbage collector, read-eval-print loop, just-in-

time compiler, and C-level implementations for various modules which cannot otherwise be written directly

in the PLT Scheme language itself. C functions in runtime implementation code may be directly exposed to

the Scheme world via a built-in interoperability layer.

3.2 Separating Safe From Unsafe

In accordance with the strategy for incremental parallelization brieWy outlined in the introduction, MzScheme

runtime functions were roughly categorized into the safe and unsafe categories. To accomplish this, we

leveraged several properties speciVc to the MzScheme evaluator.

PLT Scheme programs are translated in two phases. In the Vrst phase, the original source is parsed and

10

CHAPTER 3. IMPLEMENTATION 11

LOAD %eax , 0x12345

...

STORE 0x12345 , %eax

CALL [foobar]

LOAD %eax , 0x12345

...

Listing 3.1: Synchronizing global variables with registers in JIT code.

translated into a platform-independent intermediate language format. This phase can either be done dynam-

ically at runtime, or by invoking the PLT mzc compiler, which translates Scheme programs into intermediate

code and writes the result to a Vle. In the second phase, a just-in-time compiler is used to translate inter-

mediate language code into native machine code when possible. If code requires a function which cannot be

successfully inlined by the JIT compiler, a call to the address of the function in memory will be generated.

The MzScheme JIT compiler could be called an “aggressive” compiler. The MzScheme JIT does not dy-

namically decide whether or not to compile a given block or function; if the JIT is capable of inlining, it will.

This behavior diUers from that of other JIT compiler implementations, most notably for the JVM [20], but

adds a helpful element of predictability. Generally, functions that are candidates for JIT compilation are ones

that are known to be frequently used in Scheme programs and are thus critical for performance.

One goal of JIT compiler optimization is the minimization of memory references, i.e. maximal use of reg-

isters [1]. This includes minimization of references to global structures in the runtime itself. In machine code

generated by the MzScheme JIT, these variables will be periodically referenced for the purpose of bidirectional

“synchronization” of a register value with a shared global variable, as shown in Listing 3.1. In this example,

a block of machine instructions which requires the use of a shared global variable at address 0x12345 begins

by copying its contents into register %eax. Work then continues normally, until the code must prepare to call

a function which is assumed to manipulate the global variable in some way. At this point, the contents of

the %eax register are copied back to the location of the variable in memory, and the function is invoked. On

return, we repeat the synchronization and continue.

Because global variable references in JIT code are generally conVned to this type of use, the large majority

of JIT-generated code could be safely assumed to only manipulate register values and user program-speciVc

CHAPTER 3. IMPLEMENTATION 12

data (stack and heap variables). Thus, it was possible to classify JIT-generated code as being thread-safe from

the perspective of the virtual machine, given some way to eliminate the global state manipulation code. The

solution to this problem is described in detail in Sections 3.4.2 and 3.5.1.

Hence the safe/unsafe classiVcation arrived upon for MzScheme was to assign all functions which can be

translated into machine code sequences by the JIT compiler to S and everything else to U. This allowed the

safe/unsafe categories to be very cleanly separated, and eased the process of measuring the amount of unsafe

work occurring in real programs. We use the terms unsafe primitive, runtime function, and unsafe operation

interchangeably to describe non-inlinable functions in the unsafe category. When a block of JIT-generated

machine code does not contain any call instructions to non-inlinable functions, we say it is pure machine

code, because its execution does not have any side eUects with respect to shared virtual machine state.

With a rudimentary partitioning of runtime code completed, the next task was to develop a strategy for

modifying the runtime such that safe and unsafe code could be mapped to separate OS-level threads. The

basic design for the parallel adaptation of MzScheme is depicted in Figure 3.1. At any point during the lifetime

of an application in the MzScheme virtual machine, several kernel-level threads may be executing. We apply

the following taxonomy to these threads:

• Runtime - the thread which was used when the MzScheme operating system process was originally

spawned, e.g. the active thread when the main function was entered. There can only be exactly one

runtime thread per MzScheme process, and all unsafe operations will be performed by this thread.

• Worker/future - responsible for executing parallel code in futures.

3.2.1 Blocking Operations

The model in Figure 3.1 shows several future threads running concurrently with the runtime thread, depend-

ing on it to service requests for unsafe operations.

Once a future is assigned to a kernel-level thread, it will begin executing its code until it detects an

attempt to perform an unsafe operation. At this point, the future will ask the runtime thread to perform this

CHAPTER 3. IMPLEMENTATION 13

Figure 3.1: Parallel threads in MzScheme.

operation and will block until it receives an answer. Note that, because both future and touch are themselves

considered unsafe primitives, these functions can only be invoked on the runtime thread.

The runtime thread does not proactively service requests for unsafe operations from future threads. After

a future is spawned, no communication occurs between the spawning thread and the future thread until

an explicit touch on the part of the user application. Upon entering a call to touch, if the future has not

completed its computation, the calling thread will continuously poll the future for the following conditions:

• The future requires an unsafe operation in order to continue.

• The parallel computation has completed, and a result value can be returned to the touch caller.

If the Vrst condition is detected, the remainder of the computation (the unsafe operation and all subse-

quent work) must be done sequentially with respect to the runtime thread before touch can return. Consider

the example in Listing 3.2.

Here we deVne a function add-four, which calculates the sum of four numbers. To accomplish this we

spawn a parallel future to compute one sum, while the other is computed directly on the main thread. The

execution timeline for this program is shown in Figure 3.2.

CHAPTER 3. IMPLEMENTATION 14

(define (add-four a b c d)

(let ([f1 (future (lambda ()

(printf "Beginning␣future␣1...~n")

(+ a b)))])

(+ (+ c d) (touch f2))))

Listing 3.2: Sample parallel code with blocking calls.

Figure 3.2: Execution timeline for single-future program with a blocking call.

Because touch can never be executed concurrently on multiple threads, and all requests for unsafe work

are serviced within touch calls, no unsafe functions can ever execute concurrently. In this sense touch serves

as a global runtime lock which is acquired on the future’s Vrst unsafe operation attempt, and released after the

remainder of its computation is completed. If we were to redeVne future as a NOP, and touch as a function

which simply evaluates the future’s thunk sequentially, we still retain the same ordering of unsafe primitive

invocations as the original sequential implementation.

3.3 Mapping Futures to Operating System Threads

The POSIX Pthreads API was chosen for use in creating and managing future threads, for portability, one-

to-one mapping of user threads to kernel threads, and the ability to use processor aXnity masking to bind

certain threads to certain processors.

Parallel futures are serviced by a pool of worker threads, which never grows larger than p - 1, where p

is the number of processors/cores/hardware threads available in the machine. We note here that it a possible

optimization may be to allow the thread pool to grow past the number of physical processors available. If it

is likely that one or more future threads may be blocking waiting on an unsafe primitive request, creating

CHAPTER 3. IMPLEMENTATION 15

Figure 3.3: The lifetime of a parallel future thread.

additional threads and allowing them to be scheduled by the underlying operating system might improve

overall performance.

When the user application spawns a future, we ask the JIT compiler to translate the supplied λ-expression

into a machine code buUer and do one of the following:

• If we have not already created p - 1 threads, we create a future descriptor, add it to a future queue,

and add a new Pthread to the worker pool. Worker threads remain live forever after creation (until the

MzScheme process is terminated), continuously polling the future queue for available work. A state

diagram illustrating the lifetime of a future/worker thread is given in Figure 3.3.

• If we already have p threads in the pool, we simply add the future to the queue, making it available to

be serviced by any idle Pthread in the pool.

3.4 JIT Compilation

The MzScheme just-in-time compiler is primarily used to generate fast machine code to execute functions

most commonly required by Scheme programs, known as hotspots. These include operations such as simple

CHAPTER 3. IMPLEMENTATION 16

typedef (*primitive)(int argc , Scheme_Object *argv[]);

Scheme_Object *handler(

int argc ,

Scheme_Object *argv[],

primitive func)

{

Scheme_Object *retval;

if (pthread_self() != g_runtime_thread_id)

{

//Block until runtime completes our work

retval = do_runtimecall(func , argc , argv);

return retval;

}

retval = func(argc , argv);

return retval;

}

Listing 3.3: Typical primitive trap handler.

arithmetic, Vxed-length array operations, and memory allocation (which occurs frequently in purely func-

tional languages).

3.4.1 Unsafe Operation Detection

To enable JIT-generated machine code in parallel future threads to detect impending primitive invocations,

“trap” functions were written to wrap calls to them. Function call generation code in the JIT compiler was

modiVed to replace direct calls to primitives with calls to their respective trap functions. These functions

generally took the form shown in Listing 3.3.

The handler Vrst checks whether it is already executing on the runtime thread; if not, do_runtimecall is

invoked, which will ask the runtime thread to complete the work for us, and block until it returns an answer.

If we are already in the runtime thread, the primitive is invoked directly as usual.

Because many PLT Scheme functions have variable arity, the number of arguments a given function may

accept often cannot be determined statically. C functions exposed directly to the Scheme world are generally

all deVned using signatures similar to the one above. This eased the process of generating trap functions for

CHAPTER 3. IMPLEMENTATION 17

[LOAD %eax , (ADDRESS IN WELL-KNOWN TL TABLE REGISTER) + OFFSET)]

...

[STORE (ADDRESS IN REGISTER) + OFFSET)]

CALL [foobar]

[LOAD %eax , (ADDRESS IN WELL-KNOWN TL TABLE REGISTER) + OFFSET)]

...

Listing 3.4: JIT pseudocode modiVed to use a thread-local table.

each diUerent function signature we might encounter.

3.4.2 Thread-Local Tables

Figure 3.1 demonstrated the typical access pattern for a global variable reference in JIT-generated code. The

presence of these types of instruction sequences in JIT-generated code renders it unsafe; race conditions or

undeVned behavior might ensue if code streams of this type were to be executed in parallel. We made several

modiVcations to the JIT compiler to eliminate this problem. First, thread-local tables were attached to each

OS-level thread. These tables are array structures where each element corresponds to a (formerly) global

variable that may be referenced somewhere in JIT-generated code. In each thread, the address of the start

of the array is stored in some well-known position (high up the C stack on a 32-bit machine, or in a register

on a 64-bit one). Instead of of emitting instructions which refer directly to addresses of global variables,

we generate code which loads the address of the thread-local table plus an oUset (which corresponds to the

array index of the variable we are interested in). An example of the new idiom for reading a value from a

thread-local table is shown in Listing 3.4.

Because there are only 17 global variables which may be manipulated by JIT code, manually replacing

code-generation logic for these variable references was relatively painless.

3.5 Garbage Collection

Because existing implementation code assumes that there can only be one active OS-level thread “in the

runtime” at any one time, memory management services such as allocation and garbage collection did not

CHAPTER 3. IMPLEMENTATION 18

include any synchronization mechanisms. Though general operations (and their associated functions) such

as memory allocation and garbage collection were easily identiVed as unsafe, both required special handling

for correctness and performance.

3.5.1 Parallel Allocation

As an optimization for the existing sequential version of MzScheme, the JIT compiler is capable of inlining

allocation code. A memory allocation request in MzScheme can take one of the following forms:

• Fast Path - the current page being used by the allocator has enough space to accommodate the current

request. In this case, a page pointer is incremented by the size of the object being allocated, and the

original page pointer is returned to the caller. This path is executed purely in machine code (with no

function calls).

• Slow Path - the current page being used by the allocator does not have enough space to accommodate

the current request. In this case, a new page must either be fetched from either the virtual machine’s

own internal page cache, or must be requested from the operating system. If the entire heap space has

been exhausted, a garbage collection is triggered.

Modifying the standard allocation mechanism allowed us to maintain the classiVcation of JIT-generated

code blocks without function calls as being safe; it was also an excellent candidate for incremental paralleliza-

tion, because in many cases a program cannot be rewritten to avoid its use. To continue allowing fast inlined

allocation in parallel threads, we introduced the notion of thread-local pages. A future thread maintains a set

of thread-local pages into which all of its small-object allocations are made (large objects are allocated into

a shared heap). The formerly global page pointer was converted to a thread-local variable (a member of the

thread’s local table) which points to the beginning of free space in the current thread’s local page. With this

conVguration, threads could continue to perform fast-path allocation in parallel, as shown in Figure 3.4.

CHAPTER 3. IMPLEMENTATION 19

Figure 3.4: Parallel fast-path allocation with multiple threads.

Atomic Operations

In the case of a slow-path allocation, in which a thread has exhausted its existing set of pages, a new one

must be atomically requested from the memory allocator. Though we treated this type of operation an unsafe

one, a diUerent mechanism was developed which allowed the runtime to proactively service thread-local page

requests.

Many unsafe operations require a parallel computation to block until it is joined by the runtime thread.

These types of operations treat the remainder of the parallel computation, including the unsafe operation and

any others following it, as one large critical section. In some cases, however, we can forego this requirement

if we know that shared data will always be in a consistent state after we perform the operation. We call these

types of operations atomic.

As described above, PLT Scheme’s user-level thread objects are implemented internally as cooperative

threads. To ensure that starvation does not occur, the JIT compiler intersperses fuel counter checks throughout

machine code streams. The fuel counter represents the number of “ticks” for which the current thread may

CHAPTER 3. IMPLEMENTATION 20

Figure 3.5: Atomic slow-path page allocation.

continue executing. If this value is greater than zero, the value will be decremented and execution will

continue. Otherwise, the thread will block, yielding to the scheduler and allowing another to resume.

MzScheme’s scheduler code was modiVed such that, each time a Scheme thread yields (or explicitly

sleeps), the C function scheme_check_future_work is invoked. This function will execute any pending

atomic operation and signal the future thread waiting on its completion that it can resume its parallel com-

putation, as shown in Figure 3.5.

3.5.2 Rendezvous

Though the engineering overhead involved in implementing both the slow- and fast-path parallel allocation

services was relatively minimal, this was not the case with the worst-case allocation scenario, in which the

entire heap is exhausted and a garbage collection must occur. Ultimately, any attempt to introduce parallel

garbage collection proved to fall too Vrmly into the “pervasive rewriting” category, which is not consistent

with the philosophy behind incremental parallelization. Thus it was deemed suXcient to modify the future

execution model slightly to accommodate MzScheme’s stop-the-world collector.

One advantage of the slow-path parallel page allocation model is that mutation can continue to occur

on parallel threads while a request is being serviced. However, this is not the case with a full garbage

collection, where the collector requires that the heap remain in a constant state throughout the process. To

address this problem, a rendezvous mechanism was developed to “stop-the-world” in a world where parallel

CHAPTER 3. IMPLEMENTATION 21

Figure 3.6: The rendezvous mechanism for stop-the-world garbage collection.

threads are present. A slow-path allocation can be further subdivided into separate paths: the usual slow

path, and the “really slow path”, being one that triggers a garbage collection. In the case of the really-

slow-path allocation, the runtime thread, which is proactively servicing an allocation request on behalf of a

parallel future, will block indeVnitely, waiting for the value of the global variable gc_ok to equal zero. Two C

functions are available to a parallel future thread, start_gc_not_ok and end_gc_not_ok, which atomically

increment and decrement this counter respectively. A parallel thread must call start_gc_not_ok to indicate

that it is preparing to execute code which may mutate the heap in some way; conversely, end_gc_not_ok

indicates that the thread will not perform any mutation until a subsequent invocation of start_gc_not_ok.

When gc_ok equals zero, all parallel threads have suspended mutation until further notice, and garbage

collection may proceed. Upon beginning a garbage collection, the runtime thread raises a wait_for_gc Wag;

if a parallel thread is currently executing non-mutating code and subsequently invokes start_gc_not_ok, it

will block waiting for wait_for_gc to be lowered. Thus no mutation code can run while the runtime thread

is performing a collection. An example of the rendezvous mechanism is illustrated in Figure 3.6.

3.5.3 Multiple Return Values

PLT Scheme functions can accept multiple arguments and also return multiple values. This feature had

to be addressed in the parallel futures implementation, because the existing implementation uses a special

mechanism which assumes that the scheme_current_thread record is a global pointer to the current user-

CHAPTER 3. IMPLEMENTATION 22

level thread record. In modifying the JIT compiler to use thread-local tables as described in Section 3.4.2, the

scheme_current_thread global pointer was replaced with a thread-local one.

Pure machine code sequences only reference the current_scheme_thread pointer for the purpose of

reading and writing multiple-value results. The current Scheme thread is a convenient storage point for such

values as they are communicated to and from pure machine code. In Parallel Scheme, each OS-level thread is

allocated a Scheme thread “skeleton” record speciVcally intended for the purpose of allowing code to continue

using it in this fashion.

After the user program touches a future, the future will either communicate a result value to the runtime

thread, or the two threads will engage in the cyclical pattern described in Section 3.2.1, where one performs

an unsafe operation, another executes machine code, and so on until the computation terminates. During

this sequence, code running in either thread is capable of producing multiple return values; thus each thread

must be able to communicate to the other that one is available. Because the future descriptor is the only data

shared between the threads, this structure is used as a temporary storage area for these values. Each time

either the runtime thread or a future thread is signaled that it may resume its work, it inspects Velds in the

future descriptor known to hold multiple values. If any values are found, these values are copied into the

thread’s scheme_current_thread pointer so subsequent code executed by the thread Vnds multiple result

values where they are expected.

3.5.4 Exceptions

In Parallel Scheme, program exceptions can only be raised from within unsafe primitives - they cannot ever

be raised directly from pure machine code. Exceptions are typically handled in MzScheme implementation

code via C’s setjmp/longjmp. If an operation is to be performed which may throw an exception, calling

code will allocate a fresh pointer on the stack and capture a continuation via setjmp, storing the continuation

context in the stack-allocated pointer. A Veld in the internal representation of the current Scheme thread,

error_buf, is set to point to the address held by the stack-allocated pointer. If the call to setjmp returns zero,

the operation is performed normally.

If an exception occurs while the operation is being performed, code will attempt to escape via a longjmp to

CHAPTER 3. IMPLEMENTATION 23

1

2 Scheme_Object *do_something(int argc , Scheme_Object *argv[])

3 {

4 Scheme_Object *retval;

5 void *tempbuf , *real_error_buf;

6 real_error_buf = scheme_current_thread ->error_buf;

7 scheme_current_thread ->error_buf = tempbuf;

8 if (setjmp(tempbuf))

9 {

10 /* An exception occurred , and the callee jumped here */

11 longjmp(* real_error_buf);

12 }

13 else

14 {

15 retval = suspect_func(argc , argv);

16 }

17

18 return retval;

19 }

20

21 Scheme_Object *suspect_func(int argc , Scheme_Object *argv[])

22 {

23 Scheme_Object *retval;

24

25 //...do work

26 if (exception)

27 longjmp(scheme_current_thread ->error_buf);

28

29 return retval;

30 }

Listing 3.5: Typical exception handling code in MzScheme.

scheme_current_thread->error_buf, in which case the original setjmp call will return a non-zero value,

and calling code is now aware that an exception has been raised. Code demonstrating this mechanism is

shown in Listing 3.5.

Because such code is guaranteed to execute sequentially on the runtime thread, there are no safety con-

cerns here. However, in Parallel Scheme, because another OS-level thread is waiting for a response from the

runtime thread to continue, a mechanism was needed to signal that an exception has occurred during unsafe

work and that the parallel computation should be cancelled.

The worker thread code used to detect exceptional conditions and cancel work prematurely is shown in

CHAPTER 3. IMPLEMENTATION 24

Listing 3.6. When a worker thread detects that a new future is available to be executed, it points the current

Scheme thread’s error_buf Veld to a temporary buUer passed to setjmp, as done in the usual exception-

handling logic. In this case, the JIT-generated machine code block to be executed is treated as the “suspect”

function which might throw an exception. If an unsafe operation is trapped, the worker thread will invoke

do_runtimecall, as demonstrated in Section 3.4.1, to wait on the result. If an exception was thrown on the

runtime thread, code there will set the future descriptor’s no_retval Veld to 1 (true), which serves as the

worker thread’s signal to cancel the remainder of its computation.

CHAPTER 3. IMPLEMENTATION 25

1

2 /* Future/worker threads never exit this function */

3 void worker_thread_loop()

4 {

5 void *tmpbuf , *jitcode;

6 future_t *f;

7 Scheme_Object *retval;

8

9 poll_for_work:

10 if (WAIT_FOR_PENDING_FUTURE(f))

11 {

12 /* Found a pending future */

13 jitcode = jit_compile(f->thunk);

14 scheme_current_thread ->error_buf = tmpbuf;

15 if (setjmp(tmpbuf))

16 {

17 /* An exception was raised on the runtime thread

18 and do_runtimecall jumped back here -

19 return a NULL value */

20 retval = NULL;

21 }

22 else

23 retval = execute(jitcode);

24

25 f->retval = retval;

26 f->status = FINISHED;

27 goto poll_for_work;

28 }

29 }

30

31 Scheme_Object *do_runtimecall(

32 Func func ,

33 int argc ,

34 Scheme_Object *argv[])

35 {

36 future_t *my_future = get_current_future();

37 ...Signal runtime that unsafe work is available

38 ...Wait until notified that runtime completed work

39

40 /* Unsafe work was completed */

41 if (my_future ->no_retval == 1)

42 {

43 /* An exception occurred on runtime thread -

44 jump back to worker_thread_loop */

45 my_future ->no_retval = 0;

46 longjmp(scheme_current_thread ->error_buf);

47 }

48 }

Listing 3.6: Detecting exceptional conditions in a parallel future.

Chapter 4

Performance Evaluation

Several microbenchmarks were implemented using Parallel Scheme to measure both scalability and perfor-

mance relative to comparable C implementations. The timing results for these microbenchmarks are given in

Figures 4.1 and 4.2. All versions were compiled and executed using the following machine:

Model Name Mac Pro

Model IdentiVer MacPro3,1

Operating System Mac OS X Snow Leopard

Processor Name Quad-Core Intel Xeon

Processor Speed 3.2 GHz

Number of Processors 2

Total Number of Cores 8

L2 Cache (per processor) 12 MB

Memory 8 GB

Bus Speed 1.6 GHz

Boot ROM Version MP31.006C.B05

SMC Version (system) 1.25f4

Signal Convolution

Convolution is a signal-processing algorithm used to determine the output signal of a system given its impulse

response or kernel, which deVnes how the system will respond given an impulse function applied to the input

signal. For any input signal x, we can compute each value in the corresponding output signal y using the

following equation:

26

CHAPTER 4. PERFORMANCE EVALUATION 27

yn
=

k∑

−k

xk · hn−k (4.1)

where k is time and h is the impulse response/kernel. Our implementation computes an output signal

given a one-dimensional input signal and kernel, both of which are made up of Woating-point values.

We include timing measurements for two “reference” implementations of the convolution code:

• plt - a purely sequential version of the algorithm, executed in a vanilla MzScheme build (parallel futures

disabled).

• gcc - a purely sequential implementation written in C and compiled with the gcc toolchain.

Timing results for signal convolution are displayed in the left-hand grid of Figure 4.1. The Wat dotted lines

in the Vgure indicate the running time of these two reference implementations. Convolution exhibits the best

scalability of the three microkernels implemented; this can be attributed to the fact that the bulk of the work

is performed in a tight (inner) loop with no allocation. The achievement of these results relied heavily on the

use of unsafe Woating-point operations in PLT Scheme, in which the programmer can direct the runtime to

bypass expensive work such as argument veriVcation, instead directly translating a binary operation into a

corresponding machine instruction.

Mergesort

As with the image convolution microbenchmark, the mergesort algorithm was implemented in several diUer-

ent Wavors. Two additional variants were added in this case (though as in the image convolution measure-

ments, each of these four were only executed with one hardware thread enabled):

• plt par - the parallel (futures) implementation of the algorithm executed in a vanilla MzScheme build

(futures disabled). PLT Scheme, by convention, is required to provide working implementations of

modules regardless of speciVc runtime build conVguration settings. Thus, a working scheme/future

is provided in non-futures-enabled MzScheme builds. This module serves as a stub implementation, in

CHAPTER 4. PERFORMANCE EVALUATION 28

which future returns a descriptor holding the supplied thunk, and touchmerely evaluates the future’s

thunk directly.

• plt seq - a sequential PLT Scheme implementation of a mergesort algorithm optimized for sequential

execution.

• gcc par - a sequential C implementation of the parallel mergesort algorithm used in plt par.

• gcc seq - a sequential C implementation of the algorithm used in plt seq.

These additional referencemeasurements are intended to demonstrate the sequential overhead introduced

by the parallel algorithm. Results for the mergesort implementation are displayed in the right-hand grid of

Figure 4.1. The results were interesting in that the implementation generally yielded the greatest speedup

on power-of-two increases in the number of hardware threads, indicating that the algorithm performed best

when the number of available parallel threads allowed a subdivision of the workload into a balanced binary

tree.

Sparse Matrix-Vector Multiplication

Sparce matrices are matrices in which most of the elements are zero. Because it is space-ineXcient to store

large numbers of elements known to be zero, sparce matrices are typically represented such that only nonzero

elements occupy space in memory. We show timing results for a Parallel Scheme implementation of a sparse

matrix- dense vector multiplication algorithm in Figure 4.2. In such an algorithm, we return a vector contain-

ing the dot-products of each row of the matrix and the dense vector. Our speciVc implementation borrows the

compressed row format storage scheme, along with its associated algorithm, for the sparse matrix introduced

by Blelloch et al. [4]. We brieWy review this algorithm here.

A matrix is deVned as a structure with the following Velds:

• num_rows - The number of rows in the matrix.

• num_cols - The number of columns in the matrix.

CHAPTER 4. PERFORMANCE EVALUATION 29

• values - An array holding all nonzero elements in the matrix. Elements are ordered in this array such

that values appears as a concatenation of all rows in the matrix, starting at row 0.

• column - An array holding corresponding column indices for each value in value. Thus, the column

index of values[i] = column[i].

• rowlen - An array holding the total number of nonzero elements in each row. The number of nonzero

elements in row i = rowlen[i].

Though the original NESL implementation leveraged a gather operation implemented in hardware, we

implement this operation directly in PLT Scheme using futures. We use gather(vect, column), where vect

is the input dense vector, to build a new vector containing copies of the input vector’s elements. For example,

if vect = [1,2,3] and column = [0,2,1,0], then gather(vect, column) = [1,3,2,1]. The elements of the resulting

vector can be pointwise multiplied (in parallel) with the original nonzero elements of the matrix in values.

Because the ordering of the resulting vector from the multiplication remains consistent with that of the

original values input, sums for each row can be computed using the rowlen input array to complete the

dot-product calculation.

Timing results for this implementation are given in Figure 4.2. The futures version exhibits very little

scaling and actually shows a negative speedup from 7 to 8 hardware threads.

CHAPTER 4. PERFORMANCE EVALUATION 30

Thread count

Se
co

nd
s

1 2 3 4 5 6 7 80

1

2

3

4

5

gcc

plt 2.4x

Thread count

Se
co

nd
s

1 2 3 4 5 6 7 80

1

2

3

4

5

6

gcc seq
gcc par

plt seq 2.6x

plt par 3.0x

Figure 4.1: Performance results for image convolution (left) and mergesort (right).

Thread count

Se
co

nd
s

1 2 3 4 5 6 7 80

1

2

3

4

gcc

plt 7.1x

Figure 4.2: Performance results for sparse matrix-vector multiplication.

Chapter 5

Related Work

This work borrows some syntactic conventions from Multilisp [16], a parallel dialect of Scheme. Parallelism

in Multilisp is also expressed primarily via the use of a future construct with similar usage as our own

(deVned in Section 2.2). However, Multilisp does not require an explicit touch on the part of the programmer

- rather, touches are implicitly performed whenever an expression containing a future reference is evaluated.

The Multilisp implementation described in the referenced work includes many of the elements found in more

recent parallel language work, including thread-local heaps and work-stealing.

Multithreaded ERLANG [15] is a parallel adaptation of the base language’s JAM runtime. Multithreaded

ERLANG espouses the concept of logically isolated processing domains which may or may not map to phys-

ically separate processing elements. The system uses a hierarchical system similar to that found in X10 (de-

scribed later), also borrowing fromMultilisp’s thread-local heaps. Garbage collections may also be performed

in parallel on these thread-local heaps.

The canonical example of nested data-parallel programming is the NESL language [4]. NESL syntax might

be best described as a subset of ML augmented with constructs for specifying parallel list comprehensions,

as well as additional library functions which themselves perform work in parallel. The cost model of nested

data-parallel languages such as NESL is given in terms of work, the total number of computations required

by an algorithm, and depth, the longest chain of sequentially dependent computations in the algorithm, as

opposed to machine-based models[5].

Data Parallel Haskell[7] builds on the tradition of NESL, adding nested data-parallel constructs to the

31

CHAPTER 5. RELATED WORK 32

Haskell language. An interesting feature of this work is the coupling of Haskell’s lazy evaluation semantics

with data parallelism (where NESL uses a strict evaluation model).

The X10 language[9] is a parallel language with a syntax similar to that of Java or C/C++. X10 introduces

a parallel machine abstraction based on a hierarchy of increasingly Vne-grained control structures. At the top

of this hierarchy is the place, which may be thought of as corresponding to a processing node (in a multicore

machine, a single place might be mapped to a processor with multiple cores). Each place may host multiple

activities, which are asynchronous tasks loosely analogous to threads. Activities can communicate within the

same place or across places, but X10 generally restricts this communication to the sending and receiving of

value classes, which are pass-by-value structures that can declare instance methods, similar to a struct in

C# or a class in C++. The language includes a future type, which is treated as a specialization of an activity.

Fortress[2] incorporates syntax elements from ML, Java, and FORTRAN. A key concept in Fortress is im-

plicit parallelism. The programmer rarely explicitly designates a certain computation as a parallel one; rather,

work is expressed through “potentially parallel” constructs such as list comprehensions or map operations.

For example, in the tuple assignment (a, b, c) = (f(x), g(y), h(z)), the functions f, g, and h may all

be evaluated in parallel.

Chapel [8] is a high-level language built upon the philosophy that high-level parallel languages should

build upon abstractions already proven to enhance developer productivity in languages such as Java and C#.

Thus, support for object-oriented programming is included. Another design philosophy behind the language

is the contention that compilers are not intelligent enough to always make optimal decisions regarding data

placement; programmers are given some explicit control here as well. This is an interesting feature not

commonly found in other high-level parallel languages other than High Performance FORTRAN, though

Chapel aims to make its constructs more user-friendly.

Cilk [6] is a C-like language with parallel extensions. Interestingly, a Cilk program stripped of its Cilk-

speciVc keywords can be compiled and executed as a garden-variety C program which preserves the same

semantics as the original parallel version. Cilk uses a virtual machine with a work-stealing scheduler, which is

capable of dynamically load-balancing parallel computations. The aforementioned Fortress language borrows

work-stealing concepts from Cilk in evaluating implicitly parallel constructs.

CHAPTER 5. RELATED WORK 33

The Manticore language [13] is an ML implementation augmented with both implicit and explicit parallel

constructs. Implicit parallel operations are delimited with pipe characters (|). Explicit parallelism is achieved

via the use of a spawn primitive. Manticore also allows the use of Concurrent ML constructs in the context of

parallel operations. The Manticore scheduler also uses work-stealing.

Chapter 6

Conclusion and Future Work

This thesis introduced Parallel Scheme with Futures, a set of parallel extensions to the PLT Scheme program-

ming language. This work oUers two main contributions. First, a working parallel language implementation

is provided, allowing the development of Scheme programs which leverage multicore/multiprocessor archi-

tectures. This implementation serves as a demonstration of the use of the incremental parallelization strategy

in making a sequential runtime amenable to executing parallel languages.

We show that, though the spirit of the work lies as much in the engineering eUort itself as it does with

the end result, Parallel Scheme with Futures shows promise as a practical language.

6.1 Generalizing the Approach

Ultimately, incremental parallelization proved a very useful strategy; an otherwise daunting engineering task

was reduced to a very tractable one. However, the question of whether incremental parallelization techniques

may be applied to virtual machines other than MzScheme remains an open one. Many properties speciVc to

the MzScheme implementation lent themselves well to the process, most notably the nearly-thread-safe nature

of pure machine code; whether these properties are present in other implementations, and whether they lend

themselves to the technique in the same manner as MzScheme requires further investigation. The nature of

the approach makes its experimental application in other scripting language virtual machines a realistic goal.

In pursuing this work with other VM implementations, we must ask the following questions:

• Is it possible to cleanly use the safe/unsafe classiVcation scheme?

34

CHAPTER 6. CONCLUSION AND FUTURE WORK 35

• Is implementation code structured in such a way that it would be tractable to isolate safe and unsafe

code in diUerent kernel-level threads?

6.2 Future Work

Benchmarks

The most immediate concern regarding future work is the implementation of interesting benchmarks using

futures. Though the limited work done in implementing microbenchmarks is useful, it will be important to

measure performance of parallel Scheme programs in the context of parallel computing in general. Several

candidate benchmark suites have been identiVed. One possibility is the NAS Parallel Benchmarks [3], a col-

lection of Vve kernels which vary in the amount of inter-thread communication required. Another candidate

is the Lonestar suite of “irregular” programs [17], which provides problems which, if implemented naively,

often yield very poor load balancing among available processors. Reference implementations for both suites

exist in multiple languages and would provide a good basis for performance comparison.

Nested Futures

As noted in Section 3.2.1, the future construct is implemented with a C function at the virtual machine level

and is considered an unsafe primitive. A future cannot spawn its own futures; this will have the eUect of

forcing the remainder of the spawning future’s work to be sequential with respect to the runtime thread. This

limitation is unacceptable if we are to allow nested data parallelism, in which a function applied in parallel

over a set of values may themselves also execute in parallel. Thus it will be critical to treat future either

as an atomic primitive, similar to slow-path page allocation, or even a function that is safe to invoke on any

thread.

Better Abstractions

Though future is suitable for task-parallel programs, in general its use can sometimes be cumbersome, caus-

ing even simple programs to become unnecessarily verbose. In addition, the implementation-speciVc prob-

CHAPTER 6. CONCLUSION AND FUTURE WORK 36

lems associated with blocking calls in futures often force the programmer to implement a given function or

algorithm in an unconventional way in an eUort to avoid them. In many cases, it may not be clear which

portions of application code are causing the invocation of blocking runtime primitives. This can render the

development of useful parallel programs intractable to the novice developer who has little knowledge of the

underlying virtual machine implementation.

If parallel programming tools are to be made accessible to a wiser developer audience, better abstractions

should be available. We intend futures to be used as building blocks to compose higher-level parallel pro-

gramming abstractions, and have already begun to experiment in using them to add higher-level, NESL-style

constructs to the PLT Scheme language. However, many questions remain — are futures a good foundation

for higher levels of abstraction? If not, are we relegated to implementing them directly in runtime code it-

self, conVning futures to a diUerent role as a tool for task parallelism? We hope to answer these questions

through exhaustive benchmark implementation, and the continued use of the incremental parallelization pro-

cess wherever necessary.

Bibliography

[1] Ali-Reza Adl-Tabatabai, Michal Cierniak, Guie-Yuan Lueh, Vishesh M. Parikh, and James M. Stichnoth.

Fast, eUective code generation in a just-in-time java compiler. ACM SIGPLAN Notices, pages 280–290,

May 1998.

[2] E. Allen, D. Chase, J. Hallett, V. Luchangco, J. Maessen, and G. Steele. The fortress language speciVcation.

http://research.sun.com/projects/plrg/fortress.pdf.

[3] D. Bailey, J. Barton, T. Lasinski, and H. Simon. The nas parallel benchmarks. Technical Report RNR-91-

002, NASA Ames Research Center, August 1991.

[4] Guy Blelloch. Implementation of a portable nested data-parallel language. Proceedings of the Fourth

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 102–111, 1993.

[5] Guy Blelloch. Programming parallel algorithms. Communications of the ACM, pages 85–97, March

1996.

[6] Robert Blumofe, Christopher Joerg, Bradley Kuszmaul, Charles Leiserson, Keith Randall, and Yuli Zhou.

Cilk: An eXcient multithreaded runtime system. ACM SIGPLAN Notices, pages 207–216, 1995.

[7] Manuel T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones, Gabriele Keller, and Simon Marlow.

Data parallel haskell: A status report. Proceedings of the 2007 Workshop on Declarative Aspects of

Multicore Programming, pages 10–18, 2007.

[8] Bradford L. Chamberlain, David Callahan, and Hans P. Zima. Parallel programming and the chapel

language. International Journal of High Performance Computing Applications, pages 291–312, August

2007.

[9] Phillippe Charles, Christian GrothoU, Vijay Saraswat, Christopher Donawa, Allan Kielstra, Kemal

Ebcioglu, Christoph von Praun, and Vivek Sarker. X10: An object-oriented approach to non-uniform

cluster computing. Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications, pages 519–538, 2005.

[10] Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi, Paul

Steckler, and Matthias Felleisen. Drscheme: A programming environment for scheme. Journal of Func-

tional Programming, pages 159–182, 2002.

[11] Matthew Flatt. Composable and compilable macros: You want it when? ACM SIGPLAN Notices, pages

72–83, September 2002.

37

BIBLIOGRAPHY 38

[12] Matthew Flatt, Eli Barzilay, and Robert Bruce Findler. Scribble: Closing the book on ad hoc doc-

umentation tools. Proceedings of the 14th ACM SIGPLAN International Conference on Functional

Programming, pages 109–120, 2009.

[13] Matthew Fluet, Mike Rainey, John Reppy, Adam Shaw, and Yinggi Xiao. Manticore: A heterogeneous

parallel language. Proceedings of the 2007Workshop on Declarative Aspects of Multicore Programming,

pages 37–44, 2007.

[14] B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, and D. Lea. Java Concurrency in Practice. Addison-

Wesley, 2006.

[15] P. Hedqvist. A parallel and multithreaded erlang implementation. Master’s thesis, Uppsala University,

Uppsala, Sweden, June 1998.

[16] Robert H. Halstead Jr. Multilisp: A language for concurrent symbolic computation. ACM Transactions

on Programming Languages and Systems (TOPLAS), pages 501–538, October 1985.

[17] M. Kulkarni, M. Burtscher, K. Pingali, and C. Cascaval. Lonestar: A suite of parallel irregular programs.

International Symposium on Performance Analysis of Systems and Software (ISPASS), 2009.

[18] Jacob Matthews, Robert Bruce Findler, Matthew Flatt, and Matthias Felleisen. Lecture Notes in Com-

puter Science, chapter A Visual Environment for Developing Context-Sensitive Term Rewriting Systems,

pages 301–311. Springer Berlin / Heidelberg, 2004.

[19] Plt scheme homepage. http://www.plt-scheme.org, 2009.

[20] Toshio Suganuma, Toshiaki Yasue, Motohiro Kawahito, Hideaki Komatsu, and Toshio Nakatani. A dy-

namic optimization framework for a java just-in-time compiler. Proceedings of the 16th ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages, and Applications, pages 14–18, Oc-

tober 2001.

[21] Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of typed scheme. Pro-

ceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, pages 395–406, 2008.

	Abstract
	Table of Contents
	Listings
	List of Figures
	Introduction
	Parallelizing Virtual Machines
	Solution 1: Retrofit Existing Code
	Solution 2: Start From Scratch
	Solution 3: Incremental Parallelization

	Parallel Scheme with Futures
	Thesis Overview
	Code Availability

	Parallel Scheme with Futures
	The PLT Scheme Language
	Parallel Extensions
	Synchronization
	Nested Futures

	Semantics

	Implementation
	The MzScheme Virtual Machine
	Separating Safe From Unsafe
	Blocking Operations

	Mapping Futures to Operating System Threads
	JIT Compilation
	Unsafe Operation Detection
	Thread-Local Tables

	Garbage Collection
	Parallel Allocation
	Rendezvous
	Multiple Return Values
	Exceptions

	Performance Evaluation
	Signal Convolution
	Mergesort
	Sparse Matrix-Vector Multiplication

	Related Work
	Conclusion and Future Work
	Bibliography

