
VMM Emulation of Intel
Hardware Transactional

Memory
Maciej Swiech, Kyle Hale, Peter Dinda

Northwestern University

V3VEE Project

www.v3vee.org

1

Hobbes Project

http://www.v3vee.org/

What will we talk about?

• We added the capability to run Intel HTM code on a
virtual machine with minimal emulation

• We developed a new page-flipping technique that
allows capturing of reads and writes at single
memory reference granularity

• Software implementation of HTM emulation allows
for arbitrary transaction size and code testing

2

Outline

• Motivation / Background

• Intel HTM

• Architecture

• Palacios

• Evaluation

• Conclusions

3

Outline

• Motivation / Background

• Intel HTM

• Architecture

• Palacios

• Evaluation

• Conclusions

4

Motivation | transactional memory

• Processors and applications become more parallel
and distributed to cope with growing scale of data
and research problems

• Need for easier and more reliable methods for
concurrent programming

5

Background | transactional memory

do_the_things();

6

do_the_things() {

write_shared_mem();

read_shared_mem();

}

Background | transactional memory

Instead of:

acquire_lock();

do_the_things();

release_lock();

7

do_the_things() {

write_shared_mem();

read_shared_mem();

}

Background | transactional memory

Instead of:

acquire_lock();

do_the_things();

release_lock();

8

Have to track locks

Deadlock

Background | transactional memory

Can do:

transaction {

do_the_things();

}

9

acquire_lock();

do_the_things();

release_lock();

Background | transactional memory

Can do:

transaction {

do_the_things();

}

10

acquire_lock();

do_the_things();

release_lock();

Unsafe concurrent memory
accesses are detected by TM

Easier to write safe code

UNSAFE:
Write after Read
Read after Write
Write after Write

Background | transactional memory

• Transactions are

• Composable

• Easier to reason about

• More optimistic than locking
• Assumption: no other code will touch memory in TX

• HTM is faster than STM

11

Motivation | virtualizing

• Currently only Intel Haswell and IBM chipsets have
implementations of Hardware Transactional
Memory

• Adding HTM capabilities to a virtual machine
monitor would allow anyone to run transactional
code

• Allows for testing effects of new hardware
implementations on code

12

Outline

• Motivation / Background

• Intel HTM

• Architecture

• Palacios

• Evaluation

• Conclusions

13

Intel HTM | background

• In the Haswell generation of processors Intel
introduced 2 Hardware Transactional Memory
implementations
• RTM – Restricted Transactional Memory
• HLE – Hardware Lock Elision

• 4 new instructions added to the ISA
• XBEGIN
• XABORT
• XEND
• XTEST

14

Intel HTM | ISA

• XBEGIN imm32
• Marks beginning of a transaction and abort label

• XABORT imm32
• Forces transaction abort

• XEND
• Marks end of transaction

• XTEST
• Tests if processor is currently in a transaction state

15

Intel HTM | example

start_label:

XBEGIN abort_label

<body of transaction, may use XABORT>

XEND

success_label:

<handle transaction commited>

abort_label:

<handle transaction aborted>

16

Intel HTM | specification

• Intel list many reasons a transaction “may” abort
• Operations that modify RIP, GPRs, status flags

• Operations on XMM, YMM, MXCSR registers

• Various other instructions

• Synchronous exception events

• Asynchronous events such as interrupts

• Self-modifying code

• Many others…

• RaW, WaR, WaW conflicts trigger an abort

17

Outline

• Motivation / Background

• Intel HTM

• Palacios

• Architecture

• Evaluation

• Conclusions

18

Architecture | design

19

• Hypervisor extension
• TM events captured and handled in VMM

• Redo-log based design with garbage collection

• Minimal instruction decoding

Architecture | design

20

• MIME
• Generate stream of memory read/writes

• RTME
• Maintains the redo log
• Tracks system state

• Conflict Detection

• Garbage Collection

Architecture | RTME

• Finite State Machine model
• SYSTEM state

• CORE state

• TSX instructions generate #UD exceptions, driving
state

• Maintains read/write logs for each transaction

21

Restricted Transactional
Memory Engine

Architecture | RTME

• Keeps track of per-core and system transactional
state

• Places cores in single-stepping mode
• If one core single-stepping, all cores

• Launches garbage collection of log entries

22

Restricted Transactional
Memory Engine

Architecture | example

23

Restricted Transactional
Memory Engine

start_label:

XBEGIN abort_label

<body of transaction, may use XABORT>

XEND

success_label:

<handle transaction commited>

abort_label:

<handle transaction aborted>

Architecture | example

24

Restricted Transactional
Memory Engine

start_label:

XBEGIN abort_label

<body of transaction, may use XABORT>

XEND

success_label:

<handle transaction commited>

abort_label:

<handle transaction aborted>

System in TM mode

Core in TM mode

Architecture | example

25

Restricted Transactional
Memory Engine

start_label:

XBEGIN abort_label

<body of transaction, may use XABORT>

XEND

success_label:

<handle transaction commited>

abort_label:

<handle transaction aborted>

Monitor abort conditions
(incl. XABORT)

Maintain redo-log

Architecture | example

26

Restricted Transactional
Memory Engine

start_label:

XBEGIN abort_label

<body of transaction, may use XABORT>

XEND

success_label:

<handle transaction commited>

abort_label:

<handle transaction aborted>

CHECK WaW conflicts
CHECK RaW conflicts
CHECK WaR conflicts

Architecture | example

27

Restricted Transactional
Memory Engine

start_label:

XBEGIN abort_label

<body of transaction, may use XABORT>

XEND

success_label:

<handle transaction commited>

abort_label:

<handle transaction aborted>

COMMIT write log

Architecture | example

28

Restricted Transactional
Memory Engine

start_label:

XBEGIN abort_label

<body of transaction, may use XABORT>

XEND

success_label:

<handle transaction commited>

abort_label:

<handle transaction aborted>

Core out of TM mode
Launch GC

Architecture | example

29

Restricted Transactional
Memory Engine

start_label:

XBEGIN abort_label

<body of transaction, may use XABORT>

XEND

success_label:

<handle transaction commited>

abort_label:

<handle transaction aborted>

Core out of TM mode
Launch GC

if no cores in TM,
System out of TM mode

Architecture | example

30

Restricted Transactional
Memory Engine

start_label:

XBEGIN abort_label

<body of transaction, may use XABORT>

XEND

success_label:

<handle transaction commited>

abort_label:

<handle transaction aborted>

If any abort condition is triggered
Runs at given code point

All intermediate state is discarded

Architecture | MIME

• Leverages
• Shadow Page Table page fault hooking

• Instruction length decoding

• Hypercall insertion

Memory access single-stepping

• Staging page to keep writes hidden until commit

31

Memory and Instruction
Meta Engine

Architecture | example

prev: addq %rbx, %rax

cur: INSTRUCTION

next: movq %rdx, %rbx

...

target:

...

32

Memory and Instruction
Meta Engine

Architecture | example

prev: addq %rbx, %rax

cur: INSTRUCTION

next: movq %rdx, %rbx

...

target:

...

33

Memory and Instruction
Meta Engine

Decode instruction length…

Architecture | example

prev: addq %rbx, %rax

cur: INSTRUCTION

next: VMCALL

...

target:

...

saved instr: movq %rdx, %rbx

34

Memory and Instruction
Meta Engine

…replace next instr with hypercall

Architecture | example

prev: addq %rbx, %rax

cur: INSTRUCTION

next: VMCALL

...

target:

...

saved instr: movq %rdx, %rbx

35

Memory and Instruction
Meta Engine

Flush the shadow page tables

All guest mem access  page fault

Architecture | example

prev: addq %rbx, %rax

cur: INSTRUCTION

next: VMCALL

...

target:

...

saved instr: movq %rdx, %rbx

36

Memory and Instruction
Meta Engine

IFETCH  sPT fault

Map the instruction page in

Architecture | example

prev: addq %rbx, %rax

cur: INSTRUCTION

next: VMCALL

...

target:

...

saved instr: movq %rdx, %rbx

37

Memory and Instruction
Meta Engine

Read: map page in as read-only
Write: map staging page in

Read: record address
Write: record address and value

Architecture | example

prev: addq %rbx, %rax

cur: INSTRUCTION

next: VMCALL

...

target:

...

saved instr: movq %rdx, %rbx

38

Memory and Instruction
Meta Engine

Signals end of instruction
If staging page was used, copy data

into redo log

Architecture | example

prev: addq %rbx, %rax

cur: INSTRUCTION

next: movq %rdx, rbx

...

target:

...

saved instr: NULL

39

Memory and Instruction
Meta Engine

Restore overwritten instruction

Architecture | example

addq %rbx, %rax

prev: INSTRUCTION

cur: movq %rdx, rbx

...

target:

...

saved instr: NULL

40

Memory and Instruction
Meta Engine

MIME begins again

Architecture | example

prev: addq %rbx, %rax

cur: INSTRUCTION

next: movq %rdx, rbx

...

target: VMCALL

...

saved instr: ...

41

Memory and Instruction
Meta Engine

If cur is a control flow inst,
overwrite target instead of next

Architecture | conflict checking

42

• All transactions are given a number, which serves
as a context and gives the transactions an ordering

• 2 additional 2D hash tables are maintained
• Record during which system state (TX number) memory

accesses were made

• Record if accesses were reads or writes

Architecture | conflict checking

43

• On a transaction end, every access in the RTME log
is checked against the conflict tables

• If conflict is detected, transaction is aborted

Architecture | Garbage Collection

• Log entries and collision hashes will keep growing
• Garbage collection is needed

• Garbage collection is launched at transaction end

• Transaction number context is monotonically
increasing on each core
• Easy to determine accesses made during contexts no

longer referenced

44

Outline

• Motivation / Background

• Intel HTM

• Architecture

• Palacios

• Evaluation

• Conclusions

45

Palacios | background

• OS-independent, open source, BSD-licensed,
publicly available embeddable VMM

• Collaborative community resource development
project involving Northwestern University, the
University of New Mexico, University of Pittsburgh,
Sandia National Labs, and Oak Ridge National Lab

• Currently leveraged for Hobbes Node Virtualization
Layer

46

Palacios |

• HTM implementation could be added to any
hypervisor with shadow page table fault hooking
• No instruction emulation necessary

• ~1300 lines of code

• RTME/MIME available as patchset

47

Outline

• Motivation / Background

• Intel HTM

• Architecture

• Palacios

• Evaluation

• Conclusions

48

Evaluation |

• RTME/MIME vs Intel Haswell

• RTME/MIME and Intel SDE vs ‘native’

49

Evaluation | performance

• HP Proliant DL320e

• 1x quad-core Intel Xeon E3-1720v3

• 8GB RAM.

• Fedora 20 with a 3.13.5 kernel

50

Evaluation | performance

• Microbenchmark
• One thread pinned to a single core

• Enters a transaction, writes to a memory location, and
then exits the transaction.

• Benchmark measures the time spent running 10 such
transactions,

• Runtime averaged over 100 runs.

51

Evaluation| performance

HTM implementation Average runtime

RTME/MIME 853.88 usec

Intel Haswell 2.57 usec

52

Evaluation| performance

HTM implementation Average runtime

RTME/MIME 853.88 usec

Intel Haswell 2.57 usec

53

Only during TX

~3% overhead
otherwise

Evaluation | correctness

• Dell PowerEdge R415

• 2x quadcore AMD Opteron 4122 installed

• 16 GB of memory.

• Fedora 15 with a 2.6.38 kernel

• 2 virtual cores

• BusyBox environment based on Linux kernel 2.6.38

• This machine does not have an HTM implementation.

54

Evaluation | correctness

• Suite of micro-benchmarks
• Transaction calls XABORT not having written to memory
• Transaction calls XABORT after having “written” to

memory
• Transaction writes memory with an immediate value
• Transaction reads memory into a register
• Transaction writes a register to memory
• Transaction reads and writes the same memory location
• Transaction thread writes to distinct addresses
• Transaction and non-transactional thread write to

overlapping addresses.

• Threads written using pthreads

55

Evaluation | correctness

• All test-cases run on RTME/MIME and Intel SDE
5.31.0

• All test-cases run (without TSX instructions) on the
host

56

Emulation Method Slowdown vs. Native

RTME/MIME ~1,500x

Intel SDE 5.31.0 ~90,000x

~60x
faster

Outline

• Motivation / Background

• Intel HTM

• Palacios

• Architecture

• Evaluation

• Conclusions

57

Conclusion |

• Developed RTME/MIME system
• Software implemented HTM emulation system

• Developed MIME
• Novel page-flipping ‘single stepping’ technique

• Performance
• Run significantly faster than emulation

58

Conclusion | limitations

• Page boundaries
• No support for instructions or memory accesses that

cross page boundaries

• Read-after-Write accesses
• sPT hooking doesn’t allow detection of RaW

• Fine for correctness of implementation

• REP prefix
• No support for instructions with multiple accesses

59

Conclusion | future work

• Extend MIME
• Leverage instruction recording to capture detailed

memory traces of application runs

• Include support for breakpoints / stack traces to aid with
concurrent debugging tools

60

Conclusion | future work

• Leverage software cache to test limitations on
transaction size

61NatSys Labs

Acknowledgements |

• NU EECS 441 HTM Team
• Marcel Flores

• Zachary Bischof

• Quix86 x86 decoder team
• Alexander Kudryavtsev

• Michael Solovyov

62

Maciej Swiech <mswiech@u.northwestern.edu>

http://eecs.northwestern.edu/~msw978

Prescience Lab: www.presciencelab.org

V3VEE Project: www.v3vee.org

63

• HTM emulation with minimal instruction emulation

• Page-flipping technique for capturing memory accesses at memory
access granularity

• Software controlled HTM emulation implementation for testing

mailto:mswiech@u.northwestern.edu
http://eecs.northwestern.edu/~msw978
http://www.presciencelab.org/
http://www.empathicsystems.org/

