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ABSTRACT
This paper examines potential motivations for incorporating
virtualization support in the system software stacks of high-
end capability supercomputers. We advocate that this will
increase the flexibility of these platforms significantly and
enable new capabilities that are not possible with current
fixed software stacks. Our results indicate that compute,
virtual memory, and I/O virtualization overheads are low
and can be further mitigated by utilizing well-known tech-
niques such as large paging and VMM bypass. Furthermore,
since the addition of virtualization support does not affect
the performance of applications using the traditional native
environment, there is essentially no disadvantage to its ad-
dition.

1. INTRODUCTION
There is an old saying that “every problem in computer sci-
ence can be solved with another level of abstraction.” This
is commonly used in a facetious way and followed up with
something to the effect of, “but performance will be horri-
ble.” Platform virtualization, where an extra level of ab-
straction is inserted between physical hardware and the OS,
indeed solves many challenging problems, but in a high per-
formance computing (HPC) context the performance over-
head has generally been perceived as being too high to be
useful. Vendors have, however, steadily reduced hardware
virtualization overheads, as shown later in this paper and
and elsewhere [11], suggesting that this conventional wis-
dom – that virtualization is too slow for HPC – is no longer
valid.

As we illustrate in this paper, there are a number of com-
pelling use cases for virtualization in HPC that are not nec-
essarily dependent on achieving the absolute highest per-
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formance, making modest virtualization performance over-
heads viable. In these cases,the increased flexibility that vir-
tualization provides can be used to support a wider range
of applications, to enable exascale co-design research and
development, and provide new capabilities that are not pos-
sible with the fixed software stacks that high-end capability
supercomputers use today.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses previous work dealing with the use of virtu-
alization in HPC. Section 3 discusses several potential areas
where platform virtualization could be useful in high-end
supercomputing. Section 4 presents single node native vs.
virtual performance results on a modern Intel platform that
show that compute, virtual memory, and I/O virtualization
overheads are low. Finally, Section 5 summarizes our con-
clusions.

2. PREVIOUS WORK
Early work outlining several motivation for migrating HPC
workloads to virtual machines was presented in [9]. These
include ease of management (e.g., live migration, checkpoint-
restart), the ability to run custom tailored OS images (e.g.,
a lightweight kernel), and exposing normally privileged op-
erations to unprivileged users (e.g., to load a kernel module
in a guest).

Much subsequent work on virtualization in HPC has focused
on exposing high performance I/O to virtual machines. Vir-
tual machine bypass [12], for example, has been shown to
provide essentially native communication performance in vir-
tualized HPC environments. This work was later extended
to support migrating VMM-bypassed virtual machines us-
ing Xen and Infiniband [10], as well as PGAS applications
running in Xen virtual machines [19]. This work lays the
foundation for providing guest operating systems with near
native I/O performance, while at the same time support-
ing VM migration. There is still work to be done to create
robust implementations of these prototypes.

Proactive VM migration has also been examined to improve
the resiliency of HPC applications to hardware faults [14,
20]. The core idea is to migrate away from nodes that have
been observed to have deteriorating health. If this improves
the mean-time-to-failure, the reactive checkpoint frequency
can be reduced, which in turn reduces global I/O require-
ments. Xen’s live migration is found to have relatively low
overhead – 1 to 16 seconds in their testing.



To reduce virtualization overheads, microprocessor vendors
have recently introduced hardware to accelerate virtual mem-
ory virtualization. AMD, for example, has implemented a
2-D nested page table caching scheme [1]. This approach
mitigates the potentially O(n2) memory accesses required
for each guest virtual address to host physical address trans-
lation, where n is the number of page table levels (n = 4 for
x86-64). Intel has a similar nested paging approach called
Extended Page Tables (EPT), which we evaluate in Sec-
tion 4. A subsequent letter observes that the nested page
table structure does not have to match the page table struc-
ture exposed to the guest, and this may provide opportuni-
ties for further optimization [8].

Finally, recent work on HPC virtualization has explored the
use of public clouds, such as Amazon’s EC2 (Elastic Cloud)
service [4, 7] for medium-scale HPC workloads. For example,
Amazon recently began targeting HPC workloads, and now
offers a high performance compute instance with 10 Gigabit
Ethernet and two NVIDIA “Fermi” GPUs per node. Over
time, many expect this type of service to provide a large
fraction of low to mid-range HPC cycles.

3. HIGH-END HPC VIRTUALIZATION USE
CASES

While much work on HPC virtualization has focused pri-
marily on mid-level capacity HPC workloads, there are a
number of potential areas where virtualization could be use-
ful in high-end (capability) supercomputing. In this section,
we discuss some of these possibilities.

3.1 Enhancing Lightweight OS Flexibility
We originally began exploring virtualization in capability
HPC systems to mitigate one of the major weaknesses of
lightweight kernel (LWK) operating systems – limited OS
functionality. Current supercomputers provide a fixed soft-
ware environment that is typically limited in its functionality
for performance and scalability reasons [5, 17]. Examples in-
clude the Red Storm system at Sandia and the BlueGene/L
system at Lawrence Livermore, which both use custom LWK
operating systems, and Cray XT systems in general, which
use a limited functionality Linux distribution called Cray
Linux Environment (CLE). If an application requires more
functionality than is available, it must be reworked to elim-
inate the dependencies or not be able to make use of the
system.

Augmenting the native host lightweight kernel with a virtual
machine monitor (VMM), as shown in Figure 1, provides
an elegant way to address this problem. In cases where the
lightweight kernel does not natively provide desired OS func-
tionality, a VMM capability enables users to dynamically
“boot” a more full-featured guest operating system on top of
the native LWK. From the LWK’s perspective, the guest OS
looks much the same as a native LWK application. This ap-
proach also supports efforts to“deconstruct the OS”, as some
have advocated for exascale software environments [18], sup-
porting application-specific operating systems and runtime
environments to be launched in virtual machines.

To support such scenarios, we have already extended the
Kitten LWK being developed at Sandia with a virtualization
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Figure 1: Block diagram of Kitten and Palacios ar-
chitecture.

capability. This work leverages the Palacios VMM being
developed at Northwestern University and the University
of New Mexico to create a solution that is custom tailored
for highly-scalable HPC, and has been described in detail
elsewhere [11].

3.2 Tool for Exascale OS Research
One of the most challenging tasks for system software re-
searchers today is obtaining access to large-scale test sys-
tems. On Cray XT systems, for example, testing OS-level
system software requires dedicated system time since the
machine must be rebooted. System administrators and deci-
sion makers are therefore understandably reluctant to grant
this type of access. If virtualization support was included
in the production software stacks of these machines, re-
searchers could load their prototype software in a virtual
machine environment and avoid the need for dedicated sys-
tem time. This would provide continuous access to large-
scale resources and rapid (virtual) reboot iterations for de-
bugging issues that often only appear at scale.

An alternative approach is to provide a mechanism allowing
users to reboot the compute nodes that they are allocated,
as is available on IBM BlueGene systems. The downsides to
this approach are that it requires special hardware support,
can take a long time, and results in more resource fragmen-
tation than systems with unconstrained node allocation.

In addition, the approach can also be extended to support
exascale hardware and software co-design efforts. In partic-
ular, the virtual machine abstraction provides a convenient
way to prototype new hardware/software interfaces and ca-
pabilities, such as global shared memory and advanced syn-
chronization methods. Furthermore, a VMM could be tied
to an architectural simulator to execute most instructions
natively but emulate instructions and device accesses for
prototype pieces of hardware.



3.3 Internet-scale Simulation
Virtualization also broadens the range of applications that
capability supercomputers can run to include simulation of
Internet-scale networked systems. Current capability sys-
tems are limited in their ability to perform Internet cyber
security experiments, for example, because of their fixed
software environments. Such experiments require the abil-
ity to run commodity software (e.g., Windows, databases,
network simulators) in a secure and isolated environment,
as well as a mechanism for observing what is going on. Vir-
tualization provides a way to support these experiments by
providing virtual versions of commodity hardware on capa-
bility systems with the scale and high-bandwidth intercon-
nects needed to support these simulations.

3.4 Provide Backwards Compatibility
Supporting substantial past investments in applications, li-
braries, runtimes, and system software is a significant chal-
lenge for future exascale systems. This is particularly true
because these systems are expected to have very different
hardware and software characteristics than today’s petas-
cale systems. For example, these systems will likely rely on
additional levels of memory hierarchy, massive intra-node
concurrency, and alternative programming models that fo-
cus on getting the application developer to expose all avail-
able parallelism to the runtime.

Virtualization provides a mechanism for supporting legacy
software on future exascale systems. One approach to this
is to have the virtualization layer provide familiar (virtual)
hardware abstractions to the application that allow it to use
novel new hardware features, though perhaps not as effi-
ciently as if the application had been modified to use the
original unvirtualized hardware.

As an example of this, virtualization can provide a means
to allow existing MPI applications to be run efficiently on
many-core systems with complex memory hierarchies. In
this case, a virtual node could be created for each collec-
tion of cores that share a NUMA domain, and a virtual
communication device exposed for communicating between
these virtual nodes. This allows nearby cores that can share
memory effectively to be exposed to the application, while
interaction with distant cores between which sharing is more
challenging is mapped to explicit MPI communication. In
addition, techniques for optimizing MPI-based communica-
tion in shared memory systems like SMARTMAP [2] can be
used to minimize the overheads of this approach.

3.5 Migration Based on Communication and
Memory Usage

Virtualization could also be used to improve communication
performance when running applications on complex network
and memory topologies, for example, the 3-D torus topolo-
gies and complex NUMA topologies common in scalable
hardware systems. In this approach, the VMM could mon-
itor guest communication patterns and use VM migration
to maximize network communication locality. Similarly, a
VMM could monitor vCPU (virtual CPU) memory accesses
and dynamically migrate virtual memory pages or vCPUs
to optimize NUMA locality. As interconnect and memory
bandwidth to compute performance ratios continue to de-

cline, optimizations such as this become increasingly impor-
tant.

4. RESULTS
Our previous and forthcoming results have focused on mea-
suring virtualization overhead for real HPC applications run-
ning on Cray XT4 and XT5 systems, which are based on
AMD Opteron processors. Generally, we have observed that
overhead is low, typically less than 5%, even at relatively
large scales. Such low overheads make the techniques dis-
cussed in the previous section viable on capability systems.

For this study, we wanted measure the single-node virtu-
alization overheads on a modern Intel platform using the
KVM hypervisor [15], which is now part of the standard
Linux kernel. Furthermore, we wanted to characterize how
performance scaled with intra-node core count and page size
(4 KB pages and 2 MB pages) in both native and guest en-
vironments. We are unaware of any other published perfor-
mance results for HPC workloads running in a multi-core,
NUMA-aware virtual machine environment.

4.1 Test Platform
Table 1 summarizes the test platform that was used to gather
the experimental results. The guest image used was identi-
cal to the host image, except that unnecessary packages such
as KVM were left out of the guest image. Also, the guest
kernel was configured to use the para-virtualized kvm-clock
time source so that accurate timing could be obtained. A
ntp daemon was run in both the host and guest environ-
ments to additionally ensure accurate time keeping. For
guest experiments, 20.5 GB of the host’s 24 GB of RAM
was allocated to the guest.

An external node was used to launch all jobs onto the test
node using SLURM’s srun command. When running native
experiments, the srun command’s node list argument speci-
fied n01. For guest runs, the exact same srun command was
used except that the node list was changed to specify v01,
which was the hostname of the virtual guest running on n01.

The libvirt [16] library was used to pin KVM vCPUs to
the appropriate physical CPUs. KVM’s “-numa” argument
was used to configure the guest for two NUMA nodes that
mirrored the host’s core to NUMA node mapping.

When using huge pages (2 MB pages), care was taken to en-
sure that the Linux huge page pool was distributed evenly
across the two NUMA nodes. This was done in both the
host and guest operating systems. The libhugetlbfs [6] li-
brary and hugectl command were used to map application
text, bss, heap, and stack to 2 MB pages. For host huge
page experiments, a total of 20 GB of memory was allo-
cated to the host’s huge page page pool. For guest huge
page experiments, 16 GB of the guest’s 20.5 GB of memory
was allocated to the guest’s huge page pool. In either case,
allocating more than these amounts resulted in occasional
out-of-memory conditions and unexplained application seg-
faults.

For MPI tests, communication was via MPICH2’s default
Nemesis device, which uses shared memory for intra-node
communication.



Processor Intel X5570 2.93 GHz quad-core
2 sockets, 8 cores total
2 NUMA nodes
Theoretical Peak: 94 GFLOPS

Memory 24 GB DDR3-1333
Three 4 GB DIMMs per socket
Theoretical Peak: 64 GB/s

Disk None (diskless compute node)
Initramfs RAM disk for root
NFS mount of home (via GigE)

BIOS Hyper-Threading Disabled
Configuration Turbo-Boost Disabled

Maximum Performance
Software Linux 2.6.35.7

QEMU-KVM 0.13.0
libvirt 0.8.4
libhugetlbfs 2.10
MPICH2 1.2.1p1
SLURM 2.1.15

Compiler Intel ICC 11.1 20100806

Table 1: Test platform configuration.

4.2 Dataset Naming Convention
The figures in this section use the following dataset naming
convention: ‘Native 2M’ means native using 2 MB (huge)
pages, ‘Native 4K’ means native using 4 KB (small) pages,
“Guest 2M/4K” means that guest memory is mapped with 2
MB pages in the nested page table (Intel EPT) and that ap-
plication memory in the guest is mapped using 4 KB pages,
and so on.

4.3 Compute Virtualization Overhead
To measure compute virtualization overhead, we used the
HPL component of the HPCC [13] benchmark. The HPCC
input problem size, Ns, was scaled with core count as fol-
lows: Ns = 10, 000 for single core tests, Ns = 15, 000 for two
core tests, Ns = 20, 000 for four core tests, and Ns = 30, 000
for eight core tests. The process grid configuration param-
eters Ps and Qs where chosen to keep the aspect ratio as
square as possible, with Qs being set larger than Ps when
necessary (e.g., Ps = 2 and Qs = 4 for eight core experi-
ments).

The results in Figure 2 indicate that there is essentially no
compute virtualization overhead, as is expected.

4.4 Virtual Memory Virtualization Overhead
To measure virtual memory virtualization overhead, we used
the OpenMP version of the STREAM micro-benchmark and
the MPI Random Access component of HPCC. STREAM
was configured for N = 80, 000, 000 array sizes, resulting in
approximately 1.8 GB total memory required. HPCC was
configured identically as in Section 4.3.

STREAM measures memory bandwidth by sequentially step-
ping through large arrays (much bigger than cache) in mem-
ory with unit stride. Figure 3 shows that there is essentially
no memory bandwidth virtualization overhead.

The MPI Random Access component of HPCC measures
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how many random 8 byte memory updates can be performed
on a large table (much bigger than cache) per second, mea-
sured as GUPs (Giga-Updates Per Second). Because of its
random access pattern, this benchmark will incur a large
number of TLB misses, which are expected to have high
overhead with nested paging. Figure 4 shows that there are
significant differences between the various configurations.
The absolute best performance is obtained using 2 MB pag-
ing in the native environment. This is expected since the
TLB miss latency goes down significantly with 2 MB pag-
ing compared to 4 KB paging. The next best performance
is obtained when using 2 MB pages in both host and guest
(“Guest 2M/2M”). This case is approximately 2.5% worse
than native at each data point, indicating very little TLB
virtualization overhead. These results clearly illustrate the
benefit of using large paging for guest environments using In-
tel’s EPT hardware-assisted nested paging implementation.

4.5 I/O Virtualization Overhead
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The Intel Messaging Benchmark (IMB) PingPong test was
used to characterize communication virtualization overhead.
This tests measures the half-round-trip latency and band-
width achieved when sending a message of a given size to a
receiver, and having the receiver echo back a message of the
same size as quickly as possible.

Figure 5 shows the PingPong latency and bandwidth re-
sults for two communicating cores on different sockets of
the test platform. The small message latencies measured
in the guest environments appear to be much less regular
than the native results. More study is needed to determine
if this is due to timekeeping errors in the guest, memory vir-
tualization overhead, or some combination of these or other
factors. The bandwidth results are essentially identical for
native and guest configurations, indicating little virtualiza-
tion overhead.

Since MPICH2 is using shared memory for intra-node com-
munication, the inter-socket PingPong results are essentially
measuring memory virtualization overhead. In previous work,
we have studied VMM-bypass performance by passing the
Cray SeaStar network interface directly through to the guest
environment. Interrupts must still be intercepted by the
VMM, but memory-mapped I/O to the SeaStar device takes
place without any VMM involvement. The latency results
obtained for this configuration are shown in Figure 6. When
using the default Cray XT interrupt-driven network stack,
the virtualization layer is shown to add approximately 7 to
15 microseconds of latency. This is a result of interrupt vir-
tualization overhead, where the VMM must intercept all in-
terrupts and determine which need to be manually injected
into the guest environment.

To eliminate the overhead of interrupts, Sandia developed
an alternative network stack for Cray XT that uses polling
instead of interrupts to discover message arrivals and com-
pletions [3]. This network stack, called Accelerated Portals
(labeled “Accel Portals” in Figure 6), is shown to deliver es-
sentially identical performance in both native and guest en-
vironments. This clearly illustrates the benefit of avoiding
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Figure 5: Inter-socket MPI PingPong latency and
bandwidth.

interrupt virtualization overheads for VMM-bypassed guest
networking stacks.

5. CONCLUSION
This paper has outlined several potential use cases for in-
corporating virtualization support in the system software
stacks of high-end capability supercomputers. We advocate
that this will increase the flexibility of these platforms sig-
nificantly and enable new capabilities that are not possible
with current fixed software stacks. Our results show that
compute, virtual memory, and I/O virtualization overheads
are low and can be further mitigated by utilizing well-known
techniques such as large paging and VMM bypass.
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