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Abstract—Palacios is a new open-source VMM under de-
velopment at Northwestern University and the University of
New Mexico that enables applications executing in a virtualized
environment to achieve scalable high performance on large ma-
chines. Palacios functions as a modularized extension to Kitten,
a high performance operating system being developed at Sandia
National Laboratories to support large-scale supercomputing
applications. Together, Palacios and Kitten provide a thin layer
over the hardware to support full-featured virtualized environ-
ments alongside Kitten’s lightweight native environment. Pala-
cios supports existing, unmodified applications and operating
systems by using the hardware virtualization technologies in
recent AMD and Intel processors. Additionally, Palacios lever-
ages Kitten’s simple memory management scheme to enable
low-overhead pass-through of native devices to a virtualized
environment. We describe the design, implementation, and
integration of Palacios and Kitten. Our benchmarks show that
Palacios provides near native (within 5%), scalable perfor-
mance for virtualized environments running important parallel
applications. This new architecture provides an incremental
path for applications to use supercomputers, running special-
ized lightweight host operating systems, that is not significantly
performance-compromised.

Keywords-virtual machine monitors; lightweight kernels;
parallel computing; high performance computing

I. INTRODUCTION

This paper introduces Palacios, a new high performance
virtual machine monitor (VMM) architecture, that has been
embedded into Kitten, a high performance supercomputing
operating system (OS). Together, Palacios and Kitten pro-
vide a flexible, high performance virtualized system software
platform for HPC systems. This platform broadens the
applicability and usability of HPC systems by:
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• providing access to advanced virtualization features
such as migration, full system checkpointing, and de-
bugging;

• allowing system owners to support a wider range of
applications and to more easily support legacy appli-
cations and programming models when changing the
underlying hardware platform;

• enabling system users to incrementally port their codes
from small-scale development systems to large-scale
supercomputer systems while carefully balancing their
performance and system software service requirements
with application porting effort; and

• providing system hardware and software architects with
a platform for exploring hardware and system software
enhancements without disrupting other applications.

Palacios is a “type-I” pure VMM [1] under development at
Northwestern University and the University of New Mexico
that provides the ability to virtualize existing, unmodified
applications and their operating systems with no porting.
Palacios is designed to be embeddable into other operating
systems, and has been embedded in two so far, including Kit-
ten. Palacios makes extensive, non-optional use of hardware
virtualization technologies and thus can scale with improved
implementations of those technologies.

Kitten is an OS being developed at Sandia National
Laboratories that is being used to investigate system software
techniques for better leveraging multicore processors and
hardware virtualization in the context of capability super-
computers. Kitten is designed in the spirit of lightweight
kernels [2], such as Sandia’s Catamount [3] and IBM’s
CNK [4], that are well known to perform better than
commodity kernels for HPC. The simple framework pro-
vided by Kitten and other lightweight kernels facilitates
experimentation, has led to novel techniques for reducing
the memory bandwidth requirements of intra-node message
passing [5], and is being used to explore system-level options
for improving resiliency to hardware faults.



Kitten and Palacios together provide a scalable, flexible
HPC system software platform that addresses the challenges
laid out earlier and by others [6]. Applications ported to
Kitten will be able to achieve maximum performance on a
given machine. Furthermore, Kitten is itself portable and
open, propagating the benefits of such porting efforts to
multiple machines. Palacios provides the ability to run ex-
isting, unmodified applications and their operating systems,
requiring no porting. Furthermore, as Palacios has quite low
overhead, it could potentially be used to manage a machine,
allowing a mixture of workloads running on commodity
and more specialized OSes, and could even run ported
applications on more generic hardware.

Palacios and Kitten can be used separately or together,
and run on a variety of machines ranging from commodity
clusters and servers to large scale parallel machines at
Sandia. Both Palacios and Kitten are open source tools that
are currently available to download and use.

In the remainder of this paper, we describe the design and
implementation of both Palacios and Kitten, and evaluate
their performance. The core contributions of this paper are
the following:

• We introduce and describe the Palacios VMM.
• We introduce and describe the Kitten HPC OS.
• We show how the combination of Palacios and Kitten

can provide an incremental path to using many different
kinds of HPC resources for the mutual benefit of users
and machine owners.

• We show that an integrated virtualization system com-
bining Palacios and Kitten can provide nearly native
performance for existing codes, even when extensive
communication is involved.

• We present evaluations of parallel application and
benchmark performance and overheads using virtual-
ization on high-end computing resources. The over-
heads we see, particularly using hardware nested pag-
ing, are typically less than 5%.

II. MOTIVATION

Palacios and Kitten are parts of larger projects that
have numerous motivations. Here we consider their joint
motivation in the context of high performance computing,
particularly on large scale machines.

Maximizing performance through lightweight kernels:
Lightweight compute node OSes maximize the resources
delivered to applications to maximize their performance. As
such, a lightweight kernel does not implement much of the
functionality of a traditional operating system; instead, it
provides mechanisms that allow system services to be imple-
mented outside the OS, for example in a library linked to the
application. As a result, they also require that applications
be carefully ported to their minimalist interfaces.

Increasing portability and compatibility through com-
modity interfaces: Standardized application interfaces, for
example partial or full Linux ABI compatibility, would
make it easier to port parallel applications to a lightweight
kernel. However, a lightweight kernel cannot support the
full functionality of a commodity kernel without losing the
benefits noted above. This means that some applications
cannot be run without modification.

Achieving full application and OS compatibility through
virtualization: Full system virtualization provides full com-
patibility at the hardware level, allowing existing unmodified
applications and OSes to run. The machine is thus immedi-
ately available to be used by any application code, increasing
system utilization when ported application jobs are not
available. The performance of the full system virtualization
implementation (the VMM) partially drives the choice of
either using the VMM or porting an application to the
lightweight kernel. Lowering the overhead of the VMM,
particularly in communication, allows more of the workload
of the machine to consist of VMMs.

Preserving and enabling investment in ported appli-
cations through virtualization: A VMM which can run a
lightweight kernel provides straightforward portability to
applications where the lightweight kernel is not available
natively. Virtualization makes it possible to emulate a large
scale machine on a small machine, desktop, or cluster.
This emulation ability makes commodity hardware useful
for developing and debugging applications for lightweight
kernels running on large scale machines.

Managing the machine through virtualization: Full
system virtualization would allow a site to dynamically
configure nodes to run a full OS or a lightweight OS without
requiring rebooting the whole machine on a per-job basis.
Management based on virtualization would also make it
possible to backfill work on the machine using loosely-
coupled programming jobs [7] or other low priority work.
A batch-submission or grid computing system could be run
on a collection of nodes where a new OS stack could be
dynamically launched; this system could also be brought up
and torn down as needed.

Augmenting the machine through virtualization: Virtu-
alization offers the option to enhance the underlying machine
with new capabilities or better functionality. Virtualized
lightweight kernels can be extended at runtime with specific
features that would otherwise be too costly to implement.
Legacy applications and OSes would be able to use features
such as migration that they would otherwise be unable to
support. Virtualization also provides new opportunities for
fault tolerance, a critical area that is receiving more attention
as the mean time between system failures continues to
decrease.

Enhancing systems software research in HPC and else-
where: The combination of Palacios and Kitten provides an
open source toolset for HPC systems software research that



can run existing codes without the need for victim hardware.
Palacios and Kitten enable new systems research into areas
such as fault-tolerant system software, checkpointing, over-
lays, multicore parallelism, and the integration of high-end
computing and grid computing.

III. PALACIOS

Palacios1 is an OS independent VMM designed as part of
the the V3VEE project (http://v3vee.org). Palacios currently
targets the x86 and x86 64 architectures (hosts and guests)
and is compatible with both the AMD SVM [8] and Intel
VT [9] extensions. Palacios supports both 32 and 64 bit
host OSes as well as 32 and 64 bit guest OSes2. Palacios
supports virtual memory using either shadow or nested
paging. Palacios implements full hardware virtualization
while providing targeted paravirtualized extensions.

Palacios is a fully original VMM architecture developed
at Northwestern University. Figure 1 shows the scale of
Palacios as of the 1.1 release (and the Kitten 1.1.0 release).
Note that the Palacios core is quite small. The entire VMM,
including the default set of virtual devices is on the order
of 28 thousand lines of C and assembly. The combination
of Palacios and Kitten is 89 thousand lines of code. In
comparison, Xen 3.0.3 consists of almost 580 thousand lines
of which the hypervisor core is 50–80 thousand lines, as
measured by the wc tool. Similarly, Kernel Virtual Machine
(KVM) is massive when its Linux kernel dependencies
are considered (a performance comparison with KVM is
given in Section VI-G). Palacios is publicly available from
http://v3vee.org, with additional documentation about its
theory of operation available in a technical report [10].
Palacios is released under a BSD license.

Palacios supports multiple physical host and virtual guest
environments. Palacios is compatible with both AMD SVM
and Intel VT architectures, and has been evaluated on com-
modity Ethernet based servers, a high end Infiniband cluster,
as well as Red Storm development cages consisting of Cray
XT nodes. Palacios also supports the virtualization of a
diverse set of guest OS environments, including commodity
Linux and other OS distributions, modern Linux kernels,
and several lightweight HPC OSes such as CNL [11],
Catamount [3], and Kitten itself.

A. Architecture

Palacios is an OS independent VMM, and as such is
designed to be easily portable to diverse host operating
systems. Currently Palacios supports multiple operating sys-
tems, but specifically supports Kitten for high performance
environments. Palacios integrates with a host OS through
a minimal and explicitly defined functional interface that
the host OS is responsible for supporting. Furthermore, the
interface is modularized so that a host environment can

1Palacios, TX is the “Shrimp Capital of Texas.”
264 bit guests are only supported on 64 bit hosts

Lines of
Component Code

Palacios
Palacios Core (C+Assembly) 15,084
Palacios Virtual Devices (C) 8,708
Total 28,112

Kitten
Kitten Core (C) 17,995
Kitten Arch Code (C+Assembly) 14,604
Misc. Contrib Code (Kbuild/lwIP) 27,973
Palacios Glue Module (C) 286
Total 60,858
Grand Total 88,970

Figure 1. Lines of code in Palacios and Kitten as measured with the
SLOCCount tool.

VM Guest

Exit Dispatchp

Nested Shadow IO PortMSR HypercallPaging Paging
VM Memory Map

IO Port
Map

MSR
Map

Hypercall
Map

Device Layer
APIC

ATAPI

PIC PIT

NVRAM

PCI

Keyboard 

NIC

Host OSIRQs

HardwarePassthrough IO

Figure 2. Palacios architecture.

decide its own level of support and integration. Less than
300 lines of code needed to be written to embed Palacios
into Kitten. Palacios’s architecture, shown in Figure 2,
is designed to be internally modular and extensible and
provides common interfaces for registering event handlers
for common operations.

Configurability: Palacios is designed to be highly mod-
ular to support the generation of specialized VMM architec-
tures. The modularity allows VMM features and subsystems
to be selected at compile time to generate a VMM that is
specific to the target environment. The configuration system
is also used to select from the set of available OS interfaces,
in order to enable Palacios to run on a large number of
OS architectures. The build and compile time configuration
system is based on a modified version of KBuild ported from
Linux.

Palacios also includes a runtime configuration system
that allows guest environments to specifically configure
the VMM to suit their environments. Virtual devices are
implemented as independent modules that are inserted into
a runtime generated hash table that is keyed to a device’s



ID. The guest configuration also allows a guest to specify
core configuration options such as the scheduling quantum
and the mechanism used for shadow memory.

The combination of the compile time and runtime config-
urations make it possible to construct a wide range of guest
environments that can be targeted for a large range of host
OS and hardware environments.

Resource hooks: The Palacios core provides an ex-
tensive interface to allow VMM components to register to
receive and handle guest and host events. Guest events that
can be hooked include accesses to MSRs, IO ports, spe-
cific memory pages, and hypercalls. Palacios also includes
functionality to receive notifications of host events such as
general interrupts, keystrokes and timer ticks.

Palacios interfaces with the host OS through a small set
of function hooks that the host OS is required to provide.
These functions include methods for allocating and freeing
physical memory pages as well as heap memory, address
conversion functions for translating physical addresses to the
VMMs virtual address space, a function to yield the CPU
when a VM is idle, and an interface for interfacing with the
host’s interrupt handling infrastructure. In addition to this
interface, Palacios also includes an optional socket interface
that consists of a small set of typical socket functions.

Interrupts: Palacios includes two models for hardware
interrupts, passthrough interrupts and specific event notifi-
cations. Furthermore, Palacios is capable of disabling local
and global interrupts in order to have interrupt processing
on a core run at times it chooses. The interrupt method used
is determined by the virtual device connected to the guest.

For most virtual devices, interrupts are delivered via a
host event notification interface. This interface requires the
presence of a host OS device driver to handle the interrupt
and transfer any data to or from the device. The data from
the device operation is then encapsulated inside a host event
and delivered to Palacios. The event is then delivered to
any virtual devices listening on the notification channel. The
virtual device is then responsible for raising virtual interrupts
as needed.

For high performance devices, such as network cards,
Palacios supports passthrough operation which allows the
guest to interact directly with the hardware. For this mech-
anism no host OS driver is needed. In this case, Palacios
creates a special virtual passthrough device that interfaces
with the host to register for a given device’s interrupt. The
host OS creates a generic interrupt handler that first masks
the interrupt pin, acks the interrupt to the hardware interrupt
controller, and then raises a virtual interrupt in Palacios.
When the guest environment acks the virtual interrupt,
Palacios notifies the host, which then unmasks the interrupt
pin. This interface allows direct device IO to and from the
guest environment with only a small increase to the interrupt
latency that is dominated by the hardware’s world context
switch latency.

B. Palacios as a HPC VMM

Part of the motivation behind Palacios’s design is that it be
well suited for high performance computing environments,
both on the small scale (e.g., multicores) and large scale
parallel machines. Palacios is designed to interfere with the
guest as little as possible, allowing it to achieve maximum
performance.

Palacios is currently designed for distributed memory
parallel computing environments. This naturally maps to
conventional cluster and HPC architectures. Multicore CPUs
are currently virtualized as a set of independent compute
nodes that run separate guest contexts. Support for single
image multicore environments (i.e., multicore guests) is
currently under development.

Several aspects of Palacios’s design are suited for HPC:
• Minimalist interface: Palacios does not require exten-

sive host OS features, which allows it to be easily
embedded into even small kernels, such as Kitten and
GeekOS [12].

• Full system virtualization: Palacios does not require
guest OS changes. This allows it to run existing kernels
without any porting, including Linux kernels and whole
distributions, and lightweight kernels [2] like Kitten,
Catamount, Cray CNL [11] and IBM’s CNK [4].

• Contiguous memory preallocation: Palacios preallo-
cates guest memory as a physically contiguous region.
This vastly simplifies the virtualized memory imple-
mentation, and provides deterministic performance for
most memory operations.

• Passthrough resources and resource partitioning: Pala-
cios allows host resources to be easily mapped directly
into a guest environment. This allows a guest to use
high performance devices, with existing device drivers,
with no virtualization overhead.

• Low noise: Palacios minimizes the amount of OS
noise [13] injected by the VMM layer. Palacios makes
no use of internal timers, nor does it accumulate de-
ferred work.

• Extensive compile time configurability: Palacios can be
configured with a minimum set of required features to
produce a highly optimized VMM for specific environ-
ments. This allows lightweight kernels to include only
the features that are deemed necessary and remove any
overhead that is not specifically needed.

IV. KITTEN

Kitten is an open-source OS designed specifically for high
performance computing. It employs the same “lightweight”
philosophy as its predecessors—SUNMOS, Puma, Cougar,
and Catamount3—to achieve superior scalability on mas-
sively parallel supercomputers while at the same time expos-

3The name Kitten continues the cat naming theme, but indicates a new
beginning.



ing a more familiar and flexible environment to application
developers, addressing one of the primary criticisms of
previous lightweight kernels. Kitten provides partial Linux
API and ABI compatibility so that standard compiler tool-
chains and system libraries (e.g., Glibc) can be used without
modification. The resulting ELF executables can be run on
either Linux or Kitten unchanged. In cases where Kitten’s
partial Linux API and ABI compatibility is not sufficient,
the combination of Kitten and Palacios enables unmodified
guest OSes and applications to be loaded on demand.

The general philosophy being used to develop Kitten
is to borrow heavily from the Linux kernel when doing
so does not compromise scalability or performance (e.g.,
adapting the Linux bootstrap code for Kitten). Performance
critical subsystems, such as memory management and task
scheduling, are replaced with code written from scratch
for Kitten. To avoid potential licensing issues, no code
from prior Sandia-developed lightweight kernels is used.
Like Linux, the Kitten code base is structured to facil-
itate portability to new architectures. Currently only the
x86 64 architecture is officially supported, but NEC has
recently ported Kitten to the NEC SX vector architecture
for research purposes[14]. Kitten is publicly available from
http://software.sandia.gov/trac/kitten and is released under
the terms of the GNU Public License (GPL) version 2.

A. Architecture

Kitten (Figure 3) is a monolithic kernel that runs sym-
metrically on all processors in the system. Straightforward
locking techniques are used to protect access to shared data
structures. At system boot-up, the kernel enumerates and
initializes all hardware resources (processors, memory, and
network interfaces) and then launches the initial user-level
task, which runs with elevated privilege (the equivalent of
root). This process is responsible for interfacing with the
outside world to load jobs onto the system, which may either
be native Kitten applications or guest operating systems. The
Kitten kernel exposes a set of resource management system
calls that the initial task uses to create virtual address spaces,
allocate physical memory, create additional native Kitten
tasks, and launch guest operating systems.

The Kitten kernel supports a subset of the Linux system
call API and adheres to the Linux ABI to support native
user-level tasks. Compatibility includes system call calling
conventions, user-level stack and heap layout, thread-local
storage conventions, and a variety of standard system calls
such as read(), write(), mmap(), clone(), and
futex(). The subset of system calls that Kitten imple-
ments natively is intended to support the requirements of
existing scalable scientific computing applications in use at
Sandia. The subset is also sufficient to support Glibc’s NPTL
POSIX threads implementation and GCC’s OpenMP im-
plementation without modification. Implementing additional
system calls is a relatively straightforward process.
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Figure 3. Kitten architecture.

The Kitten kernel contains functionality aimed at easing
the task of porting of Linux device drivers to Kitten. Many
device drivers and user-level interface libraries create or
require local files under /dev, /proc, and /sys. Kitten
provides limited support for such files. When a device driver
is initialized, it can register a set of callback operations
to be used for a given file name. The open() system
call handler then inspects a table of the registered local
file names to determine how to handle each open request.
Remote files are forwarded to a user-level proxy task for
servicing. Kitten also provides support for kernel threads,
interrupt registration, and one-shot timers since they are
required by many Linux drivers. The Open Fabrics Alliance
(OFA) Infiniband stack was recently ported to Kitten without
making any significant changes to the OFA code.

B. Memory Management

Unlike traditional general-purpose kernels, Kitten dele-
gates most virtual and physical memory management to
user-space. The initial task allocates memory to new native
applications and Palacios virtual machines by making a se-
ries of system calls to create an address space, create virtual
memory regions, and bind physical memory to those regions.
Memory topology information (i.e., NUMA) is provided to
the initial-task so it can make intelligent decisions about how
memory should be allocated.

Memory is bound to a context of execution before it
starts executing and a contiguous linear mapping is used
between virtual and physical addresses. The use of a regular
mapping greatly simplifies virtual to physical address trans-
lation compared to demand-paged schemes, which result
in an unpredictable mapping with complex performance
implications. Networking hardware and software can take
advantage of the simple mapping to increase performance
(which is the case on Cray XT) and potentially decrease
cost by eliminating the need for translation table memory
and table walk hardware on the network interface. The



simple mapping also enables straightforward pass-through
of physical devices to para-virtualized guest drivers.

C. Task Scheduling

All contexts of execution on Kitten, including Palacios
virtual machines, are represented by a task structure. Tasks
that have their own exclusive address space are considered
processes and tasks that share an address space are threads.
Processes and threads are identical from a scheduling stand-
point. Each processor has its own run queue of ready tasks
that are preemptively scheduled in a round-robin fashion.
Currently Kitten does not automatically migrate tasks to
maintain load balance. This is sufficient for the expected
common usage model of one MPI task or OpenMP thread
per processor.

The privileged initial task that is started at boot time
allocates a set of processors to each user application task
(process) that it creates. An application task may then spawn
additional tasks on its set of processors via the clone()
system call. By default spawned tasks are spread out to
minimize the number of tasks per processor but a Kitten-
specific task creation system call can be used to specify the
exact processor that a task should be spawned on.

V. INTEGRATING PALACIOS AND KITTEN

Palacios was designed to be easily integrated with dif-
ferent operating systems. This leads to an extremely simple
integration with Kitten consisting of an interface file of less
than 300 lines of code. The integration includes no internal
changes in either Kitten or Palacios, and the interface code is
encapsulated with the Palacios library in an optional compile
time module for Kitten. This makes Palacios a natural
virtualization solution for Kitten when considered against
existing solutions that target a specific OS with extensive
dependencies on internal OS infrastructures.

Kitten exposes the Palacios control functions via a system
call interface available from user space. This allows user
level tasks to instantiate virtual machine images directly
from user memory. This interface allows VMs to be loaded
and controlled via processes received from the job loader.
A VM image can thus be linked into a standard job that
includes loading and control functionality.

SeaStar Passthrough Support: Because Palacios pro-
vides support for passthrough I/O, it is possible to support
high performance, partitioned access to particular commu-
nication devices. We do this for the SeaStar communication
hardware on the Red Storm machine. The SeaStar is a high
performance network interface that utilizes the AMD Hy-
perTransport Interface and proprietary mesh interconnect for
data transfers between Cray XT nodes [15]. At the hardware
layer the data transfers take the form of arbitrary physical-
addressed DMA operations. To support a virtualized SeaStar
the physical DMA addresses must be translated from the
guest’s address space. However, to ensure high performance

the SeaStar’s command queue must be directly exposed to
the guest. This requires the implementation of a simple
high performance translation mechanism. Both Palacios and
Kitten include a simple memory model that makes such
support straightforward.

The programmable SeaStar architecture provides several
possible avenues for optimizing DMA translations. These
include a self-virtualizable firmware as well as an explicitly
virtualized guest driver. In the performance study we con-
ducted for this paper we chose to modify the SeaStar driver
running in the guest to support Palacios’s passthrough I/O.
This allows the guest to have exclusive and direct access
to the SeaStar device. Palacios uses the large contiguous
physical memory allocations supported by Kitten to map
contiguous guest memory at a known offset. The SeaStar
driver has a tiny modification that incorporates this offset
into the DMA commands sent to the SeaStar. This allows
the SeaStar to execute actual memory operations with no
performance loss due to virtualization overhead. Because
each Cray XT node contains a single SeaStar device, the
passthrough configuration means that only a single guest is
capable of operating the SeaStar at any given time.

Besides memory-mapped I/O, the SeaStar also directly
uses an APIC interrupt line to notify the host of transfer
completions as well as message arrivals. Currently, Palacios
exits from the guest on all interrupts. For SeaStar interrupts,
we immediately inject such interrupts into the guest and
resume. While this introduces an VM exit/entry cost to
each SeaStar interrupt, in practice this only results in a
small increase in latency. We also note that the SeaStar
interrupts are relatively synchronized, which does not result
in a significant increase in noise. We are investigating the
use of next generation SVM hardware that supports selective
interrupt exiting to eliminate this already small cost.

While implicitly trusting guest environments to directly
control DMA operations is not possible in normal environ-
ments, the HPC context allows for such trust.

Infiniband and Ethernet Passthrough Support: Our
integration of Palacios and Kitten also includes an imple-
mentation of passthrough I/O for Mellanox Infiniband NICs
and Intel E1000 Ethernet NICs. These are similar to the
SeaStar implementation.

VI. PERFORMANCE

We conducted a careful performance evaluation of the
combination of Palacios and Kitten on diverse hardware, and
at scales up to 48 nodes. We focus the presentation of our
evaluation on the Red Storm machine and widely recognized
applications/benchmarks considered critical to its success.
As far as we are aware, ours is the largest scale evaluation
of parallel applications/benchmarks in virtualization to date,
particularly for those with significant communication. It
also appears to be the first evaluation on petaflop-capable
hardware. Finally, we show performance numbers for native



lightweight kernels, which create a very high bar for the
performance of virtualization. The main takeaways from our
evaluation are the following.

1) The combination of Palacios and Kitten is gener-
ally able to provide near-native performance. This
is the case even with large amounts of complex
communication, and even when running guest OSes
that themselves use lightweight kernels to maximize
performance.

2) It is generally preferable for a VMM to use nested
paging (a hardware feature of AMD SVM and Intel
VT) over shadow paging (a software approach) for
guest physical memory virtualization. However, for
guest OSes that use simple, high performance ad-
dress space management, such as lightweight kernels,
shadow paging can sometimes be preferable due to its
being more TLB-friendly.

The typical overhead for virtualization is ≤ 5%.

A. Testbed

We evaluated the performance and scaling of Palacios
running on Kitten on the development system rsqual, part
of the Red Storm machine at Sandia National Laboratories.
Each XT4 node on this machine contains a quad-core AMD
Budapest processor running at 2.2 GHz with 4 GB of
RAM. The nodes are interconnected with a Cray SeaStar 2.2
mesh network [15]. Each node can simultaneously send and
receive at a rate of 2.1 GB/s via MPI. The measured node
to node MPI-level latency ranges from 4.8 µsec (using the
Catamount [3] operating system) to 7.0 µsec (using the
native CNL [11] operating system). As we stated earlier,
even though we can run multiple guests on a multicore Cray
XT node by instantiating them on separate cores, our current
implementation only allows the SeaStar to be exposed to a
single guest context. Due to this limitation, our performance
evaluation is restricted to a single guest per Cray XT node.

In addition, we used two dual-socket quad-core 2.3 GHz
AMD Shanghai systems with 32GB of memory for commu-
nication benchmark testing on commodity HPC hardware.
Nodes in this system are connected with Mellanox Con-
nectX QDR Infiniband NICs and a Mellanox Infiniscale-IV
24 port switch. When not running Kitten, these systems run
Linux 2.6.27 and the OpenFabrics 1.4 Infiniband stack.

All benchmark timing in this paper is done using the
AMD cycle counter. When virtualization is used, the cycle
counter is direct mapped to the guest and not virtualized.
Every benchmark receives the same accurate view of the
passage of real time regardless of whether virtualization is
in use or not.

B. Guests

We evaluated Palacios running on Kitten with two guest
environments:

• Cray Compute Node Linux (CNL). This is Cray’s
stripped down Linux operating system customized for
Cray XT hardware. CNL is a minimized Linux (2.6 ker-
nel) that leverages BusyBox [16] and other embedded
OS tools/mechanism. This OS is also known as Uni-
cos/LC and the Cray Linux Environment (CLE).

• Catamount. Catamount is a lightweight kernel de-
scended from the SUNMOS and PUMA operating
systems developed at Sandia National Labs and the
University of New Mexico [17][18]. These OSes, and
Catamount, were developed, from-scratch, in reaction
to the heavyweight operating systems for parallel com-
puters that began to proliferate in the 1990s. Catamount
provides a simple memory model with a physically-
contiguous virtual memory layout, parallel job launch,
and message passing facilities.

We also use Kitten as a guest for our Infiniband tests. It is
important to note that Palacios runs a much wider range of
guests than reported in this evaluation. Any modern x86 or
x86 64 guest can be booted.

C. HPCCG Benchmark Results

We used the HPCCG benchmark to evaluate the impact
of virtualization on application performance and scaling.
HPCCG [19] is a simple conjugate gradient solver that repre-
sents an important workload for Sandia. It is commonly used
to characterize the performance of new hardware platforms
that are under evaluation. The majority of its runtime is spent
in a sparse matrix-vector multiply kernel.

We ran HPCCG on top of CNL and Catamount on Red
Storm, considering scales from 1 to 48 nodes. A fixed-
size problem per node was used to obtain these results.
The specific HPCCG input arguments were “100 100 100”,
requiring approximately 380 MB per node. This software
stack was compiled with the Portland Group pgicc compiler
version 7, and was run both directly on the machine and
on top of Palacios. Both shadow paging and nested paging
cases were considered. Communication was done using the
passthrough-mapped SeaStar interface, as described earlier.

Figures 4(a) and 4(b) show the results for CNL and
Catamount guests. Each graph compares the performance
and scaling of the native OS, the virtualized OS with shadow
paging, and the virtualized OS with nested paging. The
graph shows both the raw measurements of multiple runs
and the averages of those runs. The most important result
is that the overhead of virtualization is less than 5% and
this overhead remains essentially constant at the scales we
considered, despite the growing amount of communication.
Note further that the variance in performance for both native
CNL and virtualized CNL (with nested paging) is minuscule
and independent of scale. For Catamount, all variances are
tiny and independent, even with shadow paging.

The figure also illustrates the relative effectiveness of
Palacios’s shadow and nested paging approaches to virtu-
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Figure 4. HPCCG benchmark comparing scaling for virtualization with shadow paging, virtualization with nested paging, and no virtualization.
Palacios/Kitten can provide scaling to 48 nodes with less than 5% performance degradation.

alizing memory. Clearly, nested paging is preferable for
this benchmark running on a CNL guest, both for scaling
and for low variation in performance. There are two effects
at work here. First, shadow paging results in more VM
exits than nested paging. On a single node, this overhead
results in a 13% performance degradation compared to native
performance. The second effect is that the variance in single
node performance compounds as we scale, resulting in an
increasing performance difference.

Surprisingly, shadow paging is slightly preferable to
nested paging for the benchmark running on the Catamount
guest. In Catamount the guest page tables change very
infrequently, avoiding the exits for shadow page table refills
that happen with CNL. Additionally, instead of the deep
nested page walk (O(nm) for n-deep guest and m-deep
host page tables) needed on a TLB miss with nested pages,
only a regular m-deep host page table walk occurs on a
TLB miss with shadow paging. These two effects explain
the very different performance of shadow and nested paging
with CNL and Catamount guests.

It is important to point out that the version of Palacios’s
shadow paging implementation we tested only performs on
demand updates of the shadow paging state. With optimiza-
tions, such as caching, the differences between nested and
shadow paging are likely to be smaller.

D. CTH Application Benchmark

CTH [20] is a multi-material, large deformation, strong
shock wave, solid mechanics code developed by Sandia
National Laboratories with models for multi-phase, elastic
viscoplastic, porous, and explosive materials. CTH supports
three-dimensional rectangular meshes; two-dimensional
rectangular, and cylindrical meshes; and one-dimensional
rectilinear, cylindrical, and spherical meshes, and uses
second-order accurate numerical methods to reduce dis-

persion and dissipation and to produce accurate, efficient
results. It is used for studying armor/anti-armor interac-
tions, warhead design, high explosive initiation physics, and
weapons safety issues.

Figures 5(a) and 5(b) show the results using the CNL
and Catamount guests. We can see that adding virtualiza-
tion, provided the appropriate choice of shadow or nested
paging is made, has virtually no effect on performance or
scaling. For this highly communication intensive benchmark,
virtualization is essentially free.

E. Intel MPI Benchmarks

The Intel MPI Benchmarks (IMB) [21], formerly known
as PALLAS, are designed to characterize the MPI commu-
nication performance of a system. IMB employs a range of
MPI primitive and collective communication operations, at
a range of message sizes and scales to produce numerous
performance characteristics. We ran IMB on top of CNL and
Catamount on Red Storm using SeaStar at scales from 2 to
48 nodes. We compared native performance, virtualized per-
formance using shadow paging, and virtualized performance
using nested paging. IMB generates large quantities of data.
Figures 6 through 7 illustrate the most salient data on CNL
and Catamount.

Figure 6 shows the bandwidth of a ping-pong test between
two nodes for different message sizes. For large messages,
bandwidth performance is identical for virtualized and native
operating systems. For small messages where ping-pong
bandwidth is latency-bound, the latency costs of virtualiza-
tion reduce ping-pong bandwidth. We have measured the
extra latency introduced by virtualization as either 5 µsec
(nested paging) or 11 µsec (shadow paging) for the CNL
guest. For the Catamount guest, shadow paging has a higher
overhead. Although the SeaStar is accessed via passthrough
I/O, interrupts are virtualized. When the SeaStar raises an
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Figure 5. CTH application benchmark comparing scaling for virtualization with shadow paging, virtualization with nested paging, and no virtualization.
Palacios/Kitten can provide scaling to 32 nodes with less than 5% performance degradation.
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Figure 6. IMB PingPong Bandwidth in MB/sec as a function of message size

interrupt, a VM exit is induced. Palacios quickly transforms
the hardware interrupt into a virtual interrupt that it injects
into the guest on VM entry. The guest will quickly cause
another VM exit/entry interaction when it acknowledges the
interrupt to its (virtual) APIC. Shadow paging introduces
additional overhead because of the need to refill the TLB
after these entries/exits. This effect is especially pronounced
in Catamount since, other than capacity misses, there is no
other reason for TLB refills; in addition, Catamount has
a somewhat more complex interrupt path that causes two
additional VM exits per interrupt. Avoiding all of these
VM exits via nested paging allows us to measure the raw
overhead of the interrupt exiting process.

In Figure 7, we fix the message size at 16 bytes and
examine the effect on an IMB All-Reduce as we scale from
2 to 48 nodes. We can see that the performance impacts of
nested and shadow paging diverges as we add more nodes—

nested paging is superior here.
The upshot of these figures and the numerous IMB results

which we have excluded for space reasons is that the
performance of a passthrough device, such as the SeaStar,
in Palacios is in line with the expected hardware overheads
due to interrupt virtualization. This overhead is quite small.
Virtualized interrupts could be avoided using the AMD SVM
interrupt handling features, which we expect would bring
IMB performance with nested paging-based virtualization
in line with native performance. However, at this point, we
expect that doing so would require minor guest changes.

F. Infiniband microbenchmarks

To quantify the overhead of Palacios virtualization on
a commodity NIC, we ported OpenIB MLX4 (ConnectX)
drivers to Kitten along with the associated Linux driver.
We also implemented passthrough I/O support for these
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Figure 7. IMB Allreduce 16 byte latency in µsec as a function of nodes up to 48 nodes

Latency Bandwidth
(µsec) (Gb/sec)

Kitten (Native) 5.24 12.40
Kitten (Virtualized) 5.25 12.40
Linux 4.28 12.37

Figure 8. Bandwidth and latency of node-to-node Infiniband on Kitten,
comparing native performance with guest performance. Linux numbers are
provided for reference.

drivers in Palacios. We then measured round-trip latency
for 1 byte messages averaged over 100000 round trips
and 1 megabyte message round trip bandwidth averaged
over 10000 trips using a ported version of the OpenFabrics
ibv_rc_pingpong. The server system ran Linux 2.6.27,
while the client machine ran either Kitten natively, Kitten
as a guest on Palacios using shadow paging, or Linux.

As can be seen in Figure 8, Palacios’s pass-through
virtualization imposes almost no measurable overhead on
Infiniband message passing. Compared to Linux, Kitten both
native and virtualized using Palacios slightly outperform
Linux in terms of end-to-end bandwidth, but suffers a
1 µsec/round trip latency penalty. We believe this is due to
a combination of the lack of support for message-signaled
interrupts (MSI) in our current Linux driver support code, as
well as our use of a comparatively old version of the OpenIB
driver stack. We are currently updating Linux driver support
and the OpenIB stack used in in Kitten to address this issue.

G. Comparison with KVM

To get a feel for the overhead of Palacios compared
to existing virtualization platforms, we ran the HPCCG
benchmark in a CNL guest under both KVM running on
a Linux host and Palacios running on a Kitten host. KVM
(Kernel-based Virtual Machine) is a popular virtualization
platform for Linux that is part of the core Linux kernel
as of version 2.6.20. Due to time constraints we were not

HPCCG
MFLOPS

Native CNL 588.0
Palacios/Kitten + CNL Guest 556.4
KVM/CNL + CNL Guest 546.4
% Diff Palacios vs. KVM 1.8%

Figure 9. Comparison of Palacios to KVM for HPCCG benchmark.

able to expose the SeaStar to KVM guest environments, so
only single node experiments were performed. The same
”100 100 100” test problem that was used in Section VI-C
was run on a single Cray XT compute node. HPCCG
was compiled in serial mode (non-MPI) leading to slightly
different performance results. As can be seen in Figure 9,
Palacios delivers approximately 1.8% better performance
than KVM for this benchmark. Each result is an average
of three trials and has a standard deviation less of than 0.66.
Note that small performance differences at the single node
level typically magnify as the application and system are
scaled up.

VII. FUTURE WORK

Larger Scale Studies: While our initial results show
that Palacios and Kitten are capable of providing scalable
virtualization for HPC environments, we intend to continue
the evaluation at ever larger scales. We have completed a
preliminary large scale study of up to 4096 nodes on the
full Red Storm system. The preliminary results show that
Palacios continues to impose minimal overhead, delivering
performance within 5% as scaling increases.

Symbiotic Virtualization: Based on our results to date,
it is evident that the best VMM configuration is heavily
dependent on the OS and application behavior inside the
guest environment. In other words, there is no singular VMM
configuration suitable for HPC environments. In order to
provide the best performance for every HPC application, a



VMM must be able to adapt its own behavior to the guest’s.
This adaptability requires that both the VMM and OS coop-
erate to coordinate their actions. Symbiotic virtualization is a
new approach to system virtualization where a guest OS and
a VMM use high level software interfaces to communicate
with each other in order to increase performance and func-
tionality. We are currently exploring the use of Symbiotic
Virtualization for HPC environments.

VIII. RELATED WORK

Recent research activities on operating systems for large-
scale supercomputers generally fall into two categories:
those that are Linux-based and those that are not. A number
of research projects are exploring approaches for configuring
and adapting Linux to be more lightweight. Alternatively,
there are a few research projects investigating non-Linux
approaches, using either custom lightweight kernels or
adapting other existing open-source OSes for HPC.

The Cray Linux Environment [11] is the most prominent
example of using a stripped-down Linux system in an HPC
system, and is currently being used on the petaflop-class
Jaguar system at Oak Ridge National Laboratories. Other
examples of this approach are the efforts to port Linux to the
IBM BlueGene/L and BlueGene/P systems [22], [23]. Since
a full Linux distribution is not used, this approach suffers
many of the same functionality weaknesses as non-Linux
approaches. In some cases, these systems have also encoun-
tered performance issues, for example due to the mismatch
between the platform’s memory management hardware and
the Linux memory management subsystem.

Examples of the non-Linux approach include IBM’s Com-
pute Node Kernel (CNK) [24] and several projects being
led by Sandia, including the Catamount [2] and Kitten
projects as well as an effort using Plan9 [25]. Both CNK and
Kitten address one of the primary weaknesses of previous
lightweight operating systems by providing an environment
that is largely compatible with Linux. Kitten differs from
CNK in that it supports commodity x86 64 hardware, is
being developed in the open under the GPL license, and
provides the ability to run full-featured guest operating
systems when linked with Palacios.

The desire to preserve the benefits of a lightweight en-
vironment but provide support a richer feature set has also
led other lightweight kernel developers to explore more full-
featured alternatives [4]. We have also explored other means
of providing a more full-featured set of system services [26],
but the complexity of building a framework for application-
specific OSes is significantly greater than simply using
an existing full-featured virtualized OS, especially if the
performance impact is minimal.

There has been considerable interest, both recently and
historically, in applying existing virtualization tools to HPC
environments [27], [28], [29], [30], [31], [32], [33]. How-
ever, most of the recent work has been exclusively in the

context of adapting or evaluating Xen and Linux on cluster
platforms. Palacios and Kitten are a new OS/VMM solution
developed specifically for HPC systems and applications.
There are many examples of the benefits available from a
virtualization layer [34] for HPC. There is nothing inherently
restrictive about the virtualization tools used for these im-
plementations, so these approaches could be directly applied
to this work.

IX. CONCLUSION

Palacios and Kitten are new open source tools that
support virtualized and native supercomputing on diverse
hardware. We described the design and implementation of
both Palacios and Kitten, and evaluated their performance.
Virtualization support, such as Palacios’s, that combines
hardware features such as nested paging with passthrough
access to communication devices can support even the
highest performing guest environments with minimal per-
formance impact, even at relatively large scale. Palacios and
Kitten provide an incremental path to using supercomputer
resources that has few compromises for performance. Our
analysis points the way to eliminating overheads that remain.

REFERENCES

[1] R. Goldberg, “Survey of virtual machine research,” IEEE
Computer, pp. 34–45, June 1974.

[2] R. Riesen, R. Brightwell, P. Bridges, T. Hudson, A. Maccabe,
P. Widener, and K. Ferreira, “Designing and implementing
lightweight kernels for capability computing,” Concurrency
and Computation: Practice and Experience, vol. 21, no. 6,
pp. 793–817, April 2009.

[3] S. Kelly and R. Brightwell, “Software architecture of the
lightweight kernel, Catamount,” in 2005 Cray Users’ Group
Annual Technical Conference. Cray Users’ Group, May
2005.

[4] E. Shmueli, G. Almasi, J. Brunheroto, J. Castanos, G. Dozsa,
S. Kumar, and D. Lieber, “Evaluating the effect of replacing
CNK with Linux on the compute-nodes of Blue Gene/L,” in
roceedings of the 22nd International Conference on Super-
computing. New York, NY, USA: ACM, 2008, pp. 165–174.

[5] R. Brightwell, T. Hudson, and K. Pedretti, “SMARTMAP:
Operating system support for efficient data sharing among
processes on a multi-core processor,” in International Confer-
ence for High Performance Computing, Networking, Storage,
and Analysis, November 2008.

[6] M. F. Mergen, V. Uhlig, O. Krieger, and J. Xenidis, “Virtual-
ization for high-performance computing,” Operating Systems
Review, vol. 40, no. 2, pp. 8–11, 2006.

[7] I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman, K. Iskra,
and B. Clifford, “Toward loosely-coupled programming on
petascale systems,” in ACM/IEEE International Conference
on High-Performance Computing, Networking, Storage, and
Analysis, November 2008.



[8] AMD Corporation, “AMD64 virtualization codenamed “Pa-
cific” technology: Secure Virtual Machine Architecture refer-
ence manual,” May 2005.

[9] Intel Corporation, “Intel virtualization technology specifica-
tion for the IA-32 Intel architecture,” April 2005.

[10] J. R. Lange and P. A. Dinda, “An introduction to the Palacios
Virtual Machine Monitor—release 1.0,” Northwestern Uni-
versity, Department of Electrical Engineering and Computer
Science, Tech. Rep. NWU-EECS-08-11, November 2008.

[11] L. Kaplan, “Cray CNL,” in FastOS PI Meeting and
Workshop, June 2007. [Online]. Available: http://www.cs.
unm.edu/∼fastos/07meeting/CNL FASTOS.pdf

[12] D. Hovenmeyer, J. Hollingsworth, and B. Bhattacharjee,
“Running on the bare metal with GeekOS,” in 35th
SIGCSE Technical Symposium on Computer Science Educa-
tion (SIGCSE), 2004.

[13] K. Ferreira, P. Bridges, and R. Brightwell, “Characterizing
application sensitivity to OS interference using kernel-level
noise injection,” in 2008 ACM/IEEE conference on Super-
computing (SC), 2008, pp. 1–12.
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