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Article

Virtual-machine-based emulation of
future generation high-performance
computing systems

Patrick G Bridges1, Dorian Arnold1, Kevin T Pedretti2,
Madhav Suresh3, Feng Lu3, Peter Dinda3, Russ Joseph3 and
Jack Lange4

Abstract
This paper describes the design of a system to enable research, development, and testing of new software stacks and
hardware features for future high-end computing systems. Motivating uses include both small-scale research and devel-
opment on simulated individual nodes of proposed high-performance computing systems, and large scaling studies that
emulate a sizeable fraction of a future supercomputing system. The proposed architecture combines system virtualization,
architectural simulation, time dilation, and slack simulation to provide scalable emulation of hypothetical systems.
Virtualization-based full-system measurement and monitoring tools are also included to aid in using the proposed system
for co-design of high-performance computing system software and architectural features for future systems. Finally, this
paper provides a description of the implementation strategy and status of the system.
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1 Introduction

Developing hardware, system software, and applications

for next-generation supercomputing systems requires test-

beds for investigating new hardware and software features

at both the scale of individual nodes and the entire system.

Such testbeds allow developers to study the impact of both

architectural and software changes on overall application

performance and fidelity. Given recent emphasis on hard-

ware/software co-design methodologies, which rely on the

continuous evaluation of the impact of hardware, system

software, and application changes, these testbeds have

become particularly important.

In this paper, we describe our strategy to realizing such

testbeds using virtualization-based system emulation. This

approach seeks to accelerate the deployment, performance,

and utility of testbeds for simulating novel, highly-

concurrent architectures, focusing on time-to-result for

runs of real applications instead of complete accuracy. To

do this, we combine occasional cycle-accurate simulation

of key system components with loosely synchronized vir-

tual machine (VM)-based emulation of system hardware

features. This is in contrast to past work that focuses solely

on cycle-accurate node simulations (Bohrer et al. 2004) or

high-fidelity cluster-level simulations that rely on skeleton

applications or mini-apps to complete simulation runs in

reasonable amounts of time (León et al. 2009).

Our approach focuses on the use of a virtual machine

monitor (VMM) to emulate individual nodes of the target

system, with the software stack under evaluation running

as a guest software stack in a virtual machine. This allows

much of the guest stack to run natively, with the VMM

intercepting hardware calls that require additional han-

dling. To achieve this, the VMM coordinates invocation

of a linked architectural simulator for architectural features

it cannot directly simulate, and controls the passage of time

in the guest stack.

1Department of Computer Science, University of New Mexico, USA
2Scalable System Software Department, Sandia National Laboratories,

USA
3Department of Electrical Engineering and Computer Science,

Northwestern University, USA
4Department of Computer Science, University of Pittsburgh, USA

Corresponding author:

Patrick G Bridges, Department of Computer Science, University of New

Mexico, Albuquerque, NM 87131, USA

Email: bridges@cs.unm.edu

The International Journal of High
Performance Computing Applications
26(2) 125–135
ª The Author(s) 2012
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342012436619
hpc.sagepub.com

 at NORTHWESTERN UNIV LIBRARY on June 29, 2012hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


The VM interfaces with architectural simulation through

two different interfaces—a device interface and a proces-

sor/system architecture interface. To interface with device

simulations such as Structural Simulation Toolkit (SST)

device models (Rodrigues et al. 2006), we use a simple host

device interface that forwards VM-level memory and I/O

port actions to a device simulator for simulation. To inter-

face with cycle-accurate processor simulators such as

GEM5 (see http://gem5.org), we leverage the checkpoint-

restart features of both VMMs and processor simulators,

checkpointing and restoring between the two systems as

necessary. Controlling how often hardware features are

emulated coarsely in the VM versus simulated in a coupled

cycle-accurate simulator provides one mechanism for

controlling the accuracy/time-to-solution tradeoff in this

system.

The VM manages the passage of time using standard

time-dilation techniques (Gupta et al. 2006, 2008), allow-

ing a single node to emulate additional processors and

nodes. Unlike past work in this area, we use slack simula-

tion (Chen et al. 2009) to enable the VM to emulate the

behavior of low-latency I/O devices such as network inter-

face controllers (NICs). In this approach, distributed VM

emulations are coarsely synchronized to a global time

source instead of finely synchronized on an operation-by-

operation basis. The level of synchronization can also be

used to control emulation accuracy versus time-to-solution

when evaluating network-intensive high-performance com-

puting (HPC) workloads.

In the remainder of this paper, we first describe several

motivating examples that are driving our work in this direc-

tion. We then describe the overall architecture of the system

we are building, along with selected architectural details

from specific portions of the system. Finally, we describe

our implementation strategy and status, discuss related work

on virtualization-based system emulation, and conclude.

2 Example uses

Our work is driven by several motivating examples of

potential relevance to the design of future high-end com-

puting systems which we seek to support with the infra-

structure described in this paper. These include

architectural changes to processor and memory system

design, new networking devices, and novel system use-

cases. This section outlines our motivating examples.

2.1 Performance-heterogeneous processors

Many-core systems that include processors with heteroge-

neous performance characteristics, particularly different

clock speeds on different processors, comprise the first

kind of system we seek to emulate. Such systems present

interesting challenges to both HPC applications and sys-

tem software design, particularly for examining issues

related to application load balancing, node-level resource

allocation, and inter-processor communication

performance. Enabling development and evaluation of

new application, runtime, and system software techniques

for these systems is a key motivating factor in the work

described in this paper.

2.2 Global addressing

Globally addressable memory in distributed-memory

systems is often proposed for deployment in future HPC sys-

tems, particularly latency-oriented systems designed to han-

dle large, irregular data sets. Integrating low-latency remote

direct memory access (DMA) network devices directly with

the hardware memory addressing system could dramatically

simplify the system programming model by providing low-

latency access to remote memory. It would also avoid the the

performance penalties of previous software-based distributed

shared memory systems. Because virtualization software can

easily intercept virtual and physical memory accesses, global

addressing is an ideal use-case for virtualization-based emu-

lation of future large-scale HPC systems.

2.3 Active messaging network interfaces

Active messages are an increasingly important mechanism

for low-latency communication in future systems, with

recent research demonstrating their usefulness in imple-

menting high-performance distributed graph algorithms

(Willcock et al. 2010). New network interface cards are

being designed to handle active messages, for example with

new control structures or the ability to offload message

handlers to the NIC. Evaluation of the performance of

these systems on meaningful algorithms and data sets at

scale is imperative to understanding the potential benefits

and challenges they present. Because no real-world imple-

mentations of such cards exist, however, they are another

hardware enhancement with impact across the breadth of

the software stack that motivates the research described

in this paper.

2.4 Many-core processor integration

In the nascent many-core processor era, individual nodes

are beginning their transition from tens towards hundreds

of cores which will be integrated by scaleable on-chip

interconnection networks and distributed shared caches.

Furthermore, these cores will have to maximize extremely

limited on-chip network bandwidth, cache capacity, chip-

wide power budgets, and off-chip memory channels. In

many ways, these next-generation processors will resemble

small-scale supercomputers and will have to revisit many

of the classic large-scale HPC resource-management chal-

lenges at the node level. These systems will also raise many

questions about how to best exploit local versus global

communication patterns to cope with various bottlenecks

within the on-chip network, processor to local DRAM

channels, and off-chip interprocessor network. Interfacing

virtualization-based emulation of a large-scale HPC system
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with a detailed many-core microarchitecture simulator

which models the on-chip network may give some perspec-

tive that would otherwise be very difficult to achieve.

2.5 Specialized instruction set architecture features

As the number of transistors on a chip continues to grow,

there are increasing opportunities to integrate new pro-

grammer-/compiler- and/or operating system-visible fea-

tures in the instruction set architecture. For example,

hardware transactional memory has been proposed as an

approach to enhancing the programmability and perfor-

mance of multicore systems by providing composable

transactions instead of locks. Another example is a

single-instruction multiple-data (SIMD)/vector instruction

set, such as is emerging in the convergence of CPUs and

GPUs. Yet another is the loosening of the hardware seman-

tics of instruction execution ordering—a happy medium

between fully compiler-based instruction scheduling and

fully hardware-based ordering remains to be found. It is our

hope that our emulation environment will make it possible

to evaluate instruction set architecture extensions in the

context of real applications by allowing them to be imple-

mented in the processor simulator yet seamlessly integrated

into the hardware-based execution flow of the VMM.

2.6 Exascale on your laptop

Although the primary focus of our work is to investigate the

hardware and systems software of future supercomputers,

we also envision it helping to broaden the accessibility of

those machines. A fully operational supercomputer could

equally well be modeled in our system, and operate, albeit

slowly and at reduced scale, on cheap commodity hardware

that everyone has access to. The system itself is open

source and available to all. In such a mode, our system

would allow for both application and kernel development

and testing in preparation for deployment on the actual

supercomputer, or for education.

3 Architecture

We now describe the architecture of our system. We begin

with a basic overview of the system architecture, and then

provide additional details on the key components of this

architecture, including the use of VM monitors, coupling

with different types of architectural simulators, our pro-

posed approach to managing the passage of time in the sys-

tem, and integration with measurement and monitoring

tools.

3.1 Overview

Figure 1 shows the general architecture of the system. This

system is based on a VMM that intercepts relevant hard-

ware calls from the application and system software being

evaluated. The VMM handles these calls to emulate the

hardware on which this application/system software is

being evaluated, and also provides monitoring and control

functionality.

The VMM is the central element in this system. Its pri-

mary responsibility is to interact with the guest software

stack to provide the illusion that the guest is running on the

hardware being emulated. To do this, it intercepts guest

software stack hardware accesses when necessary through

standard virtualization techniques and performs the follow-

ing tasks:

� emulate specified processor/system performance by

controlling the real and apparent flow of time in the

VM;

� invoke external architectural simulation tools to perform

detailed simulation of processor features and external

devices;

Guest Application

Guest OS

Monitoring Monitoring

Arch. Sim. Arch. Sim.Host OS

Physical
Hardware

Physical
Hardware

Host OS

Virtualization Virtualization

Network Emulation

Time Sync.

Guest OS

Guest Application

Figure 1. High-level architecture of large-scale VM-based testbed.
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� synchronize the local and remote processor and node

clocks to adjust for varying times due to architectural

simulation costs;

� provide performance information about the emulated

machine to external monitoring tools.

We describe each of these tasks in detail in the remainder of

this section.

3.2 VMM-based emulation

In addition to intercepting guest software stack calls and

coordinating activity between various system components,

the VMM is responsible for general coarse-grained proces-

sor emulation functionality. In particular, we will use

VMM-based emulation to achieve the following:

1. multiple nodes using a single node;

2. increased numbers of processors on a node;

3. increased and decreased processor speeds on a node.

In each of these cases, well-known past work on VM

time-dilation techniques (Gupta et al. 2006, 2008) form

the initial basis for our work. Time dilation runs each

guest node in a VM that runs at a fixed fraction of real

time by scheduling the VM less frequently and deliver-

ing timer interrupts more or less frequently that real

time.

Time dilation is important in our approach because it

allows a core or node to emulate more than one node, and

provides a virtual global clock source that synchronizes the

activities of all nodes in the emulated system. For example,

time dilation by a factor of four allows a single node to

emulate four hardware nodes or a node with four times as

many cores. It also guarantees that time is elapsing at the

same rate on all nodes in the system so that causality is pre-

served in communications between nodes.

Some systems, particularly those with heterogeneous

architectural features, cannot be implemented easily using

this approach. It may be possible to use external GPUs to

simulate more tightly integrated heterogeneous processors,

though virtualizing GPUs is already a challenging task. In

general, our strategy is to use external architectural features

to simulate more diverse architectural features, as described

in the following subsection.

3.3 External architectural simulation

Integration with multiple architectural simulators is also a

key element of our strategy for providing a testbed for

upcoming exascale systems. In particular, we will use both

processor simulators such as GEM5 (see http://gem5.org)

and device simulators from the SST simulation toolkit

(Rodrigues et al. 2006) to broaden the set of architectural

features our VM-based testbed can support.

3.3.1 Processor simulation. Periodic processor simulations

in cycle-accurate processor simulators such as GEM5 will

be used both to evaluate new processor features and to

calibrate the speed of VM-based processor emulation as

described in Section 4. For evaluating new processor fea-

tures, the VM will initially be configured to trap and

drop into the simulator whenever the guest software stack

executes instructions or touches other hardware resources

for which processor simulation is required due to a lack

of a hardware implementation and/or to make possible

detailed performance evaluation. As a run progresses,

the speed difference between the host CPU and the simu-

lated guest CPU can also be fed back to the VMM-based

processor simulator, allowing the VMM to emulate the

performance of the simulated processor more accurately

and reduce the simulation slowdown.

3.3.2 Device simulation. Device simulation, particularly of

network devices, is also a key element of our virtual testbed

strategy. We expect that researchers will extend SST or

other system simulators with simulations of proposed

network interfaces and networks. Using these simulated

devices in the context of VM would allow for their evalua-

tion in the context of an execution environment that could

run at the full speed of today’s hardware, except when those

simulated devices are being used.

Multiple simulated architectural devices will be tied

together into a distributed network simulation using an

approach similar to that we used in our previous work (León

et al. 2009). In particular, we will use Lamport clock-style

message timestamps to propagate message transmission

and reception times. The global synchronization provided

by a time-dilation approach, subject to the complications

described in the following subsection, will substitute for

the periodic global barrier synchronization used in that

approach.

3.4 Distributed slack simulation

The simulation capabilities described above necessitate

occasionally pausing simulation of a guest core or node for

a relatively substantial length of time. As a result, time in

different cores and nodes may occasionally advance at

different rates, unlike in traditional time dilation systems.

If these differences are not accounted for, simulation accu-

racy can suffer. For example, if time on node A is progres-

sing at a significantly slower rate than on node B and node

A sends a message to node B, the time at which node B

receives the message from node A may be incorrect by a

large amount. Traditional approaches to addressing this

problem, for example optimistic parallel discrete event

simulation (Fujimoto 1990), have runtime costs that are

potentially expensive and are complex to implement in a

virtual machine monitor setting.

We plan to use dilated time simply as a target rate at

which guest time should advance instead of a fixed rate

at which time must advance. Doing so will keep indepen-

dent cores approximately synchronized while still allowing

guests to deviate from dilated time when necessary for

128 The International Journal of High Performance Computing Applications 26(2)
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simulation purposes. When such deviation happens, the VM

will need to accelerate or decelerate the passage of guest

time so that it converges with the target time. This approach

trades some accuracy for reduced simulation time, and is a

form of slack simulation (Chen et al. 2009), a recent

approach for speeding up parallel simulation systems.

Because the operating system (OS) makes assumptions

about the accuracy and precision of different timers, conver-

ging guest time with target time is a bounded control problem.

When the guest is only occasionally monitoring low accuracy

timers (e.g. the programmable interrupt timer (PIT) timer), for

example, the VM can advance guest time without violating

OS assumptions about timing accuracy. However, when the

guest is quickly polling high-resolution timers like the time-

stamp counter, significant guest time changes would violate

such assumptions. By observing guest/timer interactions, the

VMM can determine the maximum possible rate at which it

can advance or retard guest time without violating the guest’s

assumptions about timer accuracy and precision.

3.5 Dynamic time dilation

We also plan to explore dynamically adjusting the time

dilation factor across nodes, because correctly setting the

time-dilation factor is vital for trading off emulation accu-

racy and time-to-result. For example, if the guest-simulated

time deviates by large amounts or diverges from the dilated

time, emulation accuracy can suffer, and dilating time fur-

ther (trading off time-to-result) can be used to improve

emulation accuracy. Similarly, if the emulation spends

large amounts of time with no VMs to dilate time appropri-

ately, reducing time dilation can improve simulation speed

without sacrificing accuracy.

To deal with global effects of changing the time dilation

factor, we are exploring gossip-based approaches that include

periodic global agreement, similar to our past work on load

balancing (Zhu et al. 2009). By including time information

in transmitted messages, something that is already necessary

for accurate network emulation (see Section 3.3), individual

nodes will be able to slowly change their time-dilation factor

and stay approximately in sync with the remainder of the

simulation. Larger changes in the time-dilation factor that are

more likely to lead to de-synchronization of nodes, will still

require some form of global agreement.

The goal of this distributed management of time dilation

between nodes is to allow nodes making heavy use of

simulation features to be more heavily dilated than those

that do not. In addition, allowing the time-dilation factor

to vary over the course of the run can potentially reduce

the time required to complete a full emulation run by

allowing emulation to run with less time dilation when

less simulation is required.

3.6 VM-based monitoring and analysis

Performance analysis for this emulation framework is nec-

essary for two primary reasons: 1) to help users understand

and evaluate the performance of their applications at a

micro-level and 2) to help us understand the behavior of the

framework itself. To do this, the VMM will provide

abstractions and mechanisms for cross-stack performance

monitoring and analysis to external monitoring tools.

The VMM provides a useful vantage point that makes it

possible for profilers to span at least four layers: the appli-

cation, the OS, the ‘‘hardware’’ interface exported by the

VMM, and the actual hardware. This is possible for several

reasons. First, many instruction-visible events are naturally

intercepted by the VMM (e.g., interrupts) or can be fun-

neled through the VMM via mechanisms such as virtual

address translation (e.g., access to a specific memory

region). Second, microarchitectural events can be moni-

tored by virtualizing the performance counters. The key

challenges are leveraging familiar abstractions for acces-

sing performance data, providing this data to higher level

guest OSes or applications, and enabling of non-intrusive

analyses.

4 Implementation plan and status

The implementation of our system is in progress. Our work

thus far has focused primarily on VMM enhancements to

support time dilation and architectural integration, but we

have also begun work on other portions of the system. In the

remainder of this section, we describe the current state of our

design and implementation, as well as planned next steps.

4.1 Virtual machine monitor

We are basing our implementation of the proposed archi-

tecture around the Palacios VMM that we have previously

developed to support lightweight virtualization in HPC

environments (Lange et a;. 2010). Palacios is an HPC-

oriented VMM designed to be embedded into a range of

different host operating systems, including the lightweight

kernels (Riesen et al. 2009), Linux variants potentially

including the Cray Linux Environment (Wallace 2007), the

MINIX microkernel, and others. Recent work has shown

that Palacios can virtualize thousands of nodes of a Cray

XT class supercomputer with less that 5% overhead (Lange

et al. 2011). Palacios’s combination of low overhead on

HPC systems and embeddability into traditional HPC oper-

ating systems, both lightweight and commodity-based,

makes it an ideal platform for our research. Palacios is open

source software made available under the BSD license and

can be accessed from our project web site, v3vee.org.

4.1.1 Time dilation support. To support time dilation in Pala-

cios, we are augmenting Palacios time management with

the necessary scheduling and timer interrupt control fea-

tures. In particular, to slow down guest time, Palacios uses

two quantities:

� target cycle rate, the number of cycles that the guest

should see execute per emulated second of guest time;
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� target time rate, the time-dilation factor for this guest

which determines at what rate timer interrupts are

delivered to the guest compared to real time.

At emulation boot time, Palacios uses the sum of the tar-

get cycle rates of all of the virtual processors on each host

specified to determine the minimum required target time

rate for the virtual machines it will emulate. For example,

if the VMM must emulate four 3 GHz processors using one

2 GHz core, it sets the minimum required target time rate to

6 ðð4� 3 GHzÞ=2 GHzÞÞ. Note that the target time rate can

be adjusted upward from this point, but cannot go any

lower than this minimum.

Given a target cycle rate and target time rate, Palacios

then schedules guest cores so that each receives the appro-

priate number of cycles in each one emulated second. In

the example above, Palacios needs to use a 2 GHz proces-

sor to give each of four virtual cores three billion cycles in

6 s of real time. In this simple example, that is done simply

by giving each core 1/6th of the host processor, but in

more complicated cases with higher specified time dila-

tion, Palacios may idle the core periodically so that the

correct number of guest cycles elapse for each second of

emulated guest time.

One important impact of this is that the guest timestamp

counter (TSC) does not have to be completely virtualized;

TSC offsetting supported by both Intel VT virtualization

and AMD SVM virtualization is sufficient. This is impor-

tant because virtualizing the TSC is potentially very

expensive—full TSC virtualization turns an instruction

that takes at worst tens of cycles into one that takes tens

of thousands of cycles.

4.1.2 Architectural and slack simulation support. In addition to

the time dilation support mentioned above, we have also

added the ability to pause, unpause, and synchronize guest

time to a provided reference time source to Palacios. In par-

ticular, Palacios now keeps track of how often timer events

are read or injected into the guest, and uses this information

to bound how quickly it offsets guest time towards the

desired target time rate. This limits guest-visible timer

inaccuracy while still allowing Palacios to control time pas-

sage in the guest for slack simulation purposes.

4.1.3 VM–VM communication. For VM-to-VM communica-

tion, we are relying on RDMA communication facilities

provided by the host OS in which Palacios is embedded, for

example Infiniband device support. The low latencies pro-

vided by such devices are essential for fast simulation of

low-latency network devices, and support for accessing

such devices is already being added to Palacios as part of

another project.

4.2 General simulator integration

The general structure of our proposed architecture is shown

in Figure 2. Palacios already provides mechanisms for

hooking specific instructions and regions of guest memory

such that they always cause a VM exit, passing control

from the guest back to Palacios for handling.

Once Palacios takes control on an exit from the guest pro-

cessor stack, it forwards information about the system event

to the simulator forwarding agent in host OS kernel-space,

which then forwards it to the simulator instance running in

user-space. After simulation is complete, machine-state

updates and timing information returned by the simulator

will be used by Palacios to update VM state and control the

progression of time in the guest environment.

The primary limitation of this approach is that it limits

the extent of what can be simulated. Obviously, if every

guest instruction causes a VM exit, performance may be

worse than when simulating with SST alone due to the

increased overhead. The best situation will be when the

vast majority of instructions are executed natively, and only

a small percentage are forwarded to SST for handling. We

expect that simulating relatively self-contained hardware

features such as network interfaces and global address

space schemes will demonstrate this behavior and perform

well with our approach.

4.3 Host device simulation integration

To support novel HPC hardware devices, we are working

on integrating the SST architectural simulator with Pala-

cios. SST is a parallel discrete event simulator that provides

a modular framework for constructing hardware device

models at various levels of fidelity. SST can be used to

simulate large-scale systems, and is itself an MPI program.

The downside to SST’s software-based approach is perfor-

mance. Our goal in integrating Palacios with SST is to

achieve higher levels of simulation performance by execut-

ing most code at near native speed in the hardware-

accelerated virtual machine environment, and only passing

control to SST when necessary.

Palacios VMM SST Forwarder

SST Forwarder

SST Simulator
Guest OS + Apps

Host OS Kernal Space

Host OS User Space

Figure 2. High-level architecture of Palacios VMM and SST archi-
tectural simulator integration.
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The integration of simulated network interface and

networks into Palacios is supported by its host device

framework. Figure 3 illustrates the framework and how it

can be used to integrate such simulated devices.

Palacios, like all VMMs, provides virtual devices to its

VMs. Normally, these devices are implemented within the

Palacios codebase itself. However, Palacios is designed to

be independent of the host OS into which it is embedded,

and thus simply dropping a previously implemented simu-

lated device into the Palacios codebase may be a chal-

lenge. The idea of the host device interface is to make it

possible for such a device to be implemented inside of the

host operating system instead of Palacios. Thus, for exam-

ple, in the Linux embedding, a simulated device could be

added to the Linux kernel instead of to Palacios. Further-

more, on Linux, we also provide a further interface, the

user host device interface, that makes it possible to inte-

grate a simulated device as a Linux userspace program.

This latter capability is the likely model that will be used

to integrate SST devices.

A host device is made visible to the guest via one of two

‘‘front-end’’ devices, the generic device and the PCIfront

device, which are components of Palacios that can be trivi-

ally added to a VM via its configuration file. The generic

device provides a front-end for legacy (non-PCI) devices.

What this means is that reads and writes to device-

relevant regions of memory and I/O port space are inter-

cepted by the generic device and are redirected to the host

device interface. The PCIfront device acts similarly, but

provides additional support for PCI devices, such as allow-

ing for configuration space reads and writes and dynamic

remapping of the device-relevant regions of memory and

I/O port space. In either case, what is redirected to the host

device interface are guest interactions with the device’s

visible control and status state.

The host device interface redirects these guest interac-

tions to the relevant registered host device implementa-

tions, or ‘‘back-ends’’. The implementations can also call

to the host device interface to raise interrupts and read and

write guest physical memory. The most straightforward

host device implementations are those that are

implemented directly in the host kernel. In particular, the

rendezvous between the back-end implementation and its

front-end device is very simple. Rendezvous is based

around a URL-like string that encodes the kind of back-

end needed and its specific name.

The user host device interface on Linux allows the

front-end device to rendezvous with a back-end userspace

program that accepts and processes the guest’s interactions,

and indirectly read/write the guest memory and generate

interrupts. In Linux, a Palacios VM is visible as a device

in the device namespace (/dev). The userspace process

opens this device and then initiates an ioctl to rendezvous

with the front-end. Once rendezvous completes, the ioctl

returns a file descriptor to the back-end userspace process.

This file descriptor is then used to read requests:

� read/write I/O port (I/O port-mapped device state);

� read/write device memory (memory-mapped device

state);

� read/write PCI configuration space.

For each request, the back-end returns a response, mini-

mally an acknowledgement. The processing path from the

guest action through the front-end device, the host device

interface, the user host device interface, the userspace

device back-end device implementation, and then back

through those interfaces is completely synchronous. As a

side-effect of processing a request, or at any other time, the

back-end device implementation can also initiate its own

requests:

� read/write guest memory;

� raise an interrupt.

These requests operate asynchronously. This combina-

tion of semantics and interfaces makes it possible to write

a full-fledged device implementation in userspace based

around an I/O model as simple as a single select loop, or

even a busy-wait loop.

4.4 Processor simulation integration

To support emulation of more complex architectural fea-

tures, we are also integrating a cycle-accurate processor

simulator with Palacios. In the remainder of this section,

we provide an overview of our approach to this integration.

We then describe in more detail how state is kept consistent

between the simulator and the VMM using a checkpointing

mechanism, as well as how we will control how often we

invoke the simulator from the VMM.

Figure 4. The architecture of checkpoint/restore support

in Palacios when embedded into a Linux host kernel. The

data path to support migration to and from the GEM5 simu-

lator is illustrated.

4.4.1 Overview. We are in the process of designing and

implementing a system to bridge state between the Palacios

VMM and the GEM5 architectural simulator (see http://

Application
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User Host Device Interface
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Linux Host Device
Implementation 
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Figure 3. The architecture of host device support in Palacios
when embedded into a Linux host kernel.

Bridges et al. 131

 at NORTHWESTERN UNIV LIBRARY on June 29, 2012hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


gem5.org). The goal of this work is to seamlessly migrate a

running guest and its applications between full-speed exe-

cution on physical hardware under Palacios to detailed,

cycle-accurate simulation under GEM5.

This capability will support not only the high-

performance study of next generation supercomputers via

SST integration, but also architecture research in general,

as GEM5 is not only an integral component of SST, but

also an extremely widely used tool in the computer archi-

tecture community.

The GEM5 simulation infrastructure combines two

long-lived simulation efforts within the architecture com-

munity to effectively model current and next-generation

computer architectures. The M5 simulator (Binkert et al.

2006) models processor microarchitecture at the detailed

level necessary for cycle-accurate, full-system simulation

of applications and operating systems. The GEMS toolset

(Martin et al. 2005) models future many-core processors

which include large shared cache architectures and on-chip

interconnection networks in a wide variety of configurations.

Independently, these two tools are among the most widely

used in the architecture research community. We expect that

VMM integration with the merged GEM5 code base will

support a wide range of research inquiries spanning the sys-

tem stack from high-performance computing through com-

pilers, operating systems, and hardware architectures.

4.4.2 Checkpoint-based state migration. The bridge between

Palacios and GEM5 is based on the basic checkpoint/

restore and migration framework implemented in Palacios.

Figure 4 illustrates the framework and shows how GEM5

integration fits into it. Essentially, VM state is check-

pointed and restarted between Palacios and GEM5 as nec-

essary, allowing the guest software stack to run in either

system as needed. Palacios’s keyed stream abstraction is

used to store checkpointed state to the host, as well as aid

in translating state between Palacios’s internal VM format

and the format needed by the external processor simulator.

Palacios’s representation of a VM essentially consists of

its memory and architectural state (e.g., registers), the state

of attached devices, and architecture-specific state (such

as the data structures that interface with Intel or AMD

hardware virtualization support). Palacios has been

designed so that the architecture-specific state can be

restored from the architecture-independent state. That is,

the architecture-specific state is soft state. Additionally,

memory management state (e.g. nested or shadow page

tables) are also soft state. Hence a checkpoint only stores

a minimal amount of hard state, dominated by the guest

memory contents. Finally, a restore looks very similar to

an initial startup of the VM, differing only in the restora-

tion of the hard state.

GEM5’s representation of a simulated system is essen-

tially a superset of the VM state maintained by Palacios.

As a stand-alone entity, the simulator must maintain virtu-

ally the same hard state, namely memory state, register

contents, and device state to faithfully capture the func-

tional behavior of the system. In addition, the simulator

also holds a large amount of architecture-specific soft state

which includes but is not limited to cache states, artifacts of

memory management, branch predictors, and pipeline

state. Collectively, these items are not strictly required to

produce correct functional behavior.

Given the close similarity between the Palacios check-

point state and the GEM5 checkpoint state, the implemen-

tation of a bridge between them boils down to user space

code that translates between the two syntaxes. When we

want to migrate from Palacios to GEM5, we checkpoint

state to a userspace keyed stream implementation corre-

sponding to the translator. Once the stream is closed, the

translator writes an equivalent GEM5 checkpoint, and the

caller then does an GEM5 resume from that checkpoint.

The migration from GEM5 to Palacios is similar.

4.4.3 Soft state reconstruction. While the translation of hard

state from Palacios to GEM5 is enough to allow us to cor-

rectly simulate a guest system, it cannot reproduce the soft

state which would be heavily used and updated during

cycle-accurate simulation. There are no direct ways to

translate this architecture-specific state from the guest to

simulator since much of hardware state including cache/

translation lookaside buffer (TLB) state is not accessible

to even privileged software. Furthermore, in general, the

simulated hardware may differ significantly from the host

hardware (e.g. differing cache configurations).

We address this by constructing an internally consistent

initial soft state. As GEM5 executes it populates caches,

TLBs, and queues, effectively warming up these simulated

structures which eventually converge to steady-state beha-

vior. This means that during first instants of resumed simu-

lation GEM5 may not report the same performance that we

would expect on a physical implementation. This is

unlikely to make a meaningful impact on overall results

since we expect that runtime behavior will begin to con-

verge to steady state after a several million cycles (less than
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Figure 4. The architecture of checkpoint/restore support in
Palacios when embedded into a Linux host kernel. The data path
to support migration to and from the GEM5 simulator is illustrated.
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1/1000 of a second of simulated time). We plan to also

investigate sampling techniques that may allow the simula-

tor to preload cache state based on access patterns seen dur-

ing guest execution. This could further reduce simulation

warmup time if necessary.

4.4.4 Controlling simulator invocation. In Palacios, it is possi-

ble to initiate a migration on any exit. So, for example, sup-

pose we exit on an invalid opcode. The exit handler can

determine that the opcode exists in GEM5, and thus

migrate to GEM5, which executes the instruction, and then

migrates back. As another example, we might use a debug

register (or page table manipulation) in Palacios to initiate

an exit when execution enters a critical loop in the applica-

tion, at which point the exit handler could migrate. Finally,

random sampling could be done without any Palacios or

GEM5 modification, simply by having a user process initi-

ate migrations at random times.

We are currently in the process of enhancing the Palacios/

GEM5 bridge with the goal of lowering the migration cost,

for example by sharing the guest memory state, supporting

migration of individual cores, and allowing callbacks to

devices implemented on the opposite side of the bridge.

4.5 Monitoring and analysis

To provide monitoring and analysis support, our baseline

approach is to extend the Performance API (PAPI)

(Browne et al. 2000) to support VMM performance coun-

ters. Our initial focus will be on the high-level PAPI inter-

face that supports simple (start, stop, and read) event

measurements. Later, we will include support for PAPI’s

low-level, programmable interface that supports grouping

related events to provide higher-level information. Using

this approach means that the myriad of existing PAPI-

based tracing, profiling, and analysis tools would become

usable with our VMM framework.

Additionally, we will explore mechanisms that perform

rudimentary performance analyses. Our approach is to

build a framework we call VMM Tuning and Analysis

(VTAU) using the TAU (Mohr et al. 1994) framework. The

VTAU framework will be used to wrap performance criti-

cal components (e.g., functions, code regions, and loops)

with tracing or profiling code as appropriate. This will

allow us to control the collection of timing and event infor-

mation mapped to VMM functionality. Our VTAU frame-

work will be able to leverage the feature-rich visualizations

of the TAU framework.

5 Related work

Many systems besides the one we propose have been

described that trade off complete simulation accuracy for

time-to-solution. Functional architectural simulators as

opposed to cycle-accurate simulators frequently make this

tradeoff. This includes, for example, the functional version

of the IBM Mambo simulator (Bohrer et al. 2004).

A number of systems have used techniques similar to the

ones we suggest for simulating or emulating large-scale

systems. As mentioned above, DieCast’s time dilation

approach (Gupta et al. 2006, 2008) is closely related to our

work, and forms a partial basis for the system we propose.

Unlike the system we propose, however, DieCast makes

only limited use of architectural simulation, in particular

only for high-latency devices such as disk systems. This

avoids the time synchronization issues inherent in simulat-

ing low-latency devices, but limits DieCast’s usefulness in

studying the impact of novel low-latency I/O devices in

large-scale systems.

Also closely related to the system we propose is

past work on cluster-based simulation of cluster systems

(León et al. 2009). This system uses network simulation

such as we propose in combination with a fine-grained pro-

cessor simulator, and allows for detailed simulation and

analysis of processor and memory system changes not

possible in the system we propose. Because of its reliance

on cycle-accurate simulation, however, its runtime is

bounded by the the runtime of individual node simula-

tions, which can result in slowdowns of several orders

of magnitude. As a result, this and similar systems are

most appropriate for studying the performance of bench-

marks and simplified mini-applications, not full applica-

tions such as we seek to study.

6 Conclusions

In this position paper, we have described the architecture of

a virtualization-based emulation system. This design is

based on the novel combination of a number of existing

techniques, including time dilation, slack simulation, and

network simulation and emulation, with additional tech-

niques to improve their performance. The resulting system

seeks to provide fast, full-scale emulation of future large-

scale architectures. Such emulations will aid the develop-

ment both hardware and software for upcoming exascale

class supercomputers.
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