










CID and posts the packet to the appropriate Infiniband RC
queue pair.

While the packet is handed off multiple times, there is no
copy from the guest’s socket buffer to the host’s NIC. We
adopt the zero-copy data forwarding technique to avoid any
data copies in the overlay. Note, however, that the guest
may include a copy from the application’s data buffers to
the VNET socket’s private buffer.

Reception with Zero Overlay Copies: As in the trans-
mit case, guests use the receive work queue in the VTOE
NIC to post receive buffers to different connections. The
VNET Core CA and VNET Host CA work together to post
these buffers to the queue pair associated with the shadow
connection. As in the send case, the receive datapath to the
guest OS does not require any copies, using the zero-copy
data forwarding technique. Also note that the receive path
does not need to route packets in the overlay, since each
shadow CID is associated with a unique guest socket ID.

5.2 Interfacing With Linux Guests
Interfacing VNET+VTOE with Linux is somewhat com-

plicated due to the lack of general TCP offload support in
Linux. We worked around this problem similarly to how
Infiniband and other Linux TCP offload implementations
do. In particular, we use the Infiniband SDP [3] approach
to dynamically change the application address family into
AF INET VNET using a preload library. This address fam-
ily then redirects to new offload drivers in the guest. This
code has two elements, the VNET socket provider and the
VTOE socket module.

The VNET socket provider is user-mode shared library
code that provides socket direct extensions to the TCP/IP
stack and determines which connections to redirect, based
on protocol type, to the AF INET VNET address family.
These socket direct extensions are completely transparent
to the higher-layer protocols and applications that run on
top of them. Applications interact in the same way with a
VNET+VTOE stack as they would with a standard TCP/IP
stack.

For the connection establishment calls, the provider makes
a routing and policy decision and decides whether a TCP or
VNET socket should be created. If a TCP socket is required,
all calls on the socket are redirected to the Linux socket
chain. If a VNET socket is required, the calls are redirected
to the kernel VNET socket module.

The VNET socket module handles the socket operations
redirected from the TCP socket by the VNET socket provider,
updating kernel socket state and interfacing the VTOE de-
vice as necessary. and responding asynchronous events.

Although in this work the user is responsible for inserting
the kernel module into the guest, and for assuring that the
application uses the preload library, this not strictly nec-
essary. In related work, we have shown how both of these
steps can be done without user or guest cooperation through
VMM-based code injection [9].

6. MICROBENCHMARKS
We first studied the effects of VTOE on a set of simple

TCP and MPI throughput and latency microbenchmarks.
Application benchmarks are described in Section 7.

6.1 Testbed
Our testbed, which is used both here and in the next sec-

tion, consists of 6 physical machines each with dual quad
core 2.3 GHz 2376 AMD Opteron “Shanghai” processors (8
cores total), 32 GB RAM, and a Mellanox MT26428 In-
finiBand NIC in a PCI-e slot. The Infiniband NICs were
connected via a Mellanox MTS 3600 36-port 20/40 Gbps
InfiniBand switch.

We compared the performance of four different configura-
tions, all mapped to underlying Infiniband RC connections:

• Native+SDP/Uverbs: Infiniband Socket Direct Pro-
tocol to offload TCP connections or MPI directly using
Infiniband user-level verbs.

• Native+IPoIB: In-kernel TCP over the Infiniband
in-kernel IP-over-IB implementation.

• VNET+VTOE: VNET Ethernet overlay with vir-
tual TCP offload support.

• VNET+IPoIB: In-kernel TCP over VNET on top of
the host IP-over-IB implementation.

For VNET+VTOE and VNET+IPoIB measurements, we
ran a simple Linux 2.6.32 host with a minimal BusyBox
configuration, and the Palacios VMM. The guest used was
a Linux 2.6.30 kernel also with a minimal BusyBox running
on a virtual machine with a single virtio network interface,
4 cores, and 2.5 GB of memory. In the VNET+VTOE con-
figuration, the guest is provided with a single virtual TOE.
Unless otherwise specified, the virtio NIC provided to the
guest was configured to use 9000 byte MTUs. For native
measurement, we ran a Linux 2.6.30 kernel also with a min-
imal BusyBox. For Native+IPoIB and VNET+IPoIB con-
figurations, MTUs are set to 65520.

Performance measurements were made between identically
configured machines. To assure accurate time measurements
in the virtualized case, each guest was configured to use
the CPU’s cycle counter, and Palacios was configured to al-
low the guest direct access to the underlying hardware cycle
counter.

The CPU utilization is reported by TTCP by dividing the
total of user mode time + guest OS kernel time by real used
wall-clock time, so it includes both the guest OS and VMM
CPU costs, and is not averaged for single-thread TTCP.

6.2 Microbenchmarks
We used simple two-node TCP and MPI benchmarks to

provide an initial characterization of the impact of our pro-
posed VTOE infrastructure. TCP throughput was measured
using ttcp-1.10. For simple MPI tests, we used the Intel
MPI Benchmark Suite (IMB 3.2.2) [11] running on Open-
MPI 1.3 [7], focusing on the point-to-point messaging per-
formance. For each test case, we ran 10 times and report
the average as the result.

6.2.1 TCP Uni-stream Bandwidth

Figure 3(a) shows uni-stream bandwidth performance for
VNET+VTOE running over a single connection along with
CPU utilization.

VNET+VTOE achieves near-native micro-benchmark per-
formance of 9.4 Gbps, compared to the 10 Gbps in the
Native+SDP case. This is higher bandwidth than Native+-
IPoIB performance, and Virtual TCP offload offers nearly
2.7 times the performance of VNET using IP-over-IB.
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(a) TCP Uni-stream Bandwidth (b) TCP Bi-stream Bandwidth

Figure 3: End-to-end TCP throughput and CPU utilization of Native+SDP, Native+IPoIB, VNET+VTOE,
and VNET+IPoIB on InfiniBand Interconnect. VNET+VTOE performs more than 2.5 times better then
VNET+IPoIB on the InfiniBand Interconnect

In terms of CPU usage, Native+IPoIB and Native+SDP
have the same receive-side CPU usage, while Native+IPoIB
has more transmit-side CPU utilization than Native+SDP.
In the virtualization cases, VNET+VTOE has 76% receive-
side usage compared to 99% for VNET+IPoIB. On the trans-
mit side, VNET+IPoIB has less CPU usage than VNET+-
VTOE.

Analysis: First, in the native cases, the more transmit-
side CPU utilization in Native+IPoIB, mainly comes from
the interrupt processing triggered by large amount of ACKs
generated in the receive-side TCP stack.

Second, in the virtualization cases, on the receive side, the
higher CPU usage in VNET+IPoIB comes from two-level
overheads: 1) On the first level, sender’s TCP processing,
and overlay’s data copies, encapsulation, de-encapsulation,
and routing all slower down the packet delivering rate (vir-
tual link speed), and thus more virtual interrupts are gen-
erated to the receive side, which have the receive side spend
more time on virtual interrupt processing; and 2) on the
second level, each incoming packet goes through the whole
guest TCP stack, which makes the receive side busier.

On the transmit side, in VNET+IPoIB, each incoming
packet has to go through the TCP stack, so the receive-side
TCP is slower in generating ACKs to the sender; moreover,
the virtual link is slower in delivering ACKs, and virtual
interrupt handling takes time, thus the flow control window
in the sender is exhausted faster, and therefore the sender
slows down.

6.2.2 TCP Bi-Stream Bandwidth

In addition to unidirectional TCP performance, we also
examined bi-stream bandwidth performance to measure the
duplex capability of VNET+VTOE. In this test, we use two
machines and two threads on each machine. Each thread
connects to its partner on the other machine, thus two con-
nections are established between the machines. On each

connection, the basic TTCP bandwidth test is performed.
The throughput and CPU usage are shown in Figure 3(b).

Native+SDP shows good duplex performance, delivering
10 Gbps bandwidth for each stream. In contrast, Native+-
IPoIB hits a bottleneck on bi-directional data transfer, with
each stream dropping to half of the wire capacity. This is
due to the TCP acknowledgment processing, which increases
CPU interrupt processing overhead.

In the virtual overlay configurations, VNET+VTOE also
fully utilizes the physical interconnect’s full duplex features.
Similar to the native case, VNET+IPoIB does not utilize the
interconnect’s full-duplex capabilities. This again mainly
comes from the guest-level duplicated reliability processing
and virtual interrupts triggered by ACKs from the TCP
stack.

The CPU utilization is also presented for each test con-
figuration. The benchmark reveals that Native+SDP and
VNET+VTOE can not only achieve high aggregated band-
width, they also show reduced overall CPU utilization. Specif-
ically, Native+SDP reduces receive-side average CPU uti-
lization compared with Native+IPoIB, and VNET+VTOE
reduces the transmit-side average CPU usages compared to
VNET+IPoIB.

6.2.3 CPU Utilization

There are two important observations regarding the mea-
surements shown in Figure 3.

1. Receive-side CPU utilization in the virtualized config-
urations is lower than for the native configurations,
while the opposite is true for the transmit-side.

2. In both native cases, receive-side CPU utilization higher
than transmit-side CPU utilization, while the opposite
is true for both virtualized configurations.

In the native cases, the real physical link is fast enough to
keep the receive-side CPU busy with incoming packets, and
the NIC speed is faster than the CPU, thus the application
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cannot consume data from the buffer as fast as it is filled.
The receive-side flow control window is quickly exhausted
and the sender has to slow down. In the native cases, the
network performance is bound to the receive-side CPU uti-
lization.

In contrast, in the virtualized cases, the virtual link pro-
vided by the overlay is slower, reducing load on the receiver.
The receiver now buffers data slower than the application
can consume it. The receive window is open, the sender
delivers data as fast as possible, and thus the network per-
formance is bound to the overlay virtual link data-transfer
rate.

6.2.4 MPI

Figure 4 shows the IMB MPI point-to-point performance
with VNET+VTOE. For small messages, VNET+VTOE
has more than two times lower message delay than VNET+-
IPoIB, but two times higher message delay than Native+-
IPoIB. For medium-sized messages, VNET+VTOE approaches
Native+IPoIB performance. For large messages, Native+-
IPoIB achieves about 47% of Native+Uverbs throughput,
while VNET+VTOE achieves 60% of Native+Uverbs per-
formance. VNET+IPoIB delivers about 28% of Native+-
Uverbs bandwidth.

7. APPLICATION BENCHMARKS
Beyond the microbenchmarks we described in the pre-

vious section, we also evaluated VNET+VTOE using the
HPC Challenge benchmarks, with the goal of characteriz-
ing the performance impact of the VTOE optimization on
communication-intensive applications.

7.1 HPC Challenge Benchmarks
The HPC Challenge (HPCC) benchmarks [10] are a set

of macro and application benchmarks for evaluating vari-
ous aspects of the performance of high performance comput-
ing systems. We used the communication-oriented macro-
benchmarks and application benchmarks to compare the
performance of VNET+VTOEwith Native+Verbs, Native+-
IPoIB, and VNET+IPoIB. For these tests, each VM was
configured with 4 virtual cores, 2.5 GB RAM, and a virtio
NIC. For VNET+VTOE, each VM is also configured with
a virtual TOE. For VNET testing, each host had one VM
running on it. We ran tests with 2, 3, 4, 5, and 6 VMs with
4 HPCC processes started on each VM. Thus our perfor-
mance results are based on HPCC with 8, 12, 16, 20, and
24 processes. In the native cases, no VMs are used and the
processes ran directly on the host.

7.1.1 Latency-Bandwidth Benchmark

This benchmark consists of the ping-pong test and the
ring-based tests, where the former measures the latency and
bandwidth between all distinct pairs of processes. The ring
based tests arrange the processes in a ring topology and
then engage in collective communication among neighbors
in the ring, measuring bandwidth and latency. The ring-
based tests model the communication behavior of multi-
dimensional domain-decomposition applications. Both nat-
urally ordered rings and randomly ordered rings are evalu-
ated. Communication is done with MPI non-blocking sends
and receives, and MPI SendRecv. Here, the bandwidth per
process is defined as total amount of message data divided

Figure 4: Intel MPI PingPong microbenchmark
showing bidirectional throughput as a function of
message size on InfiniBand Interconnect
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by the number of processes and the maximum time needed
in all processes.

Figure 5 shows the results of the HPCC Latency-Bandwidth
benchmark for different numbers of test processes. Ping-
Pong Latency and Ping-Pong Bandwidth results are con-
sistent with the previous microbenchmarks: Native+IPoIB
generally has 5–12 times higher latency than Native+Uverbs,
and 40–60% bandwidth of Native+Uverbs. In VNET+-
VTOE, bandwidths are within 60% of Native+Uverbs, and
latencies are about 2 times that of Native+IPoIB. In VNET+-
IPoIB, bandwidths are within 20–30% of Native+Uverbs,
and latencies are about 4 times that of Native+IPoIB la-
tencies. The results show that our VTOE can substantially
enhance the performance of a software-based overlay virtual
network like VNET/P on InfiniBand.

7.1.2 HPCC application benchmarks

We considered the three application benchmarks from the
HPCC suite that exhibit the largest volume and complex-
ity of communication: MPIRandomAcceess, PTRANS, and
MPIFFT.

In MPIRandomAccess, random numbers are generated
and written to a distributed table, with local buffering. Per-
formance is measured in billions of updates per second (GUPs)
that are performed. Figure 6(a) shows the results of MPI-
RandomAccess, comparing the Native+Uverbs, Native+-
IPoIB, VNET+VTOE, and VNET+IPoIB cases. Native+-
IPoIB achieves 90–100% of Native+Uverbs performance in
cases of 8 and 12 processes. However, when the scale in-
creases, Native+IPoIB only delivers 40–75% of Uverbs per-
formance. For the overlay, VNET+VTOE delivers full Native+-
IPoIB performance at 8 and 12 processes and 60% of Native+-
Uverbs performance as the scale increases.VNET+IPoIB achieves
60–70% of Native+Uverbs performance at scale of 8 and 12
processes, while delivers 40–45% of Native+Uverbs perfor-
mance at greater scales.

PTRANS does a parallel matrix transpose, exercising the
simultaneous communications between pairs of processors.
The performance is measured in the total communication
capacity (GB/s) of the network. Figure 6(b) shows the
result of PTRANS for the Native+Uverbs, Native+IPoIB,
VNET+VTOE, and VNET+IPoIB cases. Native+IPoIB
achieves 63–80% of Native+Uverbs performance. VNET+-
VTOE achieves 100% of Native+IPoIB performance and
outperforms Native+IPoIB performance as the scale of the
application gets bigger, while VNET+IPoIB frequently de-
livers 5–10% of the Native+IPoIB performance.

MPIFFT implements a double precision complex one--
dimensional Discrete Fourier Transform (DFT). Its perfor-
mance is measured in Gflop/s. Figure 6(c) shows the result
of MPIFFT for the Native+Uverbs, Native+IPoIB, VNET+-
VTOE, and VNET+IPoIB cases. Native+IPoIB achieves
65–85% of Native+Uverbs performance. VNET+VTOE achieves
near Native+IPoIB performance, while VNET+IPoIB deliv-
ers around 19–50% of Native+IPoIB performance.

7.2 Discussion
As shown in the evaluation results, VTOE significantly

improves bandwidth and reduces CPU utilization for bandwidth-
intensive codes. For large messages and throughput-sensitive
applications, VTOE outperforms Native+IPoIB. On the other
hand, for the application benchmarks, the network commu-
nication consisted of a mixture of small and large packets,

and so their performance was determined both by through-
put and latency. Recall small-message latency in VNET+-
VTOE is still high, about twice Native+IPoIB latency and
10–14x higher than Native+Uverbs, although it has been im-
proved compared with that in VNET+IPoIB by more than
50%. This may explain why some application benchmarks
cannot achieve native performance despite VNET+VTOE
achieving native throughput in the microbenchmarks.

The long latency mainly comes from the virtual interrupt
emulation overhead, and the virtualization overhead is more
expansive than TCP kernel stack processing. From the re-
sults of application MPIRandomAccess, we can see the high
latency has negative impacts on the overall performance.
We expect that the optimistic interrupt techniques described
elsewhere will reduce this overhead, but have not yet imple-
mented these techniques in VNET+VTOE.

Considering the tradeoff between CPU overhead and net-
work performance, it is again true that MPI applications mix
communication and computation, and thus reduced CPU
availability and thus more CPU-intensive communication
handling may affect computation. However, when the com-
munication is slow, the application cannot make progress
even if sufficient CPU time is available. This is of particular
concern for MPI applications that do significant collective
communication and synchronization.

8. CONCLUSION AND FUTURE WORK
We analyzed the challenges in deploying virtual Ether-

net overlays on advanced heterogeneous interconnects such
as InfiniBand. The difficulties come from the semantic gap
generated by virtualization. To reduce the semantic gap, we
proposed, designed, and implemented a virtual TCP offload
model to improve virtual Ethernet overlay performance, in
terms of throughput, latency, and CPU utilization. This
approach improves virtual Ethernet overlay TCP through-
put by more than 2.5 times, cuts TCP latency by 50%, and
improves TCP application performance.

Although VTOE has reduced VNET+IPoIB latency on
InfiniBand by 50%, its latency is still high. Our previous
work [6] did a quantitative analysis of virtual overlay over-
head. The high overlay latency is due to the delayed virtual
interrupt delivery into the guests. Optimistic interrupt al-
lows the overlay delivers virtual interrupts to the guest prior
to the overlay data processing, overlaps the overlay’s pro-
cessing with the virtual interrupt emulation. Merging this
technique into the virtual TCP offload model should reduce
latency. Additionally, current VTOE overhead still includes
a memory copy between guest kernel space and applica-
tion buffers. Since advanced interconnects have RDMA fea-
tures, it should be possible enable remote user space memory
copiess without the intervention of either guest kernels or
VTOE modules, avoiding all data copies. We are currently
implementing such functionality in the VTOE.
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