

Electrical Engineering and Computer Science Department

Technical Report

Number: NU-EECS-13-07

July 23, 2013

Dynamic Adaptive Resource Management in a Virtualized NUMA Multicore

System for Optimizing Power, Energy, and Performance

Chang Seok Bae

Abstract

A Non-Uniform Memory-Access (NUMA) machine is currently the most deployed type of a

hardware architecture for high performance computing. System virtualization on the other hand is

increasingly adopted for various reasons. In a virtualized NUMA system, the NUMA attributes

are transparent to guest OS’s. Thus, a Virtual Machine Monitor (VMM) is required to have

NUMA-aware resource management. Tradeoffs between performance, power, and energy are

observable as virtual cores (vcores) and/or virtual addresses are mapped in different ways. For

example, sparsely located vcores have an advantage in memory caching compared to densely

located vcores. On the other hand, densely located vcores tend to save power. Such tradeoffs lead

to an abstract question: how a VMM as a resource manager can optimally or near-optimally

execute guests under a NUMA architecture. In my dissertation, I claim that it is possible to solve

this problem in real time through a dynamic adaptive system. Workload-aware scheduling,

mapping, and shared resource management are controlled by adaptive schemes. The user may

demand one of three objectives: performance, energy, or power. My system also incorporates a

new detection framework that observes shared memory access behaviors with minimal overheads,

and includes models that estimate performance, power, and workloads’ resource demands. The

system uses a simple heuristic policy if it is sufficient to optimize the user demand objective.

My dynamic adaptive system, called NUMA-ware Virtualized Adaptive Runtime (NAVAR), was

designed, implemented, and evaluated with benchmarks from PARSEC, SPEC OMP, and NAS

suites. It can achieve more than a 10% performance and energy benefit over the default static

policy. And, its performance is never worse than the default. When NAVAR includes developed

offline models, these models are validated with the separate validation set from the training set.

NAVAR is also deployed and tested in two test machines, and its overheads suggest that it will be

highly extensible for scaled NUMA multicore machines.

This effort was made possible by support from the National Science Foundation (NSF) via grants

CNS-0709168, and the Department of Energy (DOE) via grant DE-SC0005343.

Keywords: Virtualization, NUMA, Adaptation, Energy

NORTHWESTERN UNIVERSITY

Dynamic Adaptive Resource Management

in a Virtualized NUMA Multicore System

for Optimizing Power, Energy, and Performance

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Computer Science

By

Chang Seok Bae

EVANSTON, ILLINOIS

August 2013

2

c©copyright by Chang Seok Bae 2013

All Rights Reserved

3

Abstract

Dynamic Adaptive Resource Management

in a Virtualized NUMA Multicore System

for Optimizing Power, Energy, and Performance

Chang Seok Bae

A Non-Uniform Memory-Access (NUMA) machine is currently the most deployed

type of a hardware architecture for high performance computing. System virtualization

on the other hand is increasingly adopted for various reasons. In a virtualized NUMA

system, the NUMA attributes are transparent to guest OS’s. Thus, a Virtual Machine Mon-

itor (VMM) is required to have NUMA-aware resource management. Tradeoffs between

performance, power, and energy are observable as virtual cores (vcores) and/or virtual

addresses are mapped in different ways. For example, sparsely located vcores have an

advantage in memory caching compared to densely located vcores. On the other hand,

densely located vcores tend to save power. Such tradeoffs lead to an abstract question:

how a VMM as a resource manager can optimally or near-optimally execute guests under

a NUMA architecture. In my dissertation, I claim that it is possible to solve this problem in

real time through a dynamic adaptive system. Workload-aware scheduling, mapping, and

shared resource management are controlled by adaptive schemes. The user may demand

one of three objectives: performance, energy, or power. My system also incorporates a new

4

detection framework that observes shared memory access behaviors with minimum over-

heads, and includes models that estimate performance, power, and workloads’ resource

demands. The system uses a simple heuristic policy if it is sufficient to optimize the user

demand objective.

My dynamic adaptive system, called NUMA-aware Virtualized Adaptive Runtime

(NAVAR), was designed, implemented, and evaluated with benchmarks from PARSEC,

SPEC OMP, and NAS suites. It can achieve more than a 10% performance and energy

benefit over the default static policy. And, its performance is never worse than the default.

When NAVAR includes developed offline models, these models are validated with the

separate validation set from the training set. NAVAR is also deployed and tested in two

test machines, and its overheads suggest that it will be highly extensible for scaled NUMA

multicore machines.

5

Thesis Committee

Peter A. Dinda, Northwestern University, Committee Chair

Russ Joseph, Northwestern University, Committee Member

Nikos Hardavellas, Northwestern University, Committee Member

Dongyan Xu, Purdue University, Committee Member

6

Acknowledgements

I am very grateful for those who helped me to complete my dissertation.

I indeed appreciate my advisor, Prof. Peter A. Dinda. I cannot express in a few words

for his enormous helps and guidance throughout my PhD study. He patiently encouraged

and motivated me especially when I faced obstacles. I am also amazed by his enthusiasm

and openness. It is my honor to finish my PhD under his guidance.

I also want to say many thanks to my thesis committee members and many faculty

members. Prof. Russ Joseph and Prof. Nikos Hardavellas brought me broader aspects

and knowledge of architecture and system. I appreciate Prof. Dongyan Xu for giving

me priceless comments as an external committee member from my proposal. I had two

chances to help Prof. Lawrence Henschen as a teaching assistant which also helped me to

leverage my communication skill and I respect his ceaseless efforts on teaching.

Many colleagues in Evanston campus and also people I met through the V3VEE project

gave invaluable feedbacks on my research. I was fortunate to have Lei Xia as my office-

mate who is a good friend of mine. We had many discussions on various topics. Jack

Lange is one of the smartest people I ever met and his broader and in-depth knowledge

in systems helped my research in various ways. Kyle Hale, Maciej Swiech, and Madhav

Suresh are good collaborators. Patrick Bridges, and Kevin Pedretti in the V3VEE project

gave helpful feedbacks during project meetings.

Besides the Northwestern community, many people I met at Intel during my three

internships gave incomparable advice and ideas. Especially, I must say my mentor Tayeb

Jamel at Intel whom I worked with for almost an year. He is smart, professional, and

even humorous. I miss many conversations we had at the lab. Stevan Rogers, Jisoo Yang,

Kyungtae Han, and David Ott gave me various insights that result in my dissertation.

7

Most of all, I want to give my special thanks to my family who endlessly support me

and pray for me.

8

Contents

List of Figures 14

1 Introduction 18

1.1 Virtualized NUMA Multicore Machine 19

1.2 Energy and Power Optimization . 20

1.3 Thesis Statement . 21

1.4 Related Works . 22

1.5 Outline . 23

2 Problem Statement and Possible Approaches 25

2.1 Notations and Variables . 26

2.2 Virtual Core Mapping (vcore-mapping) 29

2.3 Page Mapping (page-mapping) . 32

2.4 Virtual Core Scheduling (vcore-scheduling) 34

2.5 Approach for the Solutions . 37

2.5.1 Heuristic Approach . 37

2.6 Classes of Resource Demands . 38

2.7 Conclusion . 41

9

3 Design of NAVAR Adaptive System 42

3.1 Testbed and Workloads . 44

3.1.1 Hardware . 45

3.1.2 Software . 46

3.2 Detection Framework . 47

3.2.1 Hardware-assisted Software Monitors 48

3.3 Adaptation Mechanisms . 53

3.3.1 Virtual Core Migration . 55

3.3.2 Page Migration . 57

3.3.3 Gang-/Co-scheduling Mechanism 61

3.4 Power-off Memory Sub-system . 68

3.4.1 Abstraction of Proposed Hardware Mechanism 69

3.4.2 Estimation of the Impact of Memory Power-off 69

3.5 Conclusion . 70

4 Under-subscription: vcore-mapping 71

4.1 Tradeoffs and Opportunities . 72

4.1.1 Memory Reference Behavior Affecting Performance 73

4.1.2 Classification . 74

4.1.3 Tradeoffs in Power and Energy 76

4.2 Extended Detection Framework . 77

4.2.1 Algorithm . 79

4.3 Policy and System Design . 82

4.3.1 Approach . 83

4.3.2 Models . 84

4.3.3 Algorithm . 89

10

4.4 Experimental Results . 95

4.4.1 Model Predictions . 95

4.4.2 System Performance . 95

4.5 Conclusion . 97

5 Under-subscription 99

5.1 Tradeoffs and Opportunities . 99

5.1.1 Problem in Two-Dimensional Configuration Space 100

5.1.2 Tradeoff Factors . 101

5.2 Detection Framework . 109

5.2.1 Need for Sensitivity Checks . 109

5.2.2 First-Order Sensitivity Checks 109

5.2.3 Sampling Intervals . 112

5.2.4 Detection Mechanism . 116

5.3 Offline Modeling for NAVAR . 118

5.3.1 Classification . 118

5.3.2 Discussion of Classification . 123

5.4 Coarse-grained VCore/Memory Mapping Policies 127

5.4.1 NAVAR for Under-subscription 127

5.4.2 Brute-force Approach . 132

5.5 Fined-grained VCore/Memory Mapping Policies 135

5.5.1 Fine-grained VCore Mapping Policy 135

5.5.2 Fine-grained Memory Mapping Policy 139

5.6 Experimental Results . 141

5.6.1 NAVAR Results . 141

5.6.2 Brute-force vs NAVAR . 144

11

5.6.3 Fine-grained Approach vs Coarse-grained (NAVAR) 146

5.7 Conclusion . 147

6 Full-subscription 149

6.1 Tradeoffs and Opportunities . 149

6.2 Offline Modeling . 154

6.2.1 Classification . 155

6.2.2 Revising CS and LWSS . 157

6.3 Adjusted Detection Framework . 158

6.3.1 Sensitivity Check for Probing Duration 159

6.3.2 Algorithm . 161

6.4 Policies . 163

6.4.1 NAVAR for Full-subscription 164

6.4.2 Fine-grained Memory Mapping Policy 166

6.5 Experimental Setup and Results . 170

6.5.1 NAVAR Result . 171

6.5.2 Fine-grained Policy . 179

6.6 Conclusion . 179

7 Over-subscription 181

7.1 Tradeoffs and Opportunities . 181

7.1.1 Selection of Workloads . 182

7.1.2 Tradeoffs of Memory Mapping 184

7.1.3 Tradeoffs of Gang-scheduling 185

7.2 NUMA-Aware Co-scheduling . 188

7.2.1 Unconditional Yield Effect . 189

7.2.2 Strict Gang-scheduling vs Gang-scheduling Without Waiting . . . 190

12

7.2.3 Gang-scheduling vs. Co-scheduling 193

7.3 NAVAR Policy . 194

7.3.1 Metric . 195

7.3.2 Algorithm . 197

7.4 Experimental Results . 199

7.4.1 Interleaved Memory Mapping for Performance and Energy 199

7.4.2 Co-scheduling Results . 202

7.5 Conclusion . 208

8 Generalization 209

8.1 Combined Policy . 210

8.1.1 Under-subscription . 210

8.1.2 Full-subscription . 211

8.1.3 Over-subscription . 212

8.1.4 Combined Policy . 213

8.2 Different Machine . 214

8.2.1 Tradeoffs and Opportunity . 215

8.2.2 NAVAR Migration to New Machine 216

8.2.3 Evaluation . 218

8.3 Scalability of NUMA Domains . 221

8.4 Conclusion . 222

9 Related Works 223

9.1 Virtual Core or Thread Mapping and Scheduling 223

9.2 Page Allocation and Memory Scheduling Schemes 226

9.3 Energy Proportionality . 227

9.4 Monitoring . 229

13

9.5 Control Scheme . 231

10 Conclusion 234

10.1 Contributions . 235

10.2 Future Work . 236

A Dynamic Adaptive Virtualized Virtual Memory (DAV2M) 258

A.1 Paging Approaches . 260

A.2 Workloads . 263

A.3 Behavior and Metrics . 266

A.4 Mechanism . 270

A.5 Policy . 271

A.6 Results . 277

A.7 Related Work . 282

A.8 Conclusions . 283

14

List of Figures

2.1 Illustration of vcore-mapping problem. 29

2.2 Depiction of page-mapping problem. 32

2.3 Illustration of the vcore-scheduling problem. 35

3.1 Illustration of overall adaptive system design 43

3.2 Features of test machines . 44

3.3 Illustration of probing on a timeline. 51

3.4 Illustration of the vcore migration mechanism. 54

3.5 Illustration of the page migration mechanism. 58

3.6 Illustration of the scheduling mechanism. 61

3.7 Instantaneous power between power-off and default 68

4.1 Comparing the interleaved and local vcore mappings 72

4.2 Classifying workloads by their memory traffic characteristics. 75

4.3 Illustration of probing on a timeline. 78

4.4 CPI accuracy . 83

4.5 Performance results for the under-subscription 96

4.6 Energy results for the under-subscription 96

4.7 Power results for the under-subscription 97

15

5.1 Illustration of vcore and memory mappings for the under-subscription. . . 102

5.2 Illustration of tradeoffs for under-subscription 103

5.3 Comparison between the CCMC and CCMI mappings 104

5.4 Comparison between the CIMC and CIMI mappings 104

5.5 Comparison between the CCMC and CIMC mappings 105

5.6 Comparison between the CCMI and CIMI mappings 105

5.7 Sensitivity of the number of vcores . 110

5.8 Sensitivity for the resource mapping. 112

5.9 Performance comparison between the CCMC and CIMC mappings 114

5.10 Sensitivity of the scanning interval . 115

5.11 Setup for the scanning interval sensitivity check. 115

5.12 The LWSS classification . 119

5.13 The CS classification . 121

5.14 Variations in instructions across workloads 122

5.15 Comparison between the LWSS and CS classes 125

5.16 The results of BODYTRACK . 142

5.17 The results of CG. 142

5.18 The results of EP. 143

5.19 The results of FREQMINE . 143

5.20 The results of EQUAKE . 144

5.21 The results of STREAMCLUSTER . 145

6.1 Illustration of memory mappings . 151

6.2 Illustration of tradeoffs in the full-subscription. 152

6.3 Illustration of the EPNM classification 154

6.4 Performance comparison between the CCMI and CCMC mappings 159

16

6.5 Sensitivity of the probing interval . 160

6.6 Results of LU and ART . 172

6.7 Results of LU and MGRID . 173

6.8 Results of EQUAKE and FREQMINE 174

6.9 Results of EQUAKE and APSI . 175

6.10 Results of EP and FREQMINE . 176

6.11 Results of CG and STREAMCLUSTER 177

7.1 Preliminary performance check for the over-subscription 182

7.2 Tradeoffs of memory mapping . 183

7.3 Preliminary results for BT-SWIM-LU 185

7.4 Preliminary results for LU-APSI-EQUAKE 186

7.5 Preliminary results for EQUAKE-SWIM-APSI 186

7.6 Illustration of vcore-scheduling mechanisms 187

7.7 Comparison of GREEDY and FRIENDY performance 188

7.8 Comparison between strict gang- and gang-scheduling. 190

7.9 Comparison between gang- and co-scheduling 193

7.10 CPM correlation check . 196

7.11 Results of LU-EQUAKE . 200

7.12 Results of LU-APSI-EQUAKE . 201

7.13 Results of LU-EQUAKE . 202

7.14 Results of BT-SWIM-LU . 203

7.15 Results of EQUAKE-SWIM-APSI . 204

7.16 Results of APSI-EQUAKE . 205

7.17 Results of LU-SWIM . 206

7.18 Results of BT-SWIM . 207

17

8.1 Illustration of the unbalanced hardware thread partition 211

8.2 Tradeoffs of memory mapping . 215

8.3 Comparison of the thresholds for the LWSS classificatoin 216

8.4 Results of SP . 218

8.5 Results of BT . 219

8.6 Results of CG . 219

8.7 Results of EP . 220

A.1 Features of primary test machine. 264

A.2 Surveyed TLB-intensive workloads. 265

A.3 Locality of reference analysis of benchmarks. 266

A.4 Tradeoffs between nested and shadow paging 269

A.5 State transition diagram. 272

A.6 State transition timeline. 273

A.7 Performance of DAV2M . 278

A.8 Performance of DAV2M on the second test machine. 279

A.9 Number of transitions seen during execution. 281

A.10 Percentage of time spent in each mode under DAV2M. 282

18

Chapter 1

Introduction

System virtualization is popular in many different hardware contexts. Demands on HPC

and cloud services in these days accelerates the deployment of system virtualization, be-

cause the virtualization technique provides great flexibility in system resource manage-

ment concerns. On the other hand, a modern node or server features multiple sockets in

one physical machine (a NUMA1 multicore system), and each socket (a NUMA domain)

has multiple cores and a separate memory space with its own memory controller. As more

hardware threads are made available by the NUMA multicore machine, more parallel and

concurrent workloads are available to be executed. Given that, the multiple choices of

which cores and memory banks are mapped to an application (a guest) invoke various re-

source management optimization problems with regards to virtual core (vcore) and page

mapping, and vcore scheduling.

I claim that these salient resource management optimization problems can be solved

by an interference-based (black box based) dynamically adaptive system. To solve a re-

source management problem, in general it is important to know the resource demand and

1Non-Uniform Memory-Access

19

provisioning (supply), and typically it is hard to extract the resource demand information

in advance. The white box approach has advantages in that it can capture the applications’

resource demands more directly. However, the white box approach has scalability issue,

because it tends to be customized for each application. When system optimizations lie in

a coarse-grained level, the black box approach is particularly viable. If the system can be

optimized by a black box approach or a simple heuristic, the scope of coverage can be

smoothly extended, which is particularly useful for managing large scale nodes for high

performance computing and backend servers. The system further needs to be dynamically

optimized during runtime. Along with searching the best configuration, the overhead for

system reconfigurations themselves should be managed.

1.1 Virtualized NUMA Multicore Machine

The virtualized NUMA multicore machine has two attributes: non-uniform memory-access

with multicore, and resource virtualization. For resource virtualization and for system

optimization, the virtual machine monitor (VMM) is central for driving inference-based

resource management due to observability and controllability available from the VMM

context.

The NUMA multicore machine exhibits differences in the memory hierarchy despite

the uniform memory access. The physical memory in the system is divided into partitions,

each of which has a different performance profile depending on the accessing core. De-

pending on the location of a core and the accessed page, memory-access distance varies,

which produces tradeoffs in the resource mapping.

When the NUMA multicore machine is virtualized, more software layers are intro-

duced. The virtualized system has a VMM on top of host OS. While pursuing the black

box approach to address the tradeoffs in the resource mapping, the inference work can be

20

made in one of the software layers: in the VMM, in the host OS, and even in the guest OS.

When the observation is made in the guest OS context, the resource provisioning informa-

tion of the physical machine should be exposed to the guest OS. Even with the physical

hardware information, the guest OS still needs to make inferences for the application. The

guest OS may be better able to extract application’s information; however, the VMM can

also obtain the context information of the guest OS. Also, the guest OS approach hurts the

scalability and flexibility that the system virtualization can provide, because the optimiza-

tion is very dependent on the guest OS version.

Instead of exposing the NUMA attributes to the guest, the VMM can create a vir-

tual machine (VM) with all flat (SMP) topology of virtual cores (vcores). The fact that the

VMM has the guest system information makes itself to be different from the host OS. Tech-

nically, the VMM has the same privilege as the host OS; therefore, the inference work in

the VMM does not affect the system scalability. Furthermore, the VM context information

is important when multiple VMs run with multiple potentially overlapping vcores. The

commodity host OS is designed to schedule processes with a fairness objective. Some-

times, the vcores (kernel processes) of one VM needs to be executed at the same time;

otherwise, the waiting time for synchronization would be unnecessarily increased. This

issue happens for any virtualized multicore systems.

1.2 Energy and Power Optimization

In the abstract, providing more resources is expected to boost performance. More re-

sources here refers to more cache space and memory bandwidth, for example, to decrease

memory-access time. Since NUMA multicore physical machine become available, sig-

nificant efforts have been made and are still under investigation for minimizing overall

memory-access time. However, the over-provisioning cases have been more often dis-

21

regarded. The degree of resource demand is a characteristic of the application; thus, de-

pending on the workload, more resources do not necessarily help to make it faster. The

withdrawal of the over-provisioned resource helps to reduce energy, which is operational

cost. Therefore, one way to optimize energy is to power-off or power-down the hardware

module that is not currently used or does not help the execution speed. On the other hand,

power optimization is different due to its orthogonality the execution time. One extreme

case for power optimization is consolidating all vcores in one physical core, that mini-

mizes power, but at potentially high energy and low performance. The problem for power

optimization involves performance constraints.

System virtualization allows us to migrate VMs to a different physical machine seam-

lessly during runtime. This feature gives an opportunity to consolidate multiple VMs to

power-off an entire machine. This coarse-grained VM mapping strategy works if the re-

source demand is predictable; otherwise, the VM migration cost is not commensurable

with the energy saving. In particular, when resource demand is fluctuating and the VM is

not yet consolidated, energy and power optimization in a single node (one physical ma-

chine) has considerable opportunity.

1.3 Thesis Statement

In a virtualized NUMA system, there are tradeoffs between performance, power, and en-

ergy given where vcore and/or virtual addresses are placed and when vcores are scheduled.

Sparsely placed vcores take better advantage of cache and memory channels compared

to densely placed ones which conversely save power with resource contention. Further-

more, specific memory-access patterns generated by some workloads result in opposite

tradeoffs. These rules of thumb are aspects of a broader problem: how a VMM can op-

timally or near-optimally execute guests under a NUMA architecture. I claim that it is

22

possible to solve this problem in real time through a dynamic adaptive system. I have de-

veloped a system, NAVAR (NUMA-aware Virtualized Adaptive Runtime), that performs

workload-aware scheduling, mapping, and shared resource management in pursuit of the

objectives that the user demands. The basis of NAVAR is a framework that detects shared

memory-access patterns with minimal overheads and minimal machine dependencies, and

then predicts resource demands and estimates contention due to sharing.

1.4 Related Works

The matter of thread mapping and scheduling is a hot topic and a very traditional problem.

In virtualized systems, the VMM needs to be extended with adaptive resource provisioning,

since resource attributes are transparent to the guest OS and parallel workloads are becom-

ing mainstream. Virtual cores (vcores) tend to be numerous when multiple parallel applica-

tions are executing at the same time. In this context, co-locating and co-scheduling threads

have been addressed recently in the context of space sharing for native systems [90, 22, 49].

Moreover, for concurrently executing workloads, synchronization is also important. Co-

scheduling has been successfully demonstrated to this end [92, 105, 50]. Some recent

papers [116, 17, 115, 107, 72] argue for selective co-scheduling policies for virtualized

systems to mitigate the side effects of co-scheduling. However, there are still research

opportunities in these areas. For space-sharing concerns, mapping vcores has not been

addressed thoroughly with the constraints of virtualization, NUMA characteristics, and

power-proportionality. Most of previous studies are conducted in native systems and exe-

cuted without energy-awareness. Furthermore, tradeoffs indeed exist as a matter of perfor-

mance, energy, and power. Energy proportionality becomes one of the crucial constraints

in system design as well. Meisner et al. [87] investigate opportunities in energy savings

across different hardware components. They conclude memory systems need further im-

23

provement. Recently significant efforts were made in the hardware [41, 42, 34, 63, 12].

Although these new hardware designs are not yet deployed, the benefit of these new fea-

tures can be investigated. The resource management problem for the NUMA multicore

machine is still a hot issue [28, 40]. Mostly, performance optimizations are discussed in

a native environment; therefore, power-proportionality and optimization in a virtualized

system are still open research problem in the context of NUMA.

1.5 Outline

In Chapter 2, three major problems are formulated individually. The vcore mapping prob-

lem (vcore-mapping) addresses tradeoffs in cache contention and energy consumption.

Mapping vcores across different sockets takes more space in caches with increased power

as sockets are active. Accordingly, the location of pages in multiple NUMA domains is

related to the cores that execute application threads, which affects memory-access traffic

(page-mapping). The more pages that are spread across multiple NUMA domains, the

more bandwidth is utilized. Scheduling vcores in a hardware thread is another problem

(vcore-scheduling). This issue appears when multi-threaded workloads are run con-

currently. More delays on lock waiting can occur in a virtualized system than in a native

system if the system scheduler is not aware of the runtime characteristics of the multiple

vcores.

Regardless of the problem formulation, resource management problems do not occur

independently in a real world; therefore, the problem must be addressed in a different

way. The vcore-scheduling problem especially occurs only when multiple vcores

are mapped to one hardware thread. In this situation, system resources are fully utilized;

thus, there is little chance to power-off a hardware sub-system. Conversely, when the sys-

tem resources are underutilized due to the small number of VMs that are used, it becomes

24

more important to keep power-proportionality for energy efficiency. And also, in this case,

the system tends to have more configuring options. Overall, resource demanding situa-

tions are classified into three different cases. The three classes are under-subscription,

full-subscription, and over-subscription, which are addressed in separate chapters. First,

the overall system design approaches are discussed in the Chapter 3. The chapter also de-

scribes the three resource management mechanisms, the common experimental setups, and

the classification of the three types of resource demanding cases. Chapter 4 and 5 are about

the under-subscription cases. The following Chapter 6 and 7 describe the full-subscription

and over-subscription cases separately. Besides the differences in the situation, each chap-

ter discusses different system designs particularly from policy design perspectives. Chap-

ter 8 wraps up the overall different policy designs by discussing the generalization. The

combined policy and testing of the designed system in a different machine are also pre-

sented in the chapter. It also includes discussions for the scalability of the policy. Chap-

ter 9 discusses relevant articles, and Chapter 10 summarizes the whole chapters, lists major

contributes, and presents possible future works.

25

Chapter 2

Problem Statement and Possible

Approaches

This chapter introduces key resource management problems and their formulations. It

also includes brief discussions about possible approaches to solve them. The purpose of

this chapter is to comprehensively illustrate the problems. The problem statement is on the

three main problems: vcore-mapping, page-mapping, and vcore-scheduling.

They are described here as strongly decoupled with each other so that each problem is

clearly identified. The problems are a type of an optimization problem, which is com-

prised of objective functions, constraints, and metrics. The objectives are performance,

power and energy in virtualized systems. One of them can be chosen. Once the commonly

used notations and variables are defined, the three problems are formulated succinctly.

After formulating problems and addressing possible approaches to solve them, the sit-

uations that raise the resource optimization problem are classified. The classification may

help to solve the problems efficiently.

26

2.1 Notations and Variables

These notions and variables are commonly used in the key problem formulations.

• vcore ∈ V = {0, ..., v}: Number of distinct vcores across VMs in a machine. V is

a set including all vcores. Note that it uniformly counts vcores across different VMs

on a physical machine.

• vm ∈ VM = {0, ...,max vm}: Number of VM. VM is a set including all VMs in a

machine.

• max vcore(vm): Maximum number of vcores in a VM vm.

• vcorevm ∈ Vvm = {0, ...,max vcore(vm) − 1}: Number of vcores in the VM vm.

Vvm is a set including all vcores of the VM vm. |Vvm | is equal to max vcore(vm).

• (vcorevm , vm) ∈ VVM = {(0, 0), ..., (max vcore(0)− 1, 0), ..., (0,max vm), ...,

(max vcore(max vm)− 1,max vm)}: The distinct vcore vcorevm of the VM vm.

• lcore ∈ L = {0, ..., l}: Number of logical cores1 in each physical core. L is a set

including all logical cores in a physical core.

• pcore ∈ P = {0, ..., p}: Number of physical cores in each socket. P is a set

including all physical cores in a socket.

• socket ∈ S = {0, ..., s}: Number of sockets2 in a physical machine. S is a set

including all sockets in a physical machine.

1A distinct logical core represents one hardware thread.
2A socket and a NUMA domain are used interchangeably.

27

• (lcore, pcore, socket) ∈ C = {(0, 0, 0), ..., (l, p, s)}: A distinct hardware thread as

the logical core lcore of the physical core pcore of the socket socket . C is a set

including all logical cores in a machine.

• (pcore, socket) ∈ C ′ = {(0, 0), ..., (p, s)}: A physical core, pcore and its the socket

socket . C ′ in a physical machine.

• (lcore, pcore) ∈ C ′′ = {(0, 0), ..., (l, p)}: A distinct hardware thread, lcore and its

phyiscal core pcore, in a certain socket. C ′′ is a set including all hardware threads

in a socket. Note that a Symmetric Multi-Processor (SMP) model is assumed, thus

every socket should contain the same core topology and the same number of logical

and physical cores.

• pfn ∈ P = {0, ..., p}: A distinct page frame number in the guest physical address

space, representing a page that should be mapped to one physical page frame num-

ber. P is a set including all page frame numbers. Note that it uniformly counts across

different VMs.

• Exectimevcore,(lcore,pcore,socket): Execution time is the time taken by executing a task

tied to the vcore vcore mapped to the hardware thread, (lcore, pcore, socket)

• Makespanvm : Makespan, by definition, is the time difference between the start of

the first task and the end of the last, particularly in a multi-task execution; therefore,

each VM vm has its own makespan Makespanvm .

• sMakespanvm : Makespan of vm when there is only one VM vm runs with a bal-

anced mapping, which refers to the mapping that vcore siblings (vcores from the

same VM) are mapped in different hardware threads.

28

• cMakespanvm : Makespan of vm when there are other max vm VMs running, hold-

ing the balanced mapping. Note that cMakespanvm and sMakespanvm should be the

same when |VM | = 1; however, Makespanvm and sMakespanvm may be different,

because Makespanvm is not declared with any restrictions for the vcore mapping.

• PageAccessDelayspfn : DRAM access delays for the page frame number pfn.

• xvcore→(lcore,pcore,socket) ∈ {0, 1}, x(vcorevm ,vm)→(lcore,pcore,socket) ∈ {0, 1}: A vcore

mapping status to a hardware thread. The mapping status is binary, either mapped

(1) or not (0).

• xvcore→socket ∈ {0, 1}: A vcore mapping status to a socket. The mapping status is

binary, either mapped (1) or not (0).

• wpfn→vcore ∈ {0, 1}: A page mapping status to a vcore. The mapping status is binary,

either mapped (1) or not (0).

• wpfn→socket ∈ {0, 1}: A page mapping status to a socket. The mapping status is

binary, either mapped (1) or not (0).

• y(pcore,socket): Power state of the physical core pcore of the socket socket .

• y′socket : Power state of the DRAM controller of the socket socket .

• pvcore,(lcore,pcore,socket): Power of the distinct hardware thread, (lcore, pcore, socket),

when the vcore vcore is mapped.

• pcpu max : CPU power cap that a user provides or is unbounded.

• pdram active(PageAccessDelayspfn): Active power spent on accessing DRAM. It is

linear to the input, PageAccessDelayspfn .

29

Virtual MachineVirtual Core

Allocated memory
for VM

vcore mapping (which HW thread ?) SocketPhysical core

Logical core
(HW thread)

D
R

A
M

D
R

A
M

Figure 2.1: Illustration of vcore-mapping problem.

• pdram static: Static power in DRAMs.

• pdram max : DRAM power cap that a user provides or is unbounded.

2.2 Virtual Core Mapping (vcore-mapping)

The problem is about a selection of one configuration of the vcore mapping (Figure 2.1)

with constraints for all objectives: performance, power, and energy. Shmoys et al. [102]

and Khuller et al. [71] formulate a similar problem of thread-to-core mapping with power

constraints. Similarly, the objectives and constraints that are related to the vcore-mapping

can be formulated. The problem formulation incorporates abstract metrics such as an ex-

30

ecution time and CPU power. At first, two assumptions should be noted. They decouple

vcore-mapping from page-mapping and vcore-scheduling.

• under-subscription3 and balanced scheduling: In the case of over-subscription4,

multiple vcores may be mapped to the same hardware thread, which potentially in-

vokes the scheduling problem depicted in Figure 2.3. Even with the under-subscription

assumption, a VMM or a host OS possibly schedules multiple vcores, even from

the same VM, on the same hardware thread; therefore, the constraint of balanced

scheduling is necessary to completely decouple this problem from the scheduling

concerns. Balanced scheduling refers to the configuration where vcore siblings are

located in different hardware threads [107].

• Pages are allocated in one specific NUMA domain: This constraint decouples the

problem from page mapping choices.

Objective One of three objectives can be chosen:

1. Performance objective:

Min
∑

vm∈VM

Makespanvm

2. Power objective:

Min
∑

(lcore,pcore,socket)∈C

∑
vcore∈V

(pvcore,(lcore,pcore,socket) · xvcore→(lcore,pcore,socket))

3The number of all vcores is less than the number of all available hardware threads
4The number of all vcores is more than the number of all available hardware threads

31

3. Energy objective:

Min
∑

(lcore,pcore,socket)∈C

∑
vcore∈V

(Exectimevcore,(lcore,pcore,socket) · pvcore,(lcore,pcore,socket)

·xvcore→(lcore,pcore,socket))

Subject to

∀(lcore, pcore, socket) ∈ C,
∑

vcore∈V xvcore→(lcore,pcore,socket) ≤ 1: Each hardware thread

should serves at most one vcore for the balanced scheduling assumption. This con-

straint conveys the under-subscription assumption as well.

∀vcore ∈ V,
∑

(lcore,pcore,socket)∈C xvcore→(lcore,pcore,socket) = 1: Each vcore should be

mapped to only one hardware thread.

∑
(pcore,socket)∈C′ (

∑
lcore∈L

∑
vcore∈V xvcore→(lcore,pcore,socket) · p(lcore,pcore,socket)) · y(pcore,socket)

<pcpu max : If overall CPU power cap is given, total power should be limited to it.

∀vcore ∈ V, ∀(lcore, pcore, socket) ∈ C, xvcore→(lcore,pcore,socket) ≤ y(pcore,socket): When

a physical core is powered-down, the physical core cannot be assigned to any vcore.

∀pfn ∈ P,
∑

socket∈S wpfn→socket = 1: Each page should be assigned at most one socket.

∃socket ∈ S, ∀pfn ∈ P, wpfn→socket = 1: Each page should be assigned to memory

space in one specific socket (in this case, socket socket).

xvcore→(lcore,pcore,socket) ∈ {0, 1}, y(pcore,socket) ∈ {0, 1}: Mapping status is binary, either

mapped (1) or not (0). Also, power state is either active (1) or idle (0) to fit the

problem into an integer linear programming problem by relaxing constraints.

32

Page migration

(which NUMA domain ?)

Logical core
(HW thread)

Socket

Virtual Core

Virtual
Machine

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

Allocated memory
for VM

Figure 2.2: Depiction of page-mapping problem.

2.3 Page Mapping (page-mapping)

This problem addresses the trade-offs between the locations of pages in NUMA domains.

The problem is illustrated in Figure 2.2 and is another configuration concern. The optimal

configuration may vary according to the selected objective. The objectives and constraints

are formluated with abstract metrics such as DRAM power and page access delays. Before

the formulation, three assumptions should be noted. The first two assumptions decouple

the problem from other problems, vcore-mapping and vcore-scheduling. The

third assumption specifies the configurability on memory allocations in a hardware-level.

The last assumption explains the reason why power and energy objectives are formulated

in the same manner.

• Virtual core mapping to the physical core is fixed: This assumption excludes

variations from vcore-mapping; thus, DRAM access time (PageAccessDelay)

indeed determines the performance, and the degree of power is coupled with the

latency of the DRAM access pathway.

• Balanced mapping for all vcores with under-subscription conditions : Similar to

33

vcore-mapping, scheduling effects are excluded from this problem formulation.

• Page allocation is interleaved across channels and DIMMs within a socket: The

following formation ignores the option for allocating a page into a specific region in

a NUMA domain; therefore, the tradeoffs between interleaved and non-interleaved

allocations in a socket are not considered. Nonetheless, these trade-offs are still

important and promising options for the better energy proportionality.

Objective

1. Performance objective:

Min |
⋃

pfn∈P

PageAccessDelayspfn |

2. Power objective:

Min(
∑

socket

y′socket∈S · pdram static + pdram active)

3. Energy objective:

Min(
∑

socket

y′socket∈S · pdram static + pdram active· (|
⋃

pfn∈P

PageAccessDelayspfn |))

Subject to

∀(lcore, pcore, socket) ∈ C,
∑

vcore∈V xvcore→(lcore,pcore,socket) ≤ 1: Each logical core

serves at most one vcore, excluding vcore-scheduling.

34

∀pfn ∈ P, 0 ≤
∑

vcore∈V wpfn→vcore ≤ |V |: Each page is touched by none or less than

the total number of vcores.

∀pfn ∈ P,
∑

socket∈S wpfn→socket = 1: Each page should be assigned at most one socket.

∑
socket∈S ysocket · pdram static + pdram active(

∑
pfn∈P PageAccessDelayspfn) ≤ pdram max:

If overall DRAM power cap is given, total power should be limited.

∀pfn ∈ P, ∀socket ∈ S, wpfn→socket ≤ y′socket : (Re)-allocating the page with the page

frame number pfn to a DIMM in a socket socket is not allowable, when the DIMMs

in the socket are powered-off.

wpfn→vcore ∈ {0, 1}, wpfn→socket ∈ {0, 1}, y′socket ∈ {0, 1}: Mapping variables, wpfn→vcore ,

wpfn→socket , have a binary value, either mapped (1) or not (0), and so does power state

of memory controller of socket socket , y′socket . The power state is either active (1) or

idle (0). It is intended to relax the problem fitting into a integer linear programming

model.

2.4 Virtual Core Scheduling (vcore-scheduling)

While vcore-mapping and page-mapping are related to the space-sharing issue,

Figure 2.3 describes the scheduling problem in allocating vcores in time slices in the time-

sharing. When many VMs share the same hardware thread, these vcores out of different

VMs take separate time quantums; thus, the configuration is on sequencing vcores in time

slices. Given that vcore and page mappings are fixed, vcore-scheduling does not affect

power. Energy consumption is linear to the performance; thus, the performance and energy

objectives follow in the same direction. Jiang et al [64] formulate this scheduling problem,

and the problem is formulated similarly here. The problem formulation is drawn with four

35

(vcore id, VM id)

HW
Thread

id

Time slice

(3, 2)

(2, 2)

(1, 2) (1, 3) (1, 1)

(2, 1)

(0, 0) (0, 0)(0, 1)

(2, 1)

(3, 1)

(3, 2)(1, 0)

(3, 0)

(2, 2)

(3, 0) (3, 3)

(0, 2)

(2, 0)

(0, 3)

(1, 2)

(2, 3)

(3, 2)

(2, 2)

(1, 2) (1, 3) (1, 1)

(2, 1)

(0, 0)(0, 0) (0, 1)

(3, 1)

(1, 0)

(3, 0)

(2, 2)

(3, 0) (3, 3)

(0, 2)

(2, 0)

(0, 3)

(1, 2)

(2, 3)

vcore scheduling
(which time slot ?)

(3, 2)

(2, 2)

(1, 2)(1, 3) (1, 1)

(2, 1)

(0, 0) (0, 0)(0, 1)

(3, 1)

(3, 2)(1, 0)

(3, 0)

(2, 2)

(3, 0)(3, 3)

(0, 2)

(2, 0)

(0, 3)

(1, 2)

(2, 3)

0

1

2

3

VM2 is selected

VM3 is selected

Figure 2.3: vcore-scheduling configures the execution sequences of multiple VMs’
vcores in each hardware thread.

assumptions. While the last two assumptions make vcore-scheduling decoupled

with the other problems, the first two clarify the vcore mapping conditions.

• Contention in vcore mapping (>1 vcore per HW thread): The scheduling issue

emerges only if hardware threads are mapped to more than one vcore.

• Balanced scheduling in each VM: Virtual cores from the same VM should be

spread out across different hardware threads. Without this restriction, vcores with the

same VM may be scheduled on the same hardware thread. The concept of balanced

scheduling is discussed in [107].

• Fixed vcore mapping: Similar to the assumptions page-mapping has, this condi-

tion decouples vcore-scheduling from vcore-mapping. Although schedul-

ing in general covers thread migrations, controlling vcore sequence in a hardware

thread is the focus here.

36

• Pages are mapped in one specific socket: Similarly, page mapping issues are ex-

cluded to make the scope of the problem clear.

Objective The objective is reducing the concurrency overhead.

Min
∑
n

cMakespanVMn − sMakespanVMn

sMakespanVMn

Subject to

∃(lcore, pcore, socket) ∈ C,
∑

vcore∈V xvcore→(lcore,pcore,socket) > 1: There is at least one

logical core mapped with two more vcores to comply the contention assumption.

∀vm ∈ VM , ∀(lcore, pcore, socket) ∈ C,
∑

vcorevm∈Vvm
x(vcorevm ,vm)→(lcore,pcore,socket) ≤

1: Each logical core should be mapped with at most a vcore from one specific VM.

(balanced scheduling within a VM)

∀vcore ∈ V ,
∑

(lcore,pcore,socket)∈C xvcore→(lcore,pcore,socket) = 1: No more than one logical

core should be mapped for one vcore.

|V | = |V VM |: Virtual cores are exclusive to the different VMs.

∀pfn ∈ P,
∑

socket∈S wpfn→socket = 1: Each page should be assigned at most one socket.

∃socket ∈ S, ∀pfn ∈ P, wpfn→socket = 1: Each page should be assigned to memory

space in one specific socket (in this case, socket socket).

x(vcorevm ,vm)→(lcore,pcore,socket) ∈ {0, 1}, xvcore→(lcore,pcore,socket) ∈ {0, 1}: Mapping is bi-

nary value.

37

2.5 Approach for the Solutions

In this section, possible options will be discussed for solving the three problems. Two

possible approaches can be considered: Integer Linear Programming (ILP) and heuristic

approaches are those options.

The procedure for ILP-based approach starts from the problem formulation in Sec-

tion 2.2, 2.3, and 2.4. The problems are described in a canonical form that matches very

well with ILP. By incorporating models, the problem formulation is describable with mea-

surable metrics; then, the problem formula can be solved at runtime using an ILP solver.

One upside of the ILP-based approach is that solutions are very deterministic and proven

to be optimal as long as formulations are complete, whereas the heuristic approach does

not guarantee optimality as a complete problem formulation is not taken into account.

Nonetheless, there are still tradeoffs between them.

2.5.1 Heuristic Approach

The heuristic approach turns out to be considered as an alternative to the ILP-based ap-

proach. The heuristic approach has flexibility in tackling specific problems in terms of

system design. It does not require a complete formulation for a ILP solver. Instead, the

heuristic approach allows us to design a policy component, illustrated in Figure 3.1, with

different structures, control algorithms and collected metrics. This section will address

some options in the structure at a high-level. All other parts of policy design are rather

case-specific. This is a real distinction (the flexibility) compared to the ILP-based ap-

proach. The cases are detailed along with experimental tests. These types of approaches

and structures are considered:

• Brute-force approach with closed-loop control

38

• Model-based prediction with open-loop control

• Model-based prediction with semi-closed-loop control

Structure: open-loop vs. closed-loop The terminologies of closed-loop and open-loop

are taken from feedback control systems. A feedback control system is a typical structure

for a control system. The open-loop and closed-loop structure are two extreme types. The

loop is a feedback loop that delivers measured metrics after configuration is complete. The

main differences between the two structures are based on measurements that feed back to

the front-end decision components. If there is no direct measurability of system outputs, a

corresponding model might be responsible for providing estimated values. This is virtual

substitution for the feedback loop, which is called a semi-closed-loop.

Execution time, power and energy are the main output measures. Power and energy

objectives are clearly easy to measure, however, it is not clear how to capture speed or

performance in the middle of execution when the objective is makespan. Makespan is

determined after the workload is completed. CPI, for example, provided by hardware

monitor is reported to have significant mismatches with the execution time in concurrent

and parallel workloads [48, 8]. A performance model may need to drive a semi-feedback

loop in terms of that. Nevertheless, it is not always the case that no metric is directly

correlated to execution time here. Overall, the point is that there are two structures in this

control system, because not all controlled quantities are directly measurable.

2.6 Classes of Resource Demands

So far, the three problems are formulated individually. In the real world, however, multiple

or all of problems become an issue. They always depend on situations, so the context in

39

which problems occur needs to be profiled. One way to do this is identifying the type of

situation or class.

Three classes There are several extreme cases between vcore mapping and scheduling

mechanism. Only when multiple VMs share one hardware thread and that is the case for

all hardware threads, the scheduling mechanism is available (over-subscription). Other

extreme cases are when a single VM has the number of vcores less than the number of

hardware threads (under-subscription). In such cases, there is no need to consider schedul-

ing concerns between VMs, but coarse-grained vcore remapping is important to address

differences in cache contention between mapping strategies.

These examples show the case-sensitivities for the problems. This type of situation

is actually coupled with resource demands by workloads. Therefore, we believe that that

three classes should be defined: under-subscription, full-subscription, and over-subscription.

One assumption here is that total guest memory of all VMs is less than host physical mem-

ory, so all concerns related to swapping are excluded. This is also aligned with in-memory

system design, which has become popular.

In defining our classes, two methods are possible: a naive version and a strict version

of definition. There is a rule-of-thumb that when a multiple socket machine is given, the

system manager tends to partition the machine per socket. This is particularly reasonable

for a NUMA machine, as each memory controller resides in each socket, which implicitly

separates resources per NUMA domain. Loosely, when a two-socket NUMA machine is

given, under-subscription happens only when a single VM is running. However, when

two VMs are running, full-subscription occurs. When more than two VMs run, it is over-

subscription. This model defines classes based on the number of VMs over the number of

NUMA domains. The reason why this is naive is that it does not strictly take into account

the number of vcores. One extreme case is when each VM has only one vcore. Supposing

40

each socket has four hardware threads and two VMs – each of which has a vcore, it is

not reasonable to classify this as full-subscription. This is under-subscription as only a

quarter of hardware threads are active. Another way to define load of resource demands is

through comparing the number of vcores and the number of hardware threads. Particularly,

over-subscription is the case when overall number of vcores are more than the number of

hardware threads that the machine provides. When the number of vcores are less than

overall hardware threads divided by the number of NUMA domains, under-subscription

is the case. Any other situation than this would be full-subscription. This is not yet a

complete classification since there are potential corner cases. The purpose of this is clarify

what problems belong to what class – that is what type of situation. Accordingly all the

rest of the work tries to tackle the problems based on classes, as defined formally below:

• under-subscription:

number of overall hardware threads

number of NUMA domains
≥ number of overall vcores

• over-subscription:

number of overall hardware threads ≤ number of overall vcore

• full-subscription: all cases other than above

Notice that an assumption for vcore mapping under under-/over-subscription is no over-

lapping; in other words, any scheduling concerns are excluded in those circumstances. To

do so, balanced mapping is the assumption.

41

2.7 Conclusion

This chapter presents a problem definition for each of vcore-mapping, page-mapping,

and vcore-scheduling. The idea is to clarify each problem; however, the problems

may interact with each other. Virtual core mapping and page mapping are clearly the case

where one configuration affects the other. As we combine problems, these problem state-

ments may need to reformulated and expanded.

This chapter also discuss possible approaches to solve the problems. For the combined

problems, the ILP-based approach demands a high accuracy in the problem formulations.

Whereas, the heuristic approach over the ILP-based optimization approach has great flex-

ibility in solving the problems; therefore, the heuristic approach is selected to solve the

optimization problems.

Lastly, classes of different resource demand situations are formed and illustrated in

this chapter. They are divided particularly with respect to the resource demand perspec-

tive. That classification actually affects system design, especially for policy and detec-

tion component design. There are three classes: under-subscription, full-subscription, and

over-subscription.

42

Chapter 3

Design of NAVAR Adaptive System

As claimed in the thesis statement in Chapter 1, the system should automatically select the

configuration that enables optimal or near-optimal execution of applications in virtualized

environments for the user selected objectives. Obviously, this automatic reconfiguration is

conducted during a runtime. In fact automatic reconfiguration is the goal for the design of

this adaptive system. To reach the goal, the system incorporates adaptation mechanisms.

The problems described in last section imply potential mechanisms that include 1) mov-

ing vcores to different physical cores (vcore migration mechanism), 2) migrating pages to

memory addresses in a different NUMA domain (memory migration mechanism), and 3)

gang-/co-scheduling vcores taken by concurrent guest threads in the same time slots, or

alternatively assigning a priority to a set of vcores that exhibit high concurrency (gang-

/co-scheduling mechanism). A policy component drives these mechanisms. The policy

component will determine the best configuration and mechanisms. To do so, the policy

component needs a set of accurate information. The detection framework provides the

assorted metrics to the decision maker in a real time. Additionally, it needs to be men-

tioned that Palacios VMM is used for the base framework. Palacios is an OS-independent,

43

HW
thread

HW
thread

HW
thread

vcore vcorevcore

thread0 thread1 threadn-1 Guest-level...Policy
component
(User-level)

Palacios VMM

Guest OS / workloads

Kernel-level

Machine
HW mon

SW
monitor

DRAM DRAM

Guest virtual memory

Guest scheduler Guest page table

Shadow
PT

Shadow
PT

Shadow
PT

HW mon HW mon

Resource mapper

Figure 3.1: Illustration of overall adaptive system. The framework is the same regard-
less of the three resource demand cases: under-subscription, full-subscription, and over-
subscription. Policy component includes control loop and algorithm; resource mapping
contains three mechanisms: vcore migration, memory migration, and gang-/co-scheduler.
Two types of monitors – software monitors and hardware monitors – comprise the detec-
tion framework.

open source, BSD-licensed, publicly available embeddable VMM designed as part of the

V3VEE project (http://v3vee.org). Detailed information about Palacios can be found

in various articles [78, 76, 77]. Palacios’ OS-agnostic design allows itself to be embedded

into a wide range of different OS architectures. I use Palacios embedded in the Linux

kernel.

In this chapter, each section introduces a component design, including viable options

and the direction which I have chosen for NAVAR. Mechanisms are described more thor-

oughly here when implementations of them have not been revised during experimental

tests. Details of mechanism, which are very coupled with experimental setups, will be

http://v3vee.org

44

R410 R415

Processors (2)

Intel Xeon E5620 2.4 GHz AMD Opteron 4122 2.2 GHz
Num. of Cores: 4 Num. of Cores: 4
Num. of Hardware Threads: 8 Max TDP: 115 W
(2-way SMT per core)
Max TDP: 80 W

Processor Sockets 2 2

Cache

L1: 64KB x 4 L1: 128KB x 4
(32KB L1 Data, 32KB L1 Inst.) (64KB L1 Data, 64KB L1 Inst.)
L2: 256KB x 4 L2: 512KB x 4
L3: 12MB L3: 6MB

Memory 32GB (8GB x 4) 1066 MHz (DDR3) 16GB (4GB x 4) 1333 MHz (DDR3)
Power Supply 480W 480W

Figure 3.2: Features of test machines (Dell PowerEdge R410 and R415).

described in the following chapters. Particular cases here are the policy and detection

frameworks.

Each class is boiled down to some specific case on which experimental tests are based;

nonetheless, test machines and workloads are the same regardless. They are also described

in the chapter. Lastly, one hardware mechanism is proposed near to the end of this chapter.

It is the functionality to power-off multiple DIMMs in one NUMA domain if necessary.

To get a sense of the benefit of the proposed hardware mechanism, it is assumed that the

system has the feature and estimations based on actual measurement data are included in

the final results. Details can be found in Section 3.4.

3.1 Testbed and Workloads

First, we now describe the testbeds and workloads used in overall work.

45

3.1.1 Hardware

Testbeds Figure 3.2 describes the two test systems used in my work – Dell PowerEdged

R410 and R415 machines. Both have two processor sockets – two NUMA domains. The

R410 has Xeon E5620 processors with four physical cores, each of which has two hard-

ware threads. The R415 has AMD Opteron 4122 processor with four physical cores (single

hardware threads per processor). They are both a small scale Non-Uniform memory-access

(NUMA) architecture, in that each socket is preferentially associated with half of system

memory. The machine is configured for performance according to Dell’s recommenda-

tions in [82]. Specifically, node interleaving is turned off for memory allocation to make

the effect of distance in accessing memory clear. Also, the system is to minimize vari-

ations on the performance, energy and/or power consumption due to DVFS, by setting a

static frequency and voltage and turning off turbo mode. For the idle state in each core,

the C-state option, including enhanced mode, is enabled with the idea being to maximize

the dynamic power reduction when the socket is idled. Note that R410 machine is used

for most experimental results. All results throughout the manuscript are from R410 unless

specified. Chapter 8 discusses about R415 results. The R415 is used to demonstrate that

the same kinds of tradeoffs and accordingly online adaptivity are valid on other hardware.

Energy/power measurement To measure energy consumption, an external power meter,

a Watts Up PRO, is connected to power source. It measures system energy and power,

and its serial output is fed into a separate machine that is dedicated for logging. The

monitoring machine records time-stamped cumulative energy from the beginning and the

end of execution. Since the precision of instantaneous power measurement is a bit low, a

sample per second, average power (Watts) is taken from measured energy (Wh) and spent

time (seconds). However, occasionally power value is read directly from the meter to get a

shape of power over time. It is important to know an assumption that when multiple VMs

46

are running, system power is supposed to evenly distributed by each VM. This assumption

is valid when CPU- and memory-bound workloads are running in VMs.

3.1.2 Software

Three layers of software stack comprise the overall system. Host and guest OSes are Linux

and the Palacios VMM is used for the virtualization framework. The host Linux distribu-

tion is off-the-shelf Fedora 15 with kernel 2.6.38. Two versions of Linux guest kernels are

used. The work appeared in Chapter 4 was done earlier and kernel 2.6.30.4 was used. All

the rest of work are on top of kernel 2.6.39. Other than the kernel version, the guest kernel

image is built with 64-bit mode, while guest images used in Chapter 4 are built for 32-bit

mode. Application images on top of that are all kept unchanged, each of which is compiled

for 32-bit mode. Additionally, the baseline Palacios versions are different between the two

set of works. One is from earlier commit, hash: #b8759fe01196884bea04eb9a1dd09781d0

605d47, that is used in Chapter 4, while #bae592fa0e54e3ce5933e84e4b15815ba0501618

is the other baseline version used for the rest of the work. Notice that the structure of

shadow page table in Palacios is aligned with that in the guest; so, 32-bit mode and 64-bit

mode page tables are used respectively.

Multithreaded parallel benchmarks are run using OpenMP and pthreads for parallelism.

Specifically, the benchmarks are from the SPEC OMP [13], NAS [66] and PARSEC [26]

suites. They are all CPU- and memory-bound workloads. Source codes are compiled using

gcc or Intel compilers.

47

3.2 Detection Framework

Demand for detection framework To solve the problems defined in Chapter 2, it is

important to measure objective metrics and also to figure out constraints to doing so. In

fact, objective values such as performance (makespan), energy and power, are drawn from

direct measurements, indirect model base estimations, or a metric that is strongly coupled

with the objective value. Discussions here focus on the three objective metrics: power,

execution time and energy. Power is dynamically measurable with an external meter or can

be estimated by models; nonetheless, a power model is more powerful for its predictability.

Addressing vcore-mapping, measuring power on every mapping case is sometimes

inefficient or even an intrusive behavior. For the performance measurements, makespan is

unknown until execution ends. Workload execution is repeatable and deterministic under

a fixed configuration; however, measurability in the middle of execution is a different

matter. If there is any metric that is highly correlated with performance in makespan and

also measurable during the execution, the metric can be used. Lastly, energy is highly

coupled with performance, as long as factors affecting the performance do not result in

significant fluctuations on instantaneous power across the timeline. Sometimes turning

on/off DIMMs in a certain NUMA domain may or may not change execution time. The

changes in the memory power state affect power at the same time. When comparing the

two cases for energy consumption in one execution, the energy metric is not always in the

same line with the execution time. Sometimes, regardless of the number of active NUMA

domain memories, performance is drawn to be equal or with minimal changes. In this

situation, turning off some DIMMs takes less energy, but execution time does not show

differences. Except for these cases, however, mostly execution time tends to be correlated

with energy.

The detection framework comprises two types of monitors: software monitors and

48

hardware monitors1, based on the level where the monitor is implemented.

3.2.1 Hardware-assisted Software Monitors

A software monitor is a viable option to be considered; however, what is different from

hardware monitor is that software monitor needs to be defined. Before specifying feature

of software monitor, what is demanded should be clarified. The demand is mostly about

workload characterization in terms of shared memory traffic, which is most significantly

coupled with the workload performance. A model should be usable to estimate the best

mapping for vcores and pages. With that, page tables are immediately a critical source of

data. Page tables are commonly accessible data structures and especially effective from a

VMM perspective.

Usable mechanism for software monitor Now, to move on to specifics of design of the

software monitor, some key mechanisms need to be mentioned and described. We make

use of the following elements:

• The x86 PMU to demarcate intervals of memory-accesses and memory store 2.

• The x86 shadow or nested page table entries’ accessed and dirty bits to partition the

guest physical address space’s pages into sets of pages that have been accessed or

written in an interval

• Periodic synchronization across the hardware threads to get a global view of the

accessed and written sets, and compute jointly accessed pages across two or more

vcores.
1Hardware performance counters, known as the Performance Monitoring Unit (PMU), are available in

most modern processors.
2This PMU feature is currently more Intel processor specific.

49

Hardware monitor defined intervals The PMU allows us to trigger exceptions (and

hence VM exits) after a certain number of events have occurred, such as instruction retire-

ments or memory references. This facility is used to produce VM exits after a specified

number of memory-accesses or stores have occurred; thus, the PMU creates the measure-

ment windows over which the metrics are collected. This incorporation compensates for

the coarse granularity of software monitor. This is an important point that distinguishes a

hardware-assisted software monitor from a typical software monitor. Without a hardware-

defined interval, the framework would be the same as a typical software monitor.

Page access information A page table update mechanism is incorporated into hardware

component and is already used by a commodity OS; What is additionally implemented

here is a page table scanner. The x86 architecture incorporates a detailed model of paging

that includes accessed and dirty bits on the page table entries (PTEs). The hardware will

ensure that the accessed bit is set on the first read or write of a given page, and that the

dirty bit is set on the first write. These bits instrument accesses to the memory pointed

to by the shadow page tables, which contain the combined intent of the guest virtual to

guest physical mapping and the guest physical to host physical mapping. Because the

VMM controls these page tables and the latter mapping, it can easily determine the guest

physical pages that are being accessed. In addition, it can manipulate the accessed and

dirty bits as much as needed so long as it projects the expected hardware behavior to the

guest, using ancillary information it keeps. Alternatively the nested page tables can be

instrumented.

Mechanism to collect page access profile Using these two mechanisms, at the begin-

ning of a measurement interval for an individual vcore, the VMM clears the accessed and

dirty bits on all valid shadow or nested page table entries, keeping ancillary information

50

about the real values of these bits for shadow page tables.3 It then sets the PMU to pro-

duce an exception after the desired interval of memory-accesses or writes. Execution then

proceeds as normal, with the saved bits used in paging-related exits. Eventually, the PMU

raises the exception, inducing an exit to the VMM. The VMM then walks the page tables

and records information about pages with the accessed bit set, store bit set, or no bit set.

These sets are stored as bit vector indices over the guest physical address space. Therefore,

multiple sampling constitutes bitmaps as many as the number of samples. A couple of log-

ical operators, AND and OR operations, are taken to merge them. This will be revisited

later in this section.

Aggregation of information All of above mechanisms are executing per each vcore con-

text; so, the information collected by now is all local so far. Now, a separate thread, named

the aggregator, runs on a distinct hardware thread that is not used by any vcore. This

thread periodically collects and aggregates the information collected by each vcore. As

depicted in Figure 3.3, the aggregator determines interval between collection operations.

Each information for write or read is stored in bitmap.

Parameters in detection framework Although the described mechanism is summarized

above, there are parameters to determine the different kinds of metrics and characteristics

that are computed. The four parameters are:

1. The frequency of scanning page tables and which hardware monitor event is used to

define the page scanning interval – the number of memory operation or the number

of store operation.

2. Which page table information is considered – access bit or dirty bit

3Note that in Palacios each vcore has a distinct shadow or nested page table, even if it is running a thread
that shares a guest page table with some other thread.

51

Aggregator

vcore0

VM exit (PMU interrupt)
vcore1

VM entry Scan PTE

vcoren-1

...

timeline

Aggregation

Enable PTE scan

idle

Disable PTE scan

T

Scanning period

Figure 3.3: Illustration of probing on a timeline. During the probe interval T, each virtual
core scans its page table independently. At the end of the probing, information on accessed
(or written) pages is collected from all vcores and the metrics are computed from it.

3. How to merge the bitmaps on each vcore – AND (Intersect) or OR (union) operation

4. How to aggregate bitmaps across vcores – sum of all bitmaps’ weight, union of all

bitmaps, and so on4.

5. How long consecutive page table scanning interval

Access and write operations have different implications. Memory-accesses capture the

volume of interaction with the memory system, while writes are related to amount of in-

validation traffic. Hence, per-access and per-write as well as access-info and write-info in

4Chapter 4 uses different ways of bitmap aggregation across vcores.

52

page table are important parameters – 1 and 2. In merging bitmaps in a vcore, the AND

operation filters pages that are repeatedly accessed during the period of time. That captures

hot pages. The OR operation, in contrast, counts the overall number of pages that at least

touched. This quantity is highly correlated with the working set size (WSS). Parameter 3 is

quite significant. Collection of bitmaps across vcores (parameter 4) gives different views

to characterize shared memory traffic, such as how many pages are accessed by vcores,

and how many owners (vcores) for each page. The probe duration (parameter 5) allows us

to profile different degrees of hot pages. Besides its implication on the metrics, the idea for

setting period of time is measuring memory-access traffic sparsely. Even within this probe

duration, page table entries are only scanned on intervals that hardware monitor defines.

Choice of metrics and limits Besides the underlying meaning of the metrics, the limit

of each metrics is important to understand. Metrics are generally collected at the page

granularity. A weakness here, compared to cache-line granularity, is potential false shar-

ing; nonetheless, most application-level inter-thread sharing is at the page granularity and

this makes up the vast majority of shared page accesses, especially in parallel codes. Also,

the selection of the metric is very case-sensitive and also important for correct decisions.

Here, two methods can be taken to choose key metrics. One is to check the correlation

of the metrics to the objective metric – power, energy and execution time. The other is a

cross-correlation check between the metrics. This allow us to filter out to metrics which are

substitutable. Chapter 4, 5, and 6 include details on metrics and pseudocode for collecting

the selected metrics.

53

3.3 Adaptation Mechanisms

This section describes the implementation of adaptation mechanisms to address resource

management problems. Each mechanism is influenced by one of our three problems.

Along with implementation details, design perspectives are also discussed here. The mech-

anisms have been implemented in Palacios, but could be ported into other VMMs.

Two coarse-grained mapping strategies for vcores and memory (pages) Before mov-

ing on, two common mapping strategies need to be mentioned as they are very commonly

used throughout this and the following chapters.

• Consolidated - Given multiple NUMA domains, this mapping style consolidates all

vcores or pages that belong to one VM into one domain. Sometimes, this mapping

style is called local, in case when both vcores and pages are consolidated in the same

NUMA domain.

• Interleaved - Mapping vcores or pages across multiple domains is the principle.

The number of vcore or pages allocated per domain should be the same; thus, this

mapping strategy tries to evenly spread out vcores or pages. Although it is mentioned

that the mapping style is supposed to spread across entire domains in a machine,

sometimes it includes cases that spread them across some selected NUMA domains.

This variant will be discussed in Chapter 8. The spreading method is taking modulo-

n, when there are many pages, n is the number of destination NUMA domains.

Details on the page mapping specifics will be discussed in Section A.4.

Summary of mechanisms Here is a brief summary of mechanism implementations in

Palacios. The vcore migration mechanism is essentially migrating a kernel thread to a

different hardware thread, which is used to address the vcore-mapping problem. For

54

HW
thread

Palacios VMM

Kernel-level

Machine

vcore mapper

HW
thread

HW
thread

HW
thread

vcore vcorevcore

Flush
VMCS

vcores stop / resume
vcore control

Rebind
vcore

Policy
request

IOCTL

Figure 3.4: Illustration of the vcore migration mechanism. It shows migrating one vcore
to different hardware thread. The major cost lies on flushing the cache contents (and the
VMCS) as well as suspending/resuming all vcores of the VM.

a page migration mechanism for page-mapping, the memory map for each page of a

guest needs to be extended to support multiple regions. Palacios allocates guest physical

memory space via a contiguous host physical memory space. To support multiple contigu-

ous memory regions, the memory map of the guest physical memory was extended with a

hash table. Lastly, to address vcore-scheduling, some scheduling features need to be

in VMM context. Most of the generic scheduling mechanisms can be provided by the host

OS. Linux, for example, has generic CPU scheduler targeted for fairness. The objective of

the host scheduler may not be sufficient in scheduling vcores of VMs due to the lack of

context. The VMM, in a contrast, has context information on what vcores are from what

VMs; thus, it is more effective for VMM to have control over scheduling, particularly in

regards to, gang-/co-scheduling needs.

55

3.3.1 Virtual Core Migration

Palacios’ Multicore supports Palacios supports a multicore VM that appears to the

guest to be a physical machine that is compatible with the Intel Multiprocessor Specifi-

cation. The guest sees an MP table describing the processors, APICs, IOAPICs, buses, and

interrupt routing in the machine, and virtual versions of standard APIC/IOAPIC interrupt

controller hardware.

Process of virtual core migration Palacios backs each virtual core with a host OS ker-

nel thread that is bound to a specific physical core at VM startup time, and that can be

remapped at any point. The mapping of virtual core threads to physical cores does not

change except in response to explicit requests, which can be invoked from a user-space

tool on the host. The call specifies a new mapping of all or some of the virtual cores. To

handle the request, Palacios first uses physical IPIs to force all the virtual cores to exit to

the VMM and synchronize. It follows this by rebinding their host kernel threads, and hand-

ing the relevant VT or SVM state to the new physical core. The threads synchronize again,

and then reenter the guest. The process of migrating a virtual core thread to a different

physical core functions is as follows, which is depicted in Figure 3.4:

• Detache the VM control structure (VMCS in the Intel VMX or VMCB in the AMD

SVM implementation) associated with the virtual core from its source physical core

(for example, by VMCLEAR on a VMX machine). This is to ensure that the VM

control structure data that may be cached by the processor is flushed to memory.

• Unbind the virtual core thread from its source hardware thread and bind it to the

destination physical core. This tells the host OS to de-schedule the thread from its

source physical core and reschedule it on the destination physical core.

56

Benchmark
Page Table VCore Memory VCore
Scanning Remapping Remapping Scheduling

CANNEAL 1.51 5.24 913.34 0.0008
STREAMCLUSTER 0.78 5.27 915.0 0.001

EQAUKE 0.82 5.25 887.0 0.0012
SWIM 2.34 5.08 912.3 0.0012

RAYTRACE 0.39 5.24 799.33 0.0004
MGRID 0.61 5.27 892.86 0.0017

FLUIDANIMATE 0.58 5.25 891.6 0.0009
ART 1.30 5.30 892.44 0.001
APSI 4.61 5.27 920.57 0.0009

Table 3.1: Page table scanning time (average per each scan), vcore remapping time (mov-
ing four vcore threads), memory remapping time (moving guest memory to different
NUMA domains), and vcore scheduling time (reconfiguring vcore scheduling policy) in
milliseconds. Note that the overhead for the memory mapping mostly comes form copying
pages. The memory mapping mechanism is implemented to copy pages unconditionally
whether touched or not.

• Once the virtual core thread gets to run on the destination hardware thread, it loads

and attaches the VM control structure data (for example, by performing a VMPTRLD

on the destination hardware thread in VMX implementation).

Performance overhead The physical core-specific costs of migration consist of the very

low fixed costs of changing a tiny number of VMX or SVM-specific control registers, and

the costs of refilling cached state (cache, TLB, control structure caches, page hierarchy

caches, etc) on the destination physical core. Additionally, there is the cost of synchro-

nization among the physical cores. Each migration needs to suspend vcore execution in

between detaches and attaches. If remapping is very frequent, this migration mechanism

significantly worsens performance. However, the adaptive system is designed to take over-

head into account.

57

Power overhead Power in the whole system should not be higher than normal execution

for vcore migration. Migrating cache contention sometimes includes bus traffic in cases

where migration happens across NUMA domains; nonetheless, all suspended vcores, as

long as only one vcore mapped to a hardware thread, are supposed to power-down the

physical core. Overall, reduced core power mitigates intra-/inter-core power overheads.

Support for general remapping: multiple remapping The migration mechanism de-

scribed above is for each vcore. When the decision is made to migrate multiple vcores,

it would be rather efficient to detach and attach multiple vcores at the same time; then,

what is expected is suspending/resuming all vcores for each migration can be reduced to

one from the number of vcores to be migrated. The idea is supporting transitions between

interleaved and consolidated mapping strategies. To support multiple vcore remapping, a

new interface exposed to user-level policy component has been added. The interface for

single migration contains source vcore, destination physical core information, and target

VM pointer. For multiple vcore migrations, the destination bitmap and target VM infor-

mation are provided through the interface.

3.3.2 Page Migration

Palacios’ memory mapping Palacios was originally designed to allocate guest memory

in a contiguous chunk of physical memory. Here, one contiguous physical memory chunk

may be called a region. The idea behind this contiguous memory design is to expose

attributes of physical memory to high performance workloads for its optimization in the

guest context. The current implementation at the time of forking from the main repository

uses offline memory functionality that the host Linux provides. While launching Palacios,

enough memory blocks are offlined to support multiple guests. Once memory is hidden

58

Palacios VMM

Kernel-level

Machine

vcore vcorevcore
Shadow

PT
Shadow

PT
Shadow

PT

vcores stop / resumevcore control

Memory
mapper

Memory region

Page migration

Memory map

Memory region

Policy
request

IOCTL

NUMA domain NUMA domainDRAM DRAM

Figure 3.5: Illustration of the page migration mechanism. This is a case migrating page
mapping from consolidated to interleaved. Migration cost is linear to amount of pages to
be copied which also invokes more power. Physical address referenced by shadow page
table (or nested page table) is routed via memory map and region information to a host
physical address.

from the host, Palacios is now able to allocate each guest’s memory from the offlined

memory. What Palacios does for each VM is pointing out a start address and an offset that

reaches the end of the physical memory. Therefore, one region per VM is allocated.

NUMA-aware multiple memory regions The memory model with one region should

be fine with an SMP or “UMA” architecture as long as there is no pressure on host physical

memory. Also, note that on top of the allocated memory, guest OS has its own memory

manager that does memory fragmentation for its own usage. Now, when a NUMA archi-

tecture is the target, some issues are raised. In a mechanism perspective, a question is

raised about how to implement multiple regions either transparently provided or explicitly.

59

Considering the scope of the defined problems and a direction on inference base approach,

multiple guest physical memory regions need to be provided transparently. Now in terms

of fragmented regions of memory, coarse-granularity is one option, that is to let each re-

gion to be contiguous over host physical addresses, and each region then ties to a NUMA

domain. A typical NUMA architecture today includes a mapping of host physical address

to NUMA domain. Therefore, implementation-wise, multiple regions equal in the number

of the NUMA nodes are needed. That constitutes information that includes base address

(start of a region) and offset (end of a region). Offset information for each NUMA domain

is given by a policy component at the beginning or in the middle of guest runtime when

the policy decides memory remapping is needed. In our prototype, a base address is de-

termined per request by the memory mapper via the memory map, which is illustrated in

Figure 3.5. A whole guest memory is allocated from offline memory where Palacios has

full controllability; so, the memory manager is capable of (re-)allocating and deallocating

an arbitrary amount of memory, down to the page granularity, as long as that fits in the

reserved space. Once multiple regions are provided, Palacios can map each guest page to

one of regions via a shadow or nested page table. In particular, here is the flow of memory

remapping in runtime:

• Suspend all vcore execution per memory re-mapping request.

• Request demanded amount of memory from the memory manager along with NUMA

domain information.

• Retrieve source NUMA domain per page, then migrate page content to the destina-

tion if destination NUMA domain is different. Memory map keeps the location in

NUMA domain (the number of memory region as depicted in Figure 3.5) for each

guest page and is updated per memory migration5. The memory map is global and
5Page migration and memory migration are used interchangeably to refer to one mechanism.

60

only allows atomic accesses. Note that some policies, such as first-touch, requires

page location to be determined at runtime; for such a policy, the mechanism conser-

vatively replicates a page across all NUMA domains.

• Request the memory manager to deallocate source pages that are no longer used after

the remapping.

• Flush all shadow (or nested) page tables, and let all vcores proceed with execution.

• Palacios remaps pages per shaodw or nested page fault in each vcore. For policies

that allow predetermined page location, location information is read from the global

meta data per pages, but when a page location needs to be determined later, the meta

data is atomically updated by the very first vcore that addresses page fault.

Performance and power overheads Similar to vcore migrations, all vcores are sus-

pended during migrations. The amount of suspension time is linear to the time taken by

the migration, which is a function of the amount of memory and the distance to migrates.

Because of this, memory migrations tend to have more overhead than vcore migrations.

Typically, memory footprint ranges in the gigabytes. Memory migration to a different

NUMA domain routes to off-chip paths and causes increased power. On contrary, the

amount of data for vcore migration is a few mega bytes that cover all register states and

some memory footprints. A detailed comparison of overhead is depicted in Table 3.1. The

implemented memory migration mechanism is intended to meet key functional require-

ments that smoothly require and release physical memory as well as to correctly remap

guest page locations in the NUMA context. Many optimization strategies are possible;

nonetheless, even with this basic version, if memory migration is sparsely requested, the

opportunities for memory migration are available. The primary overhead is space, not

time.

61

Palacios VMM

Kernel-level

Machine

Gang-/Co-scheduler

vcore vcorevcore

yieldScheduling info

Host OS scheduler

Policy
request

IOCTL

Hardware thread

yield

yield

Host OS

Figure 3.6: Illustration of the scheduling mechanism.

3.3.3 Gang-/Co-scheduling Mechanism

VMM scheduler vs. host scheduler In a virtualized system, gang-scheduling or co-

scheduling technique can be beneficial. On top of the host scheduler, the VMM scheduling

mechanism6 can leverage the VMM perspectives to improve performance. Mechanism-

wise, our key focus here is on the co-scheduling implementation, which is currently miss-

ing in both base Palacios code (VMM) and Linux kernel (host OS). In general, the schedul-

ing mechanism that host OS provides is used to schedule vcores on a hardware thread. For

gang-scheduling, the decisions are made about whether a vcore should yield or proceed

when a host scheduler allows it to run. Even if a host scheduler allows a vcore to proceed,

a vcore can be suspended by the Palacios VMM by yielding to another vcore in the hard-

ware thread. When a vcore is in a group being gang-scheduled and the current time slice

is allocated to the group, the vcore should be running. To do so, other vcores mapped to

the hardware thread need to be suspended for the time slice. On the other hand, in other

6Gang-scheduling and co-scheduling is collectively called VMM scheduling mechanism here.

62

time slices, the vcore in the group should yield to other vcores; and, the other vcores may

then proceed when allowed by the host scheduler. In short, a host scheduler decides what

vcore may run, but VMM can control whether the granted vcore should be running or not.

With that controllability, a gang-scheduler can be realized, as can other kinds ofscheduler.

The following paragraphs describe the design choice and some considerations related to

overhead. An initial version of implementation is then described in pseudocode.

Two types of implementations: leader-driven vs. flat models From the perspective

of the scheduling mechanism, gang-scheduling and co-scheduling share numerous imple-

mentations. One is a variant of the other; the difference is in the scope of vcore grouping so

that vcores in a group are simultaneously scheduled in selected time slots. Both schedul-

ing mechanisms schedule a group of vcores in selected time slices, which is simple and the

core of the mechanism on top of the default scheduler that the host OS provides.

There are two approaches for this: one is a leader-driven model and the other is a flat

model. In the leader-driven approach, one of the vcores in a selected group is picked as the

leader and all the other vcores follow the execution schedule of the leader via a signal or a

global tag. When the leader goes wrong, this model is fragile and may face fairness issues

like starvation.

The other approach picks a coordinator vcore – the first vcore that sees expiration of

time ticks since the last scheduled time. Any vcore can be the coordinator. The coordinator

is responsible for signaling all the remaining vcores to be scheduled. With external time

ticks, a group of vcores are guaranteed to be scheduled in a timely manner, but this model

could possibly cause more CPU fragmentation. All other scheduling queues other than

the coordinator do not voluntarily yield. The leader-driven approach has at least some

consistency, taking one specific running queue as its reference.

For these reasons, the leader-driven approach was chosen for its directness. The core

63

of the implementation is on managing global information, which leads to support gang-

scheduling. Read and write operations to the global tag are separate depending on who

the leaders or the followers are. However, while deploying some real workloads, some

performance issues were observed. Before addressing optimizations themselves – these

are discussed in Chaper 7 – why the mechanism has to be optimized needs to be explained.

Note that the other two mechanisms also need improvements in terms of performance;

nonetheless, they met functional requirements, which are sufficient to draw experimental

results, a proof-of-concept. There are a few points that distinguish this mechanism from

other two.

One time event vs a continuous/underlying factor The comparison between mecha-

nisms might begin by comparing explicit versus implicit overheads. Here, explicit over-

head is defined as a cost that is explicitly distinguishable and, therefore, measurable in

a timestamp, whereas implicit overhead, as defined here, is a cost that is hard to distin-

guish in a timeline. Cache refill, for example, sometimes happens speculatively and trans-

parently, so it is rather hard to explicitly measure – there are sometimes so-called noise

effects.

Given that, the two migration mechanisms and the scheduling mechanism lie in dif-

ferent categories in terms of the two overheads. First, the two migration mechanisms take

more explicit overhead than implicit overhead and oppose the scheduling mechanism. The

explicit overheads in the first two cases are measurable as an amount of expired time, dur-

ing which vcores are suspended to migrate contents in cache-level or in memory-level.

The implicit overheads in those cases are cache refills and reconstructions of flushed page

tables, which are variable and hard to measure.

In contrast, the scheduling mechanism takes a very short time to update some global

tags for the taken implementation approach. While the explicit overhead is small, side

64

effects from the scheduling mechanisms are sustained longer and deeper, which leads to

huge implementation costs.

For that reason, the scheduling mechanism has been iteratively revised to reduce such

implicit side effects. The two mechanisms for vcore migration and memory migration are

not optimized as much as the scheduling mechanism. The explicit overhead is compen-

sated for by adaptive policy; one of the roles of which is to control explicit overhead by

leveraging the sleep interval for the policy component. Here an initial and strict version

of gang-scheduler is described along with some Palacios scheduling designs. Later, some

perspective to change it is detailed in Chapter 7.

Initial version of gang-scheduler The gang-scheduler is implemented in a strict way

under the leader-driven model. As mentioned, the following pseudo code is an initial

version. Some revisions made can be found in Chapter 7. This version might be called a

strict version to be separated from others – a relaxed version. The terms relaxed and strict

are based on the differences between whether vcores in a gang are waiting for all vcores ot

become ready for execution in the same time slice or not. The relaxed version is basically

to let a vcore go as soon as it is ready. More detailed, empirical studies for those variants

will be discussed in Chapter 7. The following pseudocode is implemented in Palacios’

yield function (CondYield()), which is called during every VM exits.

It is important to understand that there is one global variable, SchedState, per hardware

thread. The variable is used to convey state information for gang-scheduling. GangLeader

is put on the hardware thread where the gang leader vcore is running. As mentioned, all

followers sync with the leader’s schedule. Whenever the gang leader vcore is scheduled, it

is supposed to broadcast the states to all the remaining hardware threads. At first, given its

turn, GangPending is marked on all the followers’ hardware threads. In this global state,

followers are busy waiting until its state changed to GangRequested by the leader. Once

65

changed to GangRequested , the vcore switches LocalState to Ready . Here LocalState

is local variable and is maintained in the vcore context. This local variable is written

only by a follower; so, it shows response to leader-driven SchedState changes. Therefore,

leader keeps tracking all follower’s local states until all followers are ready (Ready); then,

finally the leader updates followers’ state to GangRequested . With that, followers are now

allowed to proceed with changing LocalState to Running . Under GangRequested , vcores

outside of the gang are supposed to yield – calling the host scheduler. On the other hand,

once vcores in the gang are done with a time slice, they change LocalState to Waiting and

also update SchedState to WaitForGang . This is only a point when SchedState is updated

by followers. For an expiration of time slice, each vcore is expected to check by itself for

it is cheaper and more accurate than a case entirely controlled by a leader. Now, along with

SchedState as global state, the local state is kept as Wait until leader updates followers’

global state to GangPending . Lastly, regarding notations in the following pseudocodes,

VMID represents a unique identification number for one VM and schedule() calls host

scheduler per yielding due to time slice expiration. With this high-level idea in mind,

precise steps are following:

CondYield(...)

...

switch (SchedState)

case GangLeader :

if VMID is the VM gang-schedule selected then

if all vcores are in Running of LocalState then

if time slice expires then

call schedule()

update SchedState of all the rest HW threads to be GangPending

66

keep waiting until all vcores in Ready of LocalState or WaitLimit expires

update SchedState of all the rest HW threads to be GangRequested

end if

else

update SchedState of all the rest HW threads to be GangPending

keep waiting until all vcores in Ready of LocalState or WaitLimit expires

update SchedState of all the rest HW threads to be GangRequested

end if

else

if time slice expires then

call schedule()

end if

end if

case GangPending:

if VMID is the VM gang-schedule selected then

if LocalState is not Ready then

update LocalState to Ready

wait until SchedState to be GangRequested

change LocalState to Running

end if

else

call schedule()

end if

case GangRequested :

if VMID is the VM gang-schedule selected then

if time slice expires then

67

Benchmark Power-off Default
CANNEAL 126W 131W
FREQMINE 126W 131W

CG 135W 140W
X264 127W 133W

Table 3.2: Preliminary power measurement results. Regardless of workloads, the power
reduction by the DIMM power-off is consistently observed, 5W on average. The vcore and
memory mapping is the consolidated for both.

set SchedState to be WaitForGang

set LocalState to Wait

call schedule()

end if

else

call schedule()

end if

case WaitForGang:

if VMID is the VM gang-schedule selected then

call schedule()

else

if time slice expires then

call schedule()

end if

end if

end switch

68

 126
 127
 128
 129
 130
 131
 132
 133

 0 20 40 60 80 100 120 140 160

P
ow

er
 (

w
at

t)

Time (second)

power-off
default

 125
 126
 127
 128
 129
 130
 131
 132

 0 50 100 150 200 250 300

P
ow

er
 (

w
at

t)

Time (second)

power-off
default

(a) CANNEAL (b) FREQMINE

 124
 126
 128
 130
 132
 134
 136
 138
 140
 142

 0 20 40 60 80 100 120 140

P
ow

er
 (

w
at

t)

Time (second)

power-off
default

 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135

 0 50 100 150 200 250

P
ow

er
 (

w
at

t)

Time (second)

power-off
default

(c) CG (d) X264

Figure 3.7: Illustration of instantaneous power shape between the default and the power-
off cases. The vcore and memory mapping is the consolidated for both. For the power-off
setup, all DIMMs on one NUMA domain, where no guest memory is allocated via the
consolidated memory mapping, are physically detached.

3.4 Power-off Memory Sub-system

Some experiments assume the hardware capability of powering-off the entire memory in

each NUMA domain. We now describe this proposal the hardware feature and how we

estimate the experimental results.

69

3.4.1 Abstraction of Proposed Hardware Mechanism

Power concern in modern computing systems is not a new issue. Processors have already

been designed to save energy by exposing control knobs to software such as the DVFS

mechanism or transparent control like deep sleep modes. For the memory system, some

recent work [15, 41, 42] proposes similar power control mechanisms. According to DDR

specifications, there are various power modes; nonetheless, there is still room to save. I

measured that the removal of memory in one NUMA domain in the test machine reduces

power by 5 – 6 watts on average as shown in Figure 3.7 and Table 3.2. The portion of power

in the entire system varies by the amount of load and CPU frequency, but it is typically

in the range of 4 – 7 %. Therefore, power-off capability is important. The following ex-

periments shown in Chapter 5, 6, 7, and 8, especially the cases that use memory mapping,

assume these functions in the memory sub-system.

3.4.2 Estimation of the Impact of Memory Power-off

These experimental results provide estimations on power-off memory savings on top of

measured system power and energy. Now, to estimate the portion it needs to clarify power

reduction from offline memory varies to workloads or not. Figure 3.7 and Table 3.2 illus-

trate the potential power saving by power-off memory. Note that power reduction by the

proposed hardware mechanism is realized when all guests’ memory is consolidated to one

NUMA domain. With the memory consolidation, the figure shows the shape of instanta-

neous power for both, the default and the case in which we have removed all DIMMs in one

NUMA domain. The gap between two lines is consistently maintained. It shows the por-

tion of reduced power coming from static power, which is agnostic to workload. This delta

is taken for each test machine and used to subtract measured average power only when

memory consolidation is configured. Similarly, measured energy is accordingly reduced

70

using the estimated average power savings.

3.5 Conclusion

This chapter illustrate overall design of NAVAR adaptive system. The system comprises

of three major components: the policy component, the adaptation mechanism, and the

detection framework. Due to the discussion briefly about the policy in the last chapter, the

detection framework and the adaptation mechanism are presented in this chapter. Along

with this, the common experimental setups and the proposed hardware mechanism are also

mentioned. The following chapters address the problems raised in one of the three resource

demanding classes: under-subscription, full-subscription, and over-subscription. First, the

next chapter preliminary discusses a special case of the under-subscription class.

71

Chapter 4

Under-subscription: vcore-mapping

The last chapter discusses the overall system design as well as the specific design for each

component: policy, detection framework, and adaptation mechanisms. For the mecha-

nisms, vcore mapping, memory mapping, and gang-scheduling were described. Possible

policy design options were briefly introduced because policy design sis arguably specific

to the condition of resource demand. Three classes of resource demands were also defined,

namely under-subscription, full-subscription and over-subscription. This chapter and the

next are focused on the under-subscription case. As under-subscription does not involve

vcore-scheduling, vcore and memory mapping are the main concerns; however, this chap-

ter focuses on vcore mapping with an affinity to memory mapping. We assume that the

memory of all guests is allocated in one NUMA domain. The chapter at first begins with

discussions of tradeoffs and the opportunities of the specific under-subscription case, the

detection framework, policy and experimental results follow.

72

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

CA
NN
EA
L	
 	

ST
RE
AM

CL
US
TE
R	

EQ
UA
KE
	
 	

SW
IM
	
 	

RA
YT
RA
CE
	
 	

MG
RID
	
 	

FLU
IDA

NI
MA

TE
	
 	

AR
T	
 	

AP
SI	

	
 Ra

#o
	
 o
f	
 i
nt
er
le
av
ed

	
 o
ve
r	
 l
oc
al

ExecuCon	
 Cme	
 Energy	
 consumpCon	
 Average	
 power	

Figure 4.1: Comparing the interleaved and local vcore mappings for a range of bench-
marks and objectives. Notice that the local mapping in this case refers to consolidated
vcore mapping. There are considerable opportunities to trade off between performance,
power, and energy. The tradeoffs are also clearly dependent on the workload.

4.1 Tradeoffs and Opportunities

In the real world, the three resource management problems may happen in a combined

way. Moreover, it is quite challenging to comprehend the situation and tradeoffs between

various mapping options. This chapter deals with a simple problem – vcore-mapping.

An assumption here is that memory is mapped into one NUMA domain. The assump-

tion may oversimplify the real problem, but let us narrows down to specific tradeoffs.

Figure 4.1 shows ratios of interleaved over local (consolidated) vcore mapping for perfor-

mance, power, and energy. Each benchmark has eight threads on top of a VM which has

eight vcores. The metric for performance is execution time, makespan. Execution time

varies up to 66%, where power and energy by 17% and 31% repeatedly. This shows great

opportunities for an adaptive system.

The system is expected to maximize performance, minimize energy or minimize power

73

per user demands. What the figure shows is, depending on the characteristic of workloads,

it makes sense to take more resources at the cost of power. If computational threads in

a guest have significant shared-memory communication, all vcores are better to be con-

solidated on the same socket. In a under-subscription case, the local vcore mapping also

allows us to idle the other socket. However, if threads have negligible shared memory com-

munication, the local vcore mapping will hurt performance. Off-chip delays and memory

controller bandwidth are the factors. This latter type of workload benefits from memory

bandwidth, but they are less sensitive to the delays in shared memory synchronization.

The SPEC OMP and PARSEC benchmarks are mainly used in this chapter. Notice that a

complete under-subscription case will be dealt in Chapter 5, along with different memory

mapping strategies.

4.1.1 Memory Reference Behavior Affecting Performance

To better understand the tradeoffs appearing in Figure 4.1, the hardware monitor has been

used to capture cache and memory traffic. Also, benchmarks shown in Figure 4.1 are

running eight threads, the same as the number of vcores in their VM. The performance

counter in the R410 testbed allows us to check cache coherence traffic such as the number

of cache hits in modified cache blocks and whether invalidations come from the local or

remote NUMA domain. Along with this, the detection framework, the hardware-assisted

software monitor described in the previous chapter, is also used to check VMM-drived

metrics such as accessed and written page rates. The two vcore mapping strategies, the

interleaved and local vcore mappings, are compared, and workloads are measured with

various degree of parallelism and compilation options. The measurements are intended to

help us to understand variations driven by each application and it’s implementation. Also,

in the scope of this chapter, cache performance, not only the hit ratio, but also the amounts

74

Benchmark
Class

0 1 2
ammp (SPEC) X
apsi (SPEC) X
art (SPEC) X

blackscholes (PARSEC) X
bodytrack (gcc-pthread/icc-pthread) (PARSEC) X

bodytrack (gcc-omp/Intel-TBB) (PARSEC) X
canneal (PARSEC) X

equake (SPEC) X
facesim (PARSEC) X
ferret (PARSEC) X

fluidanimate (gcc-pthread/Intel-TBB) (PARSEC) X
fluidanimate (icc-pthread) (PARSEC) X

fma-3d (SPEC) X
freqmine (PARSEC) X

galgel (SPEC) X
raytrace (PARSEC) X

streamcluster (PARSEC) X
swaptions (PARSEC) X
swim (gcc) (SPEC) X
swim (icc) (SPEC) X

mgrid (SPEC) X
wupwise (SPEC) X

Table 4.1: Classifications of all of our benchmarks

of coherence traffic across caches, are very sensitive factors. For this reason, variations in

parallelism and compilers are as visible as some core characteristics such as working set

size (WSS).

4.1.2 Classification

With all the measured metrics and various application setups, certain trends are captured as

depicted in Figure 4.2. One point of the figure is uncovering underlying factors that result

in different performance benefits between the two vcore mappings. The figure shows two

75

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 10000 20000 30000 40000 50000 60000

E
xe

cu
tio

n
tim

e
ra

tio
 (

in
te

rle
av

ed
 o

ve
r

lo
ca

l)

Average hot page access rate

threshold for classification (8000)

local better

interleaved better

HighCacheMissRate
LowCacheCoherencyTraffic

Other

(a) Separating HighCacheMissRate from LowCacheCoherencyTraffic and Other

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 2 4 6 8 10

E
xe

cu
tio

n
tim

e
ra

tio
 (

in
te

rle
av

ed
 o

ve
r

lo
ca

l)

Shared hot page write ratio (%)

threshold for classification (1%)

local better

interleaved better

LowCacheCoherencyTraffic
Other

(b) Separating LowCacheCoherencyTraffic from Other

Figure 4.2: Classifying workloads by their memory traffic characteristics. Vertical axes in-
dicate the performance ratio between interleaved and local execution, while the horizontal
axis is the metric used for classification. Each point in a graph represents the measurement
of the combination of a benchmark, a set of compilation options, and whether the mea-
surement is per-memory-operation or per-store. HighCacheMissRate is distinguished by
a high distinct page access rate over all the vcores. LowCacheCoherencyTraffic is distin-
guished by having only a small fraction of each vcore’s writes going to pages written by
other vcores. Other is the remaining class.

76

metrics, the overall page access rate and the fraction of a vcore’s writes to cache blocks

that overlap with the writes of other vcores. They are used to partition the three classes.

The implication and classifying process of those classes is as follows.

First, when the page access rate, the rate at which distinct pages are either read or

written, is high, the case is referred to as the HighCacheMissRate class. In this case,

the contention is thought to be in the main memory system, and this is due to a large

working set size. The Local mapping is preferred here as main memory-access time is the

critical path. The interleaved mapping raises the cost of remote accesses. CANNEAL is

an example of the HCM class.

Some workloads perform better in the interleaved mapping. As measured and com-

pared using the shared page write ratio, some workloads with very small write ratio also

perform better with the interleaved mapping. What the metric captures is the fraction of

writes to pages, by a vcore, that are also written by another vcore. If the fraction is very

small, it is in LowCacheCoherencyTraffic class. If any workload that is not either of the

two classes, it is classified as Other class. An example for LowCacheCoherencyTraffic is

APSI and MGRID is an example of the Other class. The whole list of classifications for

our benchmarks is in Figure 4.1. The classification is intended to understand factors that

bring the performance tradeoffs. If a class affects the performance difference sharply, it

can be integrated into a runtime policy with a decision tree. However, some benchmarks,

particularly in Ohter class, are not predictable with the classification. More details on

policy design will be discussed in Section 4.3.

4.1.3 Tradeoffs in Power and Energy

Optimizing power is relatively straightforward. Although the best way to minimize power

is by consolidating all vcores, here eight vcores, they are not overlapped in one hardware

77

thread according to the assumption of under-subscription. Therefore, consolidating all

vcores in one socket is the best mapping policy here. Now, for the energy objective, two as-

pects that should be contemplated are power and performance. Power is rather predictable,

as our workloads are fully utilizing CPU resources. Many articles [45, 97, 120, 68] de-

scribe their experiments that show that CPU power is linear with the CPU utilization ratio.

The utilization ratio is a ratio between active and sleep times in a short duration. As the

selected workloads are highly computational, they mostly demand computational power.

Sometimes, some workloads produce high memory traffic which may cause some delays,

but prefetching and out-of-order executions keeps cores almost always running. With a

power model, power difference in the two vcore mappings can be drawn. The energy

tradeoff then is a matter of whether the performance benefit from the interleaved vcore

mapping is more than the cost of increased power. Workloads in some classes exhibit

energy tradeoffs, as their execution time differences between the two mappings are very

predictable. However, a fine-grained model is still needed to predict a precise execution

time, particularly for the workloads where execution time is hard to predict only with the

classifications.

4.2 Extended Detection Framework

The detection framework (the hardware-assisted software monitor) needs to be extended

for the adaptive system. The reason is tightly coupled with the needed metrics. Figure 4.3

illustrates the extension, namely the two phases of probing. Recall the variables described

in the hardware-assisted software monitor design. During a probe, hardware raises an

interrupt after a certain amount of events, either a number of memory operations or write

operations. Given each interrupt, the shadow or nested page tables are scanned in each

vcore. Two intervals are used to capture both the per-op and per-write metrics. Note that all

78

Aggregator

vcore0

VM exit (PMU interrupt)
vcore1

VM entry PTE scan

vcoren-1

...

timeline

Aggreate
Bitmaps

Enable PTE scan

idle

Disable PTE scan

idle

T T

per store operations

per memory
operations

Change scanning interval

Figure 4.3: Illustration of probing on a timeline. In a probe, each virtual core scans its
page table independently. The scanning interval is in units of memory operations (both
stores and loads) or or store operation. At the end of the probing interval, information on
accessed or written pages is collected from all virtual cores and the metrics are computed
from it.

the bitmaps created with page-table-scans are collected using AND operations to capture

hot pages. Statistically, these metrics have more correlation with the objective metric,

makespan. The sensitivity to the sampling interval will be discussed the next chapter. The

following is a list of all metrics collected.

• The average accessed hot page rate per memory operation, r∩am: Intuitively, this

captures the offered memory system load from all of the virtual cores.

• The average written hot page rate per memory operation, r∩wm: Intuitively, this

captures how much of that load is due to writes.

• The shared accessed hot page ratio per memory operation, s∩am: Intuitively, this

79

captures the fraction of page accesses from any virtual core that are also accessed

from another virtual core—the degree of read or write sharing.

• The shared written hot page ratio per memory operation, s∩wm: Intuitively, this cap-

tures the fraction of page writes from any virtual core that are also matched with

writes to the same page from another virtual core—the degree of write sharing.

• The average access hot page rate per store operation, r∩as.

• The average written hot page rate per store operation, r∩ws.

• The shared access hot page ratio per store operation, s∩as.

• The shared written hot page ratio per store operation, s∩ws.

4.2.1 Algorithm

We now describe the extension to the hardware-assisted software monitor. To get a clear

idea of the extension and the detection framework as well, the following are the formula-

tions for the extended detection framework. Let accessed per mem i, written per mem i

(for r∩am, r∩wm, s∩am and s∩wm), accessed per store i, written per store i (for r∩as, r∩ws, s∩as

and s∩ws), accessed i and written i be the bit vectors representing the sets of pages accessed

and written on virtual core i. The bit vectors contain as many bits as there are pages in the

physical address space of the guest that is backed with physical memory. Let n be the

number of vcores, m be the number of pages, and T be the real time interval between

aggregations. The following algorithm implements the core of the Probing routine of Sec-

tion 4.3.3. The elements of a single probe operation are condensed into five events. The

Probing routine initiates the process by invoking the Init function:

Init(aggregator): [Invoked at startup on aggregator]

80

SetTimer(T , SetAggregate)

Phase = 0

for all vcores i do

EnableScan i = 1

Force vcore i to run InitVcore(i)

end for

InitVcore(i): [Invoked at on vcore i]

accessed i = {k : 0 . . .m− 1}

written i = {k : 0 . . .m− 1}

Set PMU exception for number of memory operations to trigger Scan(i).

ReinitVcore(i): [Invoked at on vcore i]

accessed per mem i = accessed i

written per mem i = written i

accessed i = {k : 0 . . .m− 1}

written i = {k : 0 . . .m− 1}

Set PMU exception for number of store operations to trigger Scan(i).

Scan(i): [invoked when PMU exception occurs]

if EnableScan i = 1 then

for all present shadow (or nested) PTEs on vcore i do

k = DeriveGuestPhysicalPageNumberFrom(PTE)

curacci = ∅

curwrit i = ∅

if PTE.accessed then

curacci = curacci ∪ {k}

end if

81

if PTE.dirty then

curwrit i = curwrit i ∪ {k}

end if

PTE.accessed=0

PTE.dirty=0

end for

accessed i = accessed i ∩ curacci

written i = written i ∩ curwrit i

end if

The PMU is set to raise an exception for a number of memory operations (or write

operations) to trigger Scan(i). Scan(i) runs multiple times (at least twice) during a probe,

depending on the memory-access rate. The purpose of the somewhat confusing intersec-

tion operations over these runs is to filter out pages that are infrequently written or read; in

other words, the operation is selecting hot pages. At the end of a probe, it collects the set

of pages that are consistently written or accessed during the whole probe interval.

SetAggregate(aggregator): [invoked when T expires on aggregator]

if Phase = 0 then

for all vcores i do

EnableScan i = 0

Force vcore i to run ReInitVcore(i)

EnableScan i = 1

end for

Phase = 1

SetTimer(T , SetAggregate);

else

82

Aggregate(aggregator)

end if

Aggregate(aggregator)

for all vcores i do

EnableScan i = 0

accessed per store i = accessed i

written per store i = written i

end for

r∩am = 1
n

∑n−1
i=0 |accessed per mem i|

r∩as =
1
n

∑n−1
i=0 |accessed per store i|

r∩wm = 1
n

∑n−1
i=0 |written per mem i|

r∩ws =
1
n

∑n−1
i=0 |written per store i|

s∩am = 1
ram

2
(n−1)n

∑n−2
j=0

∑n−1
k=j+1 |accessed per memj ∩ accessed per memk|

s∩as =
1

r∩as

2
(n−1)n

∑n−2
j=0

∑n−1
k=j+1 |accessed per storej ∩ accessed per storek|

s∩wm = 1
r∩wm

2
(n−1)n

∑n−2
j=0

∑n−1
k=j+1 |written per memj ∩ written per memk|

s∩ws =
1

r∩ws

2
(n−1)n

∑n−2
j=0

∑n−1
k=j+1 |written per storej ∩ written per storek|

4.3 Policy and System Design

Workloads are classified according from measured metrics by using the extended hardware-

assisted software monitor. The classification is not sufficient to predict performance and

energy. This section presents how the policy design and performance, power, and energy

models fit in the policy component. Pseudo codes are also shown to describe the algorithm

used for adaptive resource management.

83

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0.5 0.6 0.7 0.8 0.9 1 1.1

E
xe

cu
tio

n
tim

e
ra

tio
 (

in
te

rle
av

ed
 o

ve
r

lo
ca

l)

Cycle per instruction ratio (interleaved over local)

Figure 4.4: CPI is weakly predictive of the performance gain likely from moving to an
interleaved model. Classification followed by linear regression provides much more pre-
dictability.

4.3.1 Approach

For an adaptive system, a brute-force approach can be at first considered. However, it is

simply dropped in the scope of this chapter because a metric for a feedback loop is not

clear. As mentioned earlier, the brute-force approach includes a feedback loop that con-

tains a measured value. The measured value should be strongly coupled with an objective

metric, execution time. Power, again, is measurable or very predictable. CPI (Cycle Per In-

struction) is a very popular metric as a performance indicator. However, CPI has recently

been reported to be inaccurate for predicting execution time particularly for concurrent

and parallel workloads [48, 8]. As shown in Figure 4.4, CPI has a weak correlation with

makespan. Nevertheless, the brute-force approach is taken with CPI as a feedback metric

in Chapter 5, the next chapter.

In the current chapter, the adaptive system is designed to use model-based predictions.

In terms of modeling, decision-tree base modeling is based on the classification of work-

84

loads is described. The classification is good for pointing out some extreme cases and their

characteristics, but the classification based approach is insufficient for telling which bench-

marks performs better with the interleaved vcore mapping, particularly for none-extreme

cases. A different model is needed to predict the objective metric with better accuracy.

Linear-regression based modeling is one viable option. The approach demands little com-

putational power and is also suitable for incorporating multiple metrics captured by the

detection framework. Even if this linear-regression approach is effective, the classification

approach is still useful. Therefore, the two models need to be combined. My overall ap-

proach is to first classify workloads and, in each class, predict execution time through a

linear regression model.

4.3.2 Models

Performance model The performance model has two steps: a decision-tree (classifier)

and a first-order formula to predict execution time. In fact, the first-order (linear) formula

does not necessarily estimate maskespan well. Instead, we predict the execution time ratio

of the two vcore mappings.

Decision tree A decision is composed of two nodes as three classes are classified. The

first node separates HighCacheMissRate from the rest of classes. The partition is made

based on the average of r∩am and r∩as. The idea is to filter out workloads that have a large

working set size. This type of workload stresses the cache, particularly last level cache.

The threshold value is derived from this equation:

threshold class0 =
LastLevelCacheSize

((PG ·PGUtil)· (NTh − SR· (NTh − 1)))

85

where PG is the page size, PGUtil is the average number of the memory operations per

page, NTh is the number of threads, and SR is the sharing ratio of accessed pages (that

is s∩as or s∩am). For the R410 test system, the threshold for the first node is calculated

to be 8000. Second node separates LowCacheCoherencyTraffic from Other based on the

average of s∩wm and s∩ws. The threshold value is set to 1 %, to conservatively pick very

low cache coherency-demanding workloads.

First-order formula Given the decision-tree, the execution time ratio is estimated through

a first-order formula, the coefficient of which is determined by a training set. One limit

of the work in this chapter is a lack of an evaluation set for the trained models. Also, two

formulas are driven by two training sets. One set comes from the Other class and another

set is from two other classes, HighCacheMissRate and LowCacheCoherencyTraffic. Even

with the formula, sometimes when the ratio is near 1.0, the fitting error becomes large. For

those cases, CPI is taken into account to compensate for the error, but CPI is not included

in performance models. Due to the inaccuracy of CPI shown in Figure 4.4, this metric

is sparsely used. Instead, the policy will treat them, the predicted execution ratio and

the measured CPI, as individual metrics, and a decision is then made through the defined

algorithm. Here is the formulation of performance model.

if (r∩am + r∩as) > thresholdHighCacheMissRate or (s∩wm + s∩ws) < thresholdLastLevelCacheSize

then

if current mapping is local then

ratio ← C01l0 + [C01l1 , ..., C01l8] · [r∩am , r∩wm , ... s∩as , s∩ws]

else

ratio ← C01i0 + [C01i1 , ..., C01i8] · [r∩am , r∩wm , ... s∩as , s∩ws]

end if

else

86

Num. of core Num. of core
Power (watts)

w. 1+ threads (p) w. 2 threads (l)
1 0 112.04
2 0 123.23
3 0 131.32
4 0 138.37
2 0 120.87
4 0 142.52
6 0 156.49
8 0 173.42
1 1 114.07
2 2 126.24
3 3 135.68
4 4 145.35
4 1 141.35
4 2 142.49
4 3 143.83

Table 4.2: System power consumption with varying numbers of threads and affinity. Each
thread exhibits full core utilization, so the core remains in the P-state. A linear regression
models this data as 104.63 + 8.69· p+ 1.62· l.

if current mapping is local then

ratio ← C2l0 + [C2l1 , ..., C2l8] · [r∩am , r∩wm , ... s∩as , s∩ws]

else

ratio ← C2i0 + [C2i1 , ..., C2i8] · [r∩am , r∩wm , ... s∩as , sw∩s]

end if

end if

return ratio

The constant vectors [C01l0 , ..., C01l8], [C01i0 , ..., C01i8] , [C2l0 , ..., C2l8] , and [C2i0 ,

..., C2i8] comprise the linear models (the coefficient vectors) that are from offline training.

The predictions are formed by their dot product with the currently probed metrics. Notice

that a different linear model is used depending on the class of the workload.

87

Power model Linear regression is also used to create a power model. The measured

power during the execution of benchmarks on the test hardware, the R410, has been used

to build the model. As shown in Table 4.2, the power for different core utilization scenarios

behaves fairly linearly. This observation is well established and used in previous works [45,

97, 120, 68] where power predictions are accurate for CPU-dominated workloads. Based

on the measurements in Table 4.2, a linear regression forms a power model whose inputs

include the number of active cores and the number of threads per core. For the testbed

machine, the coefficients of the model are also shown in Table 4.2. To illustrate how the

these coefficients are used, two basic examples are given:

• one active core with one thread consumes 8.69 Watts (P1)

• one active core with two threads consumes 10.31 Watts (P2)

Note that the instantaneous power can vary widely over time. This is due to the varying

behavior of a CPU core’s power state which is driven by scheduling behaviors. In order to

determine the average power usage, it is necessary to measure the amount of time that a

core spends in both active and idle states. Fortunately, there is one easily accessible metric

provided by the host OS: the CPU utilization. In the test system, the R410, the utilization

of each hardware thread in a core matches with the vcore utilitzation, vcoreUtil . Using the

utilization measurements, it becomes possible to determine the average time that a core

spends in idle or active power states. Consider two active vcores, i, and j, with utilization

vcoreUtil i and vcoreUtil j . Notice the test machine has two hardware threads (two logical

cores) per one physical core. When two vcores run at the same time, the power is expected

to be P2; otherwise, when two vcores run exclusively, the expected power is P1. The

utilization is then used to estimate the amount of time that the two vcores execute at the

88

same time or exclusively in the following way:

power local =P1· (max(vcoreUtil i, vcoreUtil j)−min(vcoreUtil i, vcoreUtil j))

+ P2·min(vcoreUtil i, vcoreUtil j)

(4.1)

power inter = P1· vcoreUtil i (4.2)

The ratio power interleaved/power local is the final result of the model. Here is a complete

version as estimating multiple cores’ power.

Plocal ←
∑max(core)

i=0

∑max(vcore)−1
j=0

∑max(vcore)
k=j+1 Lj→i · Lk→i · (P1 · (max ((vcoreUtil)j ,

(vcoreUtil)k) - min((vcoreUtil)j , (vcoreUtil)k)) + P2 ·min((vcoreUtil)j , (vcoreUtil)k))

where, Li→j = 1 if vcorei is mapped to corej , otherwise 0 as configured in local mapping

Pinterleaved ←
∑max(core)

i=0

∑max(vcore)
j=0 Ij→i · P1 · (vcoreUtil)j

where, Ii→j = 1 if vcorei is mapped to corej , otherwise 0 in interleaved mapping

return Pinterleaved/Plocal

Energy model The energy model is derived from both the power and performance mod-

els. The model estimates the ratio of energy consumption between two mappings, inter-

leaved and local, by multiplying the predicted execution time ratio, ratioperf , with the

predicted average power usage, ratiopower .

ratioenergy = ratioperf · ratiopower

.

89

4.3.3 Algorithm

The implementation of the online prediction and adaptation algorithm contains five major

functions in the main loop. Updates on the measurements (Probing) and decisions (Voting)

are made periodically. If the current vcore mapping (Mappingcur) needs to be changed,

ReMapping is called. If a remapping happens, the system pauses until the system overhead

falls below the threshold, thresholdovrhd . The duration for which the system pauses is

called the Interim state. Note that metrics is a vector containing the 8 metrics defined

in Section 4.2. Additionally, the per-vcore cpi value is tracked, as well as its utilization,

vcoreUtil i. The overhead for a vcore is computed from a summation of page table scanning

time (ovrhdprobe) and vcore remapping time (ovrhd remap).

Pseudocode Main Loop periodically finds the correct mapping. Intuitively, it periodi-

cally probes the metrics described in Section 4.2, and then executes a voting procedure

based on them. The voting procedure indicates the preferable mapping and the perfor-

mance that is likely to result, based on the current objective. Additionally, it reports the

confidence in its prediction. If the confidence is high, the new mapping is immediately

committed; otherwise, is is temporarily switched to probe its behavior and the voting pro-

cedure is allowed to make a new prediction. If the two predictions agree, the mapping is

then committed; while if they disagree, a tie-breaker is invoked. The code also tracks the

overheads of its various components, and these overhead measurements are used to control

the rate of execution of the loop. The user determines the maximum overhead that is toler-

ated. The Main Loop has the following pseudocode:

ovrhdprobe ← 0

ovrhdremap ← 0

while 1 do

90

ovrhdprobe ← Probing(metrics)

(confidence, vote1 , cpi1)← Voting(metrics)

if confidence is high then

if vote1 6= Mappingcur then

ovrhdremap ← ReMapping()

end if

else

ovrhdremap ← ReMapping()

sleep as long as a half of probing time

ovrhdprobe ← Probing(metrics) + ovrhdprobe

(confidence, vote2 , cpi2)← Voting(metrics)

if vote1 = vote2 then

if vote1 6= Mappingcur then

ovrhdremap ← ReMapping() + ovrhdremap

end if

else

vote3 ← finalVoting(cpi1 , cpi2)

if vote3 6= Mappingcur then

ovrhdremap ← ReMapping() + ovrhdremap

end if

end if

end if

Interim(ovrhdprobe , ovrhdremap)

end while

91

Voting(metrics) is called to make an initial prediction of the best mapping. If the initial

vote had low confidence, the predicted mapping is temporarily switched to evaluate it.

This voting procedure heavily depends on the predictions made by the models. Since the

mapping strategy has two options, each model reports the ratio of the two estimated values

in two mappings. The power model, for example, estimates the ratio of the power of the

interleaved mapping over that of the local mapping. Thus, the more the ratio diverges from

1, the more confident it is.

if objective is performance then

ratio ← PerformanceModel(metrics)

else if objective is energy then

ratio ← EnergyModel(metrics)

else if objective is power then

ratio ← PowerModel(metrics)

end if

if ratio > 1 then

vote ← local mapping

else

vote ← interleaved mapping

end if

if ratio is within unconfident intervals then

confidence ← low

else

confidence ← high

end if

get cpi from metrics

return (confidence, vote, cpi)

92

PerformanceModel(metrics) classifies the workload and then selects the correct perfor-

mance model to compute the performance ratio of the interleaved to the local mapping.

if (r∩am + r∩as) > threshold class0 or (s∩wm + s∩ws) < threshold class1 then

if current mapping is local then

ratio ← C01l0 + [C01l1 , ..., C01l8] · [r∩am , r∩wm , ... s∩as , s∩ws]

else

ratio ← C01i0 + [C01i1 , ..., C01i8] · [r∩am , r∩wm , ... s∩as , s∩ws]

end if

else

if current mapping is local then

ratio ← C2l0 + [C2l1 , ..., C2l8] · [r∩am , r∩wm , ... s∩as , s∩ws]

else

ratio ← C2i0 + [C2i1 , ..., C2i8] · [r∩am , r∩wm , ... s∩as , s∩ws]

end if

end if

return ratio

In the above, the constant vectors [C01l0 , ..., C01l8], [C01i0 , ..., C01i8], [C2l0 , ..., C2l8

] , and [C2i0 , ..., C2i8] comprise the linear models (the coefficient vectors) described in

Section 4.3.2. The predictions are formed by their dot product with the currently probed

metrics. Notice that a different linear model is used depending on the class of the workload.

PowerModel(metrics) estimates CPU power in the two mappings, and returns their ra-

tio.

Plocal ←
∑max(core)

i=0

∑max(vcore)−1
j=0

∑max(vcore)
k=j+1 Lj→i · Lk→i · (P1 · (max ((vcoreUtil)j ,

(vcoreUtil)k) - min((vcoreUtil)j , (vcoreUtil)k)) + P2 ·min((vcoreUtil)j , (vcoreUtil)k))

93

where, Li→j = 1 if vcorei is mapped to corej , otherwise 0 as configured in local mapping

Pinterleaved ←
∑max(core)

i=0

∑max(vcore)
j=0 Ij→i · P1 · (vcoreUtil)j

where, Ii→j = 1 if vcorei is mapped to corej , otherwise 0 in interleaved mapping

return Pinterleaved

Plocal

This pseudocode incorporates Equations 4.1 and 4.2. The description of these equations is

in Section 4.3.2.

EnergyModel(metrics) is straightforward:

ratiopower ← PowerModel(metrics)

ratioperf ← PerformanceModel(metrics)

return ratiopower · ratioperf

finalVoting(cpi1 , cpi2) comprises the tie-breaker in case the two initial votes contradict

each other.

if cpi1 < cpi2 then

vote ← previous mapping which brings cpi1

else

vote ← current mapping which brings cpi2

end if

return vote

Probing(metrics) collects the performance metrics described in Section 4.2:

tscstart ← readtsc

Call Init(aggregator) from Section 4.2.1 to initiate a two-step round of probing to collect

the eight metrics described in 4.2

then, update metrics with values in 8 metrics, cpi , vcoreUtil

tscend ← readtsc

94

return (tscend − tscstart)

Although it is not shown here, it is important to note that a moving average or exponential

average of the metrics could be taken to reduce burstiness of the measurements.

ReMapping() implements a mapping change and tracks the overhead of doing so:

tscstart ← readtsc

change vcore/core mapping

update Mappingcur

tscend ← readtsc

return weight · (tscend − tscstart)

Interim(ovrhdprobe ,ovrhdremap) controls the overhead of the system by comparing its mea-

sured overhead with a threshold. If the threshold is exceeded, the system sleeps for a

time:

if ovrhdprobe = 0 and ovrhdremap = 0 then

tscprev ← readtsc

return

else

tsccur ← readtsc

tsc ← tsccur - tscprev

ovrhd ← ovrhdprobe + ovrhdremap

while ovrhd / tsc > thresholdovrhd do

sleep for windowinterim

tsccur ← readtsc

tsc ← tsccur - tscprev

end while

tscprev ← tsccur

95

ovrhdprobe ← 0

ovrhdremap ← 0

return

end if

In the above, tsc refers to the cycle counter.

4.4 Experimental Results

This section illustrates overall experimental results on nine selected benchmarks. Along

with the performance of the adaptive system, the accuracy of the models and overheads are

thoroughly discussed.

4.4.1 Model Predictions

As described in Section 4.3.2, the performance of the models that predict performance

gains and power gains is of critical importance both directly for the performance and power

objectives, and indirectly for the energy objective, because energy is power×time. The

predictive power of the models is based on their performance with test sets. For the per-

formance models, the R2 ranges from 0.76 to 0.93 when measurements are made with the

local configuration, and 0.70 to 0.91 when the measurements are made in the interleaved

configuration. The power model achieves an R2 of almost 1 in both cases.

4.4.2 System Performance

Figure 4.5, 4.6, and 4.7 show the performance of the adaptive system, and can be compared

directly with the opportunities shown in Figure 4.1. The system is able to choose the

best of the interleaved and local mappings for each workload and each optimization goal.

96

0	

4E+11	

8E+11	

1.2E+12	

1.6E+12	

2E+12	

CA
NN
EA
L	
 	

ST
RE
AM

CL
US
TE
R	

EQ
UA
KE
	
 	

SW
IM
	
 	

RA
YT
RA
CE
	
 	

MG
RID
	
 	

FLU
IDA

NI
MA

TE
	
 	

AR
T	
 	

AP
SI	

	

Ti
m
e	

st
am

p	

co
un

t	

	
 (r
ef
er
en

ce
	
 c
lo
ck
)

Local	
 Interleaved	
 AdapHve	

Figure 4.5: The adaptive system results for performance. The adaptive system can dynam-
ically and automatically select a mapping that optimizes for the goal.

0	

10	

20	

30	

40	

CA
NN
EA
L	
 	

ST
RE
AM

CL
US
TE
R	

EQ
UA
KE
	
 	

SW
IM
	
 	

RA
YT
RA
CE
	
 	

MG
RID
	
 	

FLU
IDA

NI
MA

TE
	
 	

AR
T	
 	

AP
SI	

	

En
er
gy
	
 (W

h)

Local	
 Interleaved	
 AdapEve	

Figure 4.6: Performance of the adaptive system for energy objective.

It is also well maintained for the number of times that the vcores are remapped during

the execution of each of the benchmarks and each of the optimization goals. In some

cases, no remappings are done because the original mapping was the correct one. The

default mapping is selected to be the local mapping. Remapping occurs in most cases

infrequently and rarely. The RAYTRACE, SWIM, and MGRID benchmarks run for >10

97

110	

130	

150	

170	

190	

CA
NN
EA
L	
 	

ST
RE
AM

CL
US
TE

EQ
UA
KE
	
 	

SW
IM
	
 	

RA
YT
RA
CE
	
 	

MG
RID
	
 	

FLU
IDA

NI
MA

TE
	
 	

AR
T	
 	

AP
SI	

	

Po
w
er
	
 (w

a)
)

Local	
 Interleaved	
 AdapFve	

Figure 4.7: Performance of the adaptive system for power objective.

minutes, while the others run for 3-5 minutes. In these intervals, the common case is 0–2

remappings. RAYTRACE with an energy goal exhibits the largest number of remappings,

eight remappings.

4.5 Conclusion

In this chapter, one solution is demonstrated that focus on the tradeoffs in vcore mappings.

The tradeoffs are among the performance, power, and energy objectives, and our adaptive

system is able to choose one of two vcore mappings: interleaved and local mappings. Note

that the local mapping is the same as the consolidated mapping which will be used in the

following chapters. The system incorporates sophisticated performance and power models

built on top of offline-used analysis and training. Classification and linear regression are

the methodologies to create them. The result of focusing on vcore-level tradeoffs, perfor-

mance is more influenced by finer-grained concerns like cache performance and workload

characteristics. The detection scheme focuses on the page-granularity. For the next chap-

98

ter, we expand the scope of problem to include page mapping (memory mapping).

99

Chapter 5

Under-subscription

In the last chapter, preliminary studies were discussed that focus on vcore mapping trade-

off, relative to performance, power, and energy. An adaptive system was designed and eval-

uated to address the tradeoffs. However, it is not complete even for the under-subscription

case. The assumption of memory affinity was made, which is unrealistic. Therefore, this

chapter brings the configurability of memory mapping (page mapping) into the scope of

the under-subscription problem. The chapter is comprised of four major parts, preliminary

studies on tradeoffs, the detection framework, modeling and adaptive processes, and ex-

perimental results. This structure is repeated for the following chapters that address the

full-subscription and over-subscription cases.

5.1 Tradeoffs and Opportunities

In the previous chapter, the situation was narrowed down to only vcore mappings. Now,

this chapter includes memory mapping, so, the mapping strategy, in a coarse-grained level,

includes interleaved and consolidated mapping for both vcore and memory. Additional

100

attempts to conduct fine-grained mappings are discussed in Section 5.5. Having a memory

affinity, in the fixed consolidated memory mapping shown in Chapter 4 tradeoffs depend on

the degree of memory traffic and the levels of the memory hierarchy, whether it is last-level

cache (LLC) intensive (HighCacheMissRate) or contains very low cache coherency traffic

(LowCacheCoherencyTraffic). Although some workloads seem to have very mixed types

of memory traffic (Other), specific cases are still distinguishable. When memory-access

traffic is heavy beyond LLC due to a Large Working Set Size (LWSS), the consolidated

(local) mapping is preferred; on the contrary, the interleaved vcore mapping is chosen,

when the degree of cache coherence, inter-cache traffic, is very low with no LWSS. The

following sections include an introduction to the two dimensional configuration space,

preliminary performance results, and some discussion of the factors that bring tradeoffs.

5.1.1 Problem in Two-Dimensional Configuration Space

Four coarse-grained mapping cases are possible since we are considering both vcore and

memory mappings. In short, the four mapping cases are:

• CCMC: virtual cores consolidated and memory consolidated

• CIMC: virtual cores interleaved and memory consolidated

• CCMI: virtual cores consolidated and memory interleaved

• CIMI: virtual cores interleaved and memory interleaved

Differences from the previous problem When HighCacheMissRate is the situation, it

is not always desirable to consolidate vcores under the interleaved memory mapping. Two

factors, bandwidth and memory-access distance, affect this. Memory bandwidth is lim-

ited when all of the guest pages are consolidated in one NUMA domain, regardless of the

101

vcore mapping. Changing the vcore mapping, either to interleaved or consolidated, af-

fects the load of the memory controllers in the NUMA domains. Therefore, the memory

affinity makes the factor of memory-access distance more visible. Now, memory mapping

is assumed to be reconfigurable, so the memory consolidation option limits resource pro-

visioning, because it allows only a half or less of the available memory bandwidth to be

used. Also, vcore consolidation, called local mapping earlier, no longer guarantees access

to local memory. Therefore, we use the term consolidated vcore mapping here rather than

local vcore mapping. Across the two dimensions in the configuration space, the factors

that bring tradeoffs and the degree of the tradeoffs are quite different from those discussed

in Chapter 4.

5.1.2 Tradeoff Factors

Given the results of execution times for the four configurations for each workload, shown

in Figure 5.2, the execution times for the four configurations are now compared for each

workload. Each workload ran in a VM which is created with eight vcores1 in the R410

test machine with overall 16 hardware threads. This setup is the same for the experimental

results in this chapter. Observations can be made with the two questions in mind, Q1 and

Q2. Q1 is how to extract and analyze factors, and Q2 is whether changes in execution time

by each mapping is orthogonal between the two dimensions. Q2 is more about interactions

between factors. One approach to extract factors is to compare execution times by estimat-

ing the possible factors resulting from changing the configuration. Here are the four cases

in which comparison are made after only one change is made:

• CCMC vs. CCMI: The memory mapping is changed between consolidated and

interleaved, while the vcore mapping is fixed to the consolidated mapping.

1Each workload has eight threads.

102

NUMA domain 0 NUMA domain 1 NUMA domain 0 NUMA domain 1

CCMC CIMC

NUMA domain 0 NUMA domain 1 NUMA domain 0 NUMA domain 1

CCMI CIMI

Figure 5.1: Illustration of four possible coarse-grained configurations for vcore and mem-
ory mappings: CCMC, CIMC, and CCMI, and CIMI. Each figure represents a machine
with two NUMA domains. Two boxes, each of which is one CPU, below in each fig-
ure host four physical cores. Four vcores are running and each vcore takes one hardware
thread, each of the two hardware threads provided by one physical core. The upper half of
each figure represents memory. CCMC, for example, has four vcores that are all mapped
to NUMA domain 0, and all of the VM’s memory is also allocated in NUMA domain 0.

103

20%	

40%	

60%	

80%	

100%	

BL
AC
KS
CH
OL
ES
	

CA
NN
EA
L	

FA
CE
SIM

	

FE
RR
ET
	

FLU
IDA

NI
MA
TE
	

RA
YT
RA
CE
	

ST
RE
AM
CL
US
TE
R	

SW
AP
TIO
NS
	

WU
PW
ISE
	

SW
IM
	

MG
RID
	

AR
T	

AM
MP
	

FM
A3
D	

AP
SI	
 BT

	
 IS	
 LU
	

SP
	

UA
	

DE
DU
P	

VIP
S	

X2
64
	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	

Normalized	
 execu/on	
 /me	
 is	
 based	
 on	
 CCMC	
 to	
 100%	
 CCMI	
 CIMC	
 CIMI	

Figure 5.2: Illustration of tradeoffs for under-subscription, with respect to four possible
coarse-grained mapping cases for vcore and pages: CCMC, CCMI, CIMC and CIMI.
CCMC refers to virtual Core Consolidated and Memory Consolidated; similarly, CIMI
represents virtual Core Interleaved and Memory Interleaved. Notice that CCMC is equiv-
alent to the local vcore mapping appearing in Chapter 4 and CIMC is equivalent to the
interleaved vcore mapping in the chapter.

Mapping Changes Memory Bandwidth (BW) Memory Distance Cache Contention
CCMC→ CCMI more BW (+) remote access (-) no effect
CIMC→ CIMI more BW (+) mixed no effect

CCMC→ CIMC no change remote access (-) less contention (+)
CCMI→ CIMI no change no remote access (+) less contention (+)

Table 5.1: Summary of how three factors may change when the mapping changes. The plus
and minus notation indicates the direction of the impact. Each mapping change represents
a pair of configurations.

• CIMC vs. CIMI: The same as CCMC vs. CCMI except that vcore mapping is

fixed to the interleaved mapping.

• CCMC vs. CIMC: Virtual core mapping is changed between the consolidated and

the interleaved mappings while memory mapping is kept to the consolidated map-

ping.

104

60%	

70%	

80%	

90%	

100%	

110%	

120%	

BL
AC
KS
CH
OL
ES
	

CA
NN
EA
L	

FA
CE
SIM

	

FE
RR
ET
	

FLU
IDA

NI
MA

TE
	

RA
YT
RA
CE
	

ST
RE
AM

CL
US
TE
R	

SW
AP
TIO
NS
	

WU
PW
ISE
	

SW
IM
	

MG
RID
	

AR
T	

AM
MP
	

FM
A3
D	

AP
SI	
 BT

	
 IS	
 LU
	

SP
	

UA
	

DE
DU
P	

VIP
S	

X2
64
	
 N

or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	

CCMCàCCMI	

W
or

se

B
et

te
r

Figure 5.3: Comparison of the execution time ratio of the CCMC mapping over the CCMI
mapping (CCMC→CCMI)

40%	

50%	

60%	

70%	

80%	

90%	

100%	

110%	

BL
AC
KS
CH
OL
ES
	

CA
NN
EA
L	

FA
CE
SIM

	

FE
RR
ET
	

FLU
IDA

NI
MA

TE
	

RA
YT
RA
CE
	

ST
RE
AM

CL
US
TE
R	

SW
AP
TIO
NS
	

WU
PW
ISE
	

SW
IM
	

MG
RID
	

AR
T	

AM
MP
	

FM
A3
D	

AP
SI	
 BT

	
 IS	
 LU
	

SP
	

UA
	

DE
DU
P	

VIP
S	

X2
64
	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	

CIMCàCIMI	

W
or

se

B
et

te
r

Figure 5.4: Comparison of the execution time ratio of the CIMC mapping over the CIMI
mapping (CIMC→CIMI)

• CCMI vs. CIMI: The same as CCMC vs. CIMC except that the memory mapping

is fixed to the interleaved mapping.

105

40%	

50%	

60%	

70%	

80%	

90%	

100%	

110%	

BL
AC
KS
CH
OL
ES
	

CA
NN
EA
L	

FA
CE
SIM

	

FE
RR
ET
	

FLU
IDA

NI
MA

TE
	

RA
YT
RA
CE
	

ST
RE
AM

CL
US
TE
R	

SW
AP
TIO
NS
	

WU
PW
ISE
	

SW
IM
	

MG
RID
	

AR
T	

AM
MP
	

FM
A3
D	

AP
SI	
 BT

	
 IS	
 LU
	

SP
	

UA
	

DE
DU
P	

VIP
S	

X2
64
	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	

CCMCàCIMC	

W
or

se

B
et

te
r

Figure 5.5: Comparison of the execution time ratio of the CCMC mapping over the CIMC
mapping (CCMC→CIMC)

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

110%	

BL
AC
KS
CH
OL
ES
	

CA
NN
EA
L	

FA
CE
SIM

	

FE
RR
ET
	

FLU
IDA

NI
MA

TE
	

RA
YT
RA
CE
	

ST
RE
AM

CL
US
TE
R	

SW
AP
TIO
NS
	

WU
PW
ISE
	

SW
IM
	

MG
RID
	

AR
T	

AM
MP
	

FM
A3
D	

AP
SI	
 BT

	
 IS	
 LU
	

SP
	

UA
	

DE
DU
P	

VIP
S	

X2
64
	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	

CCMIàCIMI	

W
or

se

B
et

te
r

Figure 5.6: Comparison of the execution time ratio of the CCMI mapping over the CIMI
mapping (CCMI→CIMI)

Along with the four cases, Table 5.1 lists potential factors and their expected impacts de-

pending on mapping changes. These rules of thumb and based on the use of the given

NUMA architectural models; even so, the degree of impact is workload dependent. More

106

specifically, the memory-access characteristics that each workload has can cause more

cache stress with a large working set and/or intensive shared-memory. Figure 5.2 al-

ready contains differences in the execution times between the four mapping configura-

tions; the configurations are separated into the four comparative figures, as depicted in

Figure 5.3, 5.4, 5.5, and 5.6. The following points are made to answer Q1:

• Cache contention is the most important factor for performance. Reducing cache

contention by the interleaved vcore mapping results in consistent performance in-

creases, irrespective of the memory mappings. As CCMC vs. CIMC and CCMI

vs. CIMI show, most of benchmarks, except for a few cases, improve. However, it

should be mentioned that the interleaved memory mapping tends to enhance perfor-

mance when combine with the interleaved vcore mapping. This is expected because

memory-access distance gets shorter as pages are interleaved. Note that CCMC vs.

CIMC is the exact case that is dealt with Chapter 4. However, some variations are

observed as a result of a few changes on a guest kernel as well as the different Pala-

cios code base.

• Memory bandwidth (BW) is observed to be the second most important factor

for performance. Relevant cases are CCMC vs. CCMI and CIMC vs. CIMI. The

impact, whether positive or not, is not as consistent as the cache contention factor.

Particularly when vcores are consolidated, the bandwidth advantage is reduced by

the longer memory-access distances; nevertheless, the performance of some work-

loads are enhanced, even with the consolidated vcore mapping. For these cases, the

adverse impact of remote access is thought to be mitigated due to their high BW

demands.

• The impact of memory distance is shown in part in CCMC vs. CCMI, CCMC vs.

CIMC and CCMI vs. CIMI along with the two afore mentioned factors. Basically

107

this impact is hard to distinguish, because, for the most part, it lowers performance.

However, a comparison between CCMC vs. CIMC and CCMI vs. CIMI may provide

some insight. Both of the two pairs have cache contention and memory distance, as

shown in Table 5.1. The interleaved vcore mapping is expected to boost performance

by reducing cache contention. However, the extent of the benefit would be different

between the two cases. Under memory consolidation, the interleaved vcore mapping

also impairs performance due to the increased memory-access distances. Therefore,

when the performance improvement shown in CCMI vs. CIMI is not realized in

CCMC vs. CIMC, the impact of the memory distance can be inferred. EQUAKE

and SWIM lose performance due to remote memory-accesses. STREAMCLUSTER

on the other hand is the case in which there is no effect of memory-access distances.

Interestingly, at the same time, vcore interleaving does not boost performance ei-

ther. It is true that a reduction in cache contention boosts performance, but it is

not clear whether the interleaved vcore mapping indeed reduces cache contention.

STREAMCLUSTER is thought to be unchanged cache-contention-wise with two

vcore mappings. Based on these observations, I classify memory distance as a mi-

nor factor, which is consistent with the findings reported [40], which was published

recently.

Now, regarding the interactions between the two mappings, an orthogonality test helps

to answer Q2. Comparing CIMI and CCMC, some workloads get performance improve-

ments. If it is true that the improvements come from the two interleaved mappings, the sum

of the reductions of execution time from CCMC→CIMC and CCMC→CCMI should be at

least close to the reduction from CCMC→CCMC. This orthogonality check is formulated

as follows:

|MCIMI −MCCMC | == |MCIMC −MCCMC |+ |MCCMI −MCCMC |

108

where, Mconfiguration represents the makespan of the configuration. There are some work-

loads that meet this equality. However, many of them do not. There are two points to

consider:

• Memory bandwidth benefit is affected by cache misses (cache contention). The

interleaved memory mapping benefits come from the increased bandwidth. How-

ever, the memory bandwidth demand depends on off-chip memory traffic. Due to the

memory hierarchy, benefits from reduced cache contention are not affected by mem-

ory mappings. However, the reduced cache contention affects on off-chip memory

traffic, which determines a significant amount of the memory bandwidth demands.

• Memory distance side-effect is apparent only when the interleaved mapping is

exclusively applied in the two dimensions. The increased memory-access dis-

tances for CCMC→CIMC and CCMC→CCMI are amortized when we switch CIMI.

For example, when CCMC is changed to CIMC, remote access traffic is introduced.

Now, configuring further to CIMI from CIMC, memory accesses become mixed.

The vcores that must access the remote memory under CIMC now have mixed traf-

fic, needing access both remote and local memory. Similarly, the vcores, that always

access local memory under the CIMC configuration, now most access both local and

remote memory.

Given these observations, it is clear that vcore mapping and memory mapping should not

be considered separately. Also, the listed factors give insight into when to directly config-

ure one of four configurations.

109

5.2 Detection Framework

In this scope of chapter, the baseline detection framework, the hardware-assisted software

monitor, is not extended. Instead, the detection framework is checked for sensitivity.

5.2.1 Need for Sensitivity Checks

We consider sensitivity to the following: the number of threads, the mappings, the probing

duration, and the sampling interval. The first two are more critical. If there is a high

sensitivity to the number of threads and mappings, separate models are needed for different

numbers of threads as well for different mappings. On the other hand, the last two factors,

the probing duration and the sampling interval, are knobs to tune the detection framework.

As long as the first two variables are not a problem, these latter two are not an issue. They

are mostly sampling intervals in different levels; therefore, once threshold values are set

with the various sampling intervals, the sampling intervals themselves are not changed

later at all.

5.2.2 First-Order Sensitivity Checks

In this sensitivity check, two metrics, on access page rate per memory operation, are mostly

compared. They are different in how bitmaps are aggregated, whether counting pages that

are always touched (r∩as) or bits that are touched at least one (r∪as). Note that r∪as is used

in Chapter 4.

Sensitivity in the number of threads Table 5.2 shows the detailed setup. Figure 5.72

shows the r∩as and r∪as values from two different numbers of threads 3. Overall, a trend
2Not all benchmarks are covered in the sensitivity checks.
3The number of threads and the number of vcores are the same.

110

1.E+02	

1.E+03	

1.E+04	

1.E+05	

1.E+06	

BL
AC
KS
CH
OL
ES
	

FE
RR
ET
	

FA
CE
SIM

	

RA
YT
RA
CE
	

SW
AP
TIO
NS
	

DE
DU
P	

VIP
S	

AM
MP
	

X2
64
	

ST
RE
AM

CL
US
TE
R	

SW
IM
	

MG
RID
	

AR
T	

AP
SI	
 BT

	

LU
	

SP
	

UA
	
 IS	

CA
NN
EA
L	

WU
PW
ISE
	

FM
A3
D	

Ac
ce
ss
ed

	
 h
ot
	
 p
ag
e	

ra
te
	
 6vcore	
 8vcore	

(a) Comparisons of r∩as for the changed number of vcores

1.E+02	

1.E+03	

1.E+04	

1.E+05	

1.E+06	

BL
AC
KS
CH
OL
ES
	

FE
RR
ET
	

FA
CE
SIM

	

RA
YT
RA
CE
	

SW
AP
TIO
NS
	

DE
DU
P	

VIP
S	

AM
MP
	

X2
64
	

ST
RE
AM

CL
US
TE
R	

SW
IM
	

MG
RID
	

AR
T	

AP
SI	
 BT

	

LU
	

SP
	

UA
	
 IS	

CA
NN
EA
L	

WU
PW
ISE
	

FM
A3
D	

Ac
ce
ss
ed

	
 p
ag
e	

ra
te
	

6vcore	
 8vcore	

(b) Comparison of r∪as for the changed number of vcores

Figure 5.7: r∪as has very low sensitivity to the changes in the number of vcores; and, r∪as

has also low sensitivity.

in both metrics is observable, regardless of the number of vcores. r∪as looks to be more

resilient to the changed number of vcores. DEDUP is the only benchmark that has signifi-

cant changes between six and eight vcores. On the other hand, r∩as has more cases. With

eight vcores, the metric value for DEDUP is decreased and for the other three benchmarks,

111

Configuration variable Setup
Machine Dell PowerEdged R410 machine

Resource mapping CCMC
Probing duration 2,394,000,000 cycles (about one sec.)
Scanning interval 10,000,000 write instructions
Number of vcores six or eight vcores

Table 5.2: Summary of setup. Note that the number of vcores (threads) are only varied.

Configuration variable Setup
Machine Dell PowerEdged R410 machine

Resource mapping CCMC and CIMI
Probing duration 2,394,000,000 cycles (about one sec.)
Scanning interval 10,000,000 write instructions
Number of vcores eight threads

Table 5.3: Summary of setup. Note that the vcore- and memory mappings are varied.

MGRID, BT, and SP, the value is increased. Considering 28 cases overall, one case partic-

ularly is quite small. The sensitivity for r∩as at least is quite low as the number of vcores

change.

Sensitivity in mappings Table 5.3 shows setup specifics. In this case, the resource map-

ping is changed. The two extreme cases of CCMC and CIMI are compared. Figure 5.8

compares the metrics between two configurations. Benchmarks are counted when they

have huge changes in the metrics. Six cases for r∩as , and two cases for r∪as are shown.

The two cases for r∪as are apparently noise.

Up to this point, we have found that r∪as and r∩as tend to less sensitive. Offline analysis

with a threshold value, therefore, is applicable to the changes in the mapping and the

number of vcores/threads.

112

1.E+02	

1.E+03	

1.E+04	

1.E+05	

1.E+06	

BL
AC
KS
CH
OL
ES
	

FE
RR
ET
	

FA
CE
SIM

	

FLU
IDA

NI
MA

TE
	

RA
YT
RA
CE
	

SW
AP
TIO
NS
	

DE
DU
P	

VIP
S	

AM
MP
	

X2
64
	

ST
RE
AM

CL
US
TE
R	

SW
IM
	

MG
RID
	

AR
T	

AP
SI	
 BT

	

LU
	

SP
	

UA
	
 IS	

CA
NN
EA
L	

WU
PW
ISE
	

FM
A3
D	

Ac
ce
ss
ed

	
 h
ot
	
 p
ag
e	

ra
te
	
 CCMC	
 CIMI	

(a) Comparisons on r∩as for the mappings

5.E+02	

5.E+03	

5.E+04	

5.E+05	

BL
AC
KS
CH
OL
ES
	

FE
RR
ET
	

FA
CE
SIM

	

FLU
IDA

NI
MA

TE
	

RA
YT
RA
CE
	

SW
AP
TIO
NS
	

DE
DU
P	

VIP
S	

AM
MP
	

X2
64
	

ST
RE
AM

CL
US
TE
SW
IM
	

MG
RID
	

AR
T	

AP
SI	
 BT

	

LU
	

SP
	

UA
	
 IS	

CA
NN
EA
L	

WU
PW
ISE
	

FM
A3
D	

Ac
ce
ss
ed

	
 p
ag
e	

ra
te
	

CCMC	
 CIMI	

(b) Comparisons on r∪as for the mappings

Figure 5.8: Sensitivity for r∪as is very low, considering the two cases that are different are
due to noise. Some benchmarks show some changes in r∩as , nonetheless it is also very
consistent.

5.2.3 Sampling Intervals

Probing duration vs scanning period Before the discussion begins, a couple of terms

need to be clarified again. There are two intervals in the detection framework, the hardware-

113

Configuration variable Setup
Machine Dell PowerEdged R410 machine

Resource mapping CCMC
Probing duration 2,394,000,000 clocks (about one sec.)

Scanning interval
10,000,000 counts as base count

options evaluated
CLK base: 100x base count for clocks

MEM base: base count for memory operation
WR base: base count for write operation (selected)

Number of vcores eight threads

Table 5.4: Summary of setup. Note that the scanning interval is varied.

assisted software monitor. In the detection framework, periodic page table scans happen

only in a longer time period that is called the probing duration – T in Figure 3.3. That

is for performance reasons. Typically it is set about one second. After passing an interim

period, that disables page table scans, about ten seconds or so, probing duration reoccurs.

The scanning interval is a shorter hardware driven time interval within the probing dura-

tion in Section 3.2. Sensitivity to probing duration is dealt with in Chapter 6.

Cases for various scanning intervals Two kinds of memory related performance counter

events are possible options for defining scanning intervals. The metrics, by the detection

framework, represent page table access rate, so the scanning interval can be the number

of page table accesses. Every memory operation necessarily goes through page tables or

entries in a TLB. The number of page table accesses are coupled to memory operations.

Another alternative to counting memory operations in to count write. Lastly, a fixed time

as measured by a certain number of clock cycles is also possible. Therefore, there are all

three different scanning intervals. We measure and compare six metrics:

• r∩am : the average accessed hot page rate per memory operation

• r∪am : the average accessed page rate per memory operation

114

90%	

110%	

130%	

150%	

AP
SI	

AR
T	

BL
AC
KS
CH
OL
E	

bo
dy
tra
ck	
 CG

	

EP
	

EQ
UA
KE
	

FA
CE
SIM

	

FE
RR
ET
	

FLU
IDA

NI
MA

TE
	

FR
EQ
MI
NE
	
 IS	

RA
YT
RC
E	

ST
RE
AM

CL
US
TE
R	

SW
AP
TIO
NS
	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	

CCMC	
 CIMC	

Figure 5.9: Performance comparison between the CCMC and CIMC mappings. Two cases,
STREAMCLUSTER and EQUAKE, show less impact on interleaved vcores, which re-
flects that there are very few cache contention differences in between CCMC and CIMC.

• r∩as : the average accessed hot page rate per store operation

• r∪as : the average accessed page rate per store operation

• r∩ac: the average accessed hot page rate per clock cycle

• r∪ac: the average accessed page rate per clock cycle

Sensitivity check and scanning interval selection First, as shown in Figure 5.11, the

metrics with the ∪ notation do not have much sensitivity to different scanning intervals.

Therefore, metrics with the ∩ notation are the focus for the following sensitivity checks.

The variations on these metrics depending a lot on which type of sampling intervals is cho-

sen, as shown in Figure 5.10. One approach to select a scanning interval is by comparing

measured metrics with the objective metric. We show correlations of the metrics with the

execution time results in Figure 5.9. EQUAKE and STREAMCLUSTER in Figure 5.9

115

1.E+02	

1.E+03	

1.E+04	

1.E+05	

1.E+06	

AP
SI	

AR
T	

BL
AC
KS
CH
OL
E	

bo
dy
tra
ck	
 CG

	

EP
	

EQ
UA
KE
	

FA
CE
SIM

	

FE
RR
ET
	

FLU
IDA

NI
MA

TE
	

FR
EQ
MI
NE
	
 IS	

RA
YT
RC
E	

ST
RE
AM

CL
US
TE
R	

SW
AP
TIO
NS
	

Ac
ce
ss
ed

	
 h
ot
	
 p
ag
e	

ra
te
	

clk	
 counts	
 mem	
 ops	
 write	
 ops	

Figure 5.10: Sensitivity in r∩as for different scanning interval. Three outstanding cases are
observed with write operation; at the same time, they likely match with the extraordinary
two cases in Figure 5.9.

1.E+02	

1.E+03	

1.E+04	

1.E+05	

1.E+06	

AP
SI	

AR
T	

BL
AC
KS
CH
OL
E	

bo
dy
tra
ck	
 CG

	

EP
	

EQ
UA
KE
	

FA
CE
SIM

	

FE
RR
ET
	

FLU
IDA

NI
MA

TE
	

FR
EQ
MI
NE
	
 IS	

RA
YT
RC
E	

ST
RE
AM

CL
US
TE
R	

SW
AP
TIO
NS
	

Ac
ce
ss
ed

	
 p
ag
e	

ra
te
	

clk	
 counts	
 mem	
 ops	
 write	
 ops	

Figure 5.11: Sensitivity in r∪as for various scanning intervals is low.

are two workloads that less than 10% differences. On the other side, Figure 5.10 presents

measured three metrics, r∩am , r∩as , and r∩ac . r∩as seems to have some correlation with the

execution time results because the three cases, CG, EQUAKE, and STREAMCLUSTER,

116

are above a threshold, 30000. EQUAKE and STREAMCLUSTER are common with the

results from Figure 5.9. However, cache miss rate for CG is below 10 %, so CG should not

classified as the CacheStress class. The cases with small differences in CCMC-vs-CIMC

reflect a high-cache-stress characteristic, so a small cache miss rate is not aligned with

the performance results. Also, recall that an average of r∩as and r∩am is used to classify

HighCacheMissRate scenario as depicted in Figure 4.2.

Given these results, we have taken a count of write operation for our scanning interval.

Detail on the test setup is found in Table 5.4. Note that other two variables – probing

duration and different machine – are discussed in Chapter 6 and 8 respectively.

5.2.4 Detection Mechanism

The detection framework now is quite simple, with only one aggregation along with one

probing phase. Metrics collected by the aggregator are reduced to two: r∩as and r∪as.

Note this is designed for the NAVAR policy. Other policies such as those for fine-grained

mapping, may be different. The detection framework operates as follows:

Init(aggregator): [Invoked at startup on aggregator]

SetTimer(T , Aggregate)

for all vcores i do

EnableScan i = 1

Force vcore i to run InitVcore(i)

end for

InitVcore(i): [Invoked at on vcore i]

hot accessed i = {k : 0 . . .m− 1}

accessed i = {k : 0 . . .m− 1}

Set PMU exception for number of store operations to trigger Scan(i).

117

Scan(i): [invoked when PMU exception occurs]

if EnableScan i = 1 then

for all present shadow (or nested) PTEs on vcore i do

k = DeriveGuestPhysicalPageNumberFrom(PTE)

curacci = ∅

if PTE.accessed then

curacci = curacci ∪ {k}

end if

PTE.accessed=0

end for

hot accessed i = hot accessed i ∩ curacci

accessed i = accessed i ∪ curacci

end if

Aggregate(aggregator)

for all vcores i do

EnableScan i = 0

hot accessed per store i = hot accessed i

accessed per store i = accessed i

end for

r∩as =
1
n

∑n−1
i=0 |hot accessed per store i|

r∪as =
1
n

∑n−1
i=0 |accessed per store i|

118

5.3 Offline Modeling for NAVAR

Before describing the details of the NAVAR policy for under-subscription, it is necessary

to describe the offline modeling that is used to produce a decision tree that is required

in NAVAR. The following modeling effort is specific to NAVAR. The objective of offline

modeling is to build a decision tree that can be used to identify the optimal resource map-

ping in the configuration space from the observed metrics.

5.3.1 Classification

r∩as and r∪as are considered as conveying properties of the referenced pages. The dif-

ference is whether they are accessed frequently (hot) or accessed at least once. Also,

memory-access traffic occurs in two domains, on-chip (cache) and off-chip (main mem-

ory). According to the degree of traffic in each domain, a workload can be coarsely classi-

fied into two classes, high and low, for each domain.

LargeWorkingSetSize (LWSS) Classification

Off-chip memory traffic for LWSS classification r∪as measures degrees of overall ac-

cessed pages. At least, cold misses in cache must touch the main memory. The overall

amount of cold misses constitutes a large portion of the main memory traffic, i.e. off-chip

memory traffic. The threshold is set on 28,000, as depicted in Figure 5.12. If r∪as is above

the threshold, the workload is classified as LargeWorkingSetSize (LWSS), otherwise it is

classified as !LWSS. This threshold value is set to align with the execution time ratio, as

shown in Figure 5.3. More details about the execution time ratio follow.

LWSS from preliminary performance results Comparing execution times between

CCMI and CCMC provides insight for the classifications. The fact that each workload

119

1.E+02	

1.E+03	

1.E+04	

1.E+05	

1.E+06	

BL
AC
KS
CH
OL
ES
	

FE
RR
ET
	

FA
CE
SIM

	

FLU
IDA

NI
MA

TE
	

RA
YT
RA
CE
	

SW
AP
TIO
NS
	

DE
DU
P	

VIP
S	

AM
MP
	

X2
64
	

ST
RE
AM

CL
US
TE
R	

SW
IM
	

MG
RID
	

AR
T	

AP
SI	
 BT

	

LU
	

SP
	

UA
	
 IS	

CA
NN
EA
L	

WU
PW
ISE
	

FM
A3
D	

Ac
ce
ss
ed

	
 p
ag
e	

ra
te
	

28000	

(a) Measured values for r∪as

70%	

80%	

90%	

100%	

110%	

BL
AC
KS
CH
OL
ES
	

FE
RR
ET
	

FA
CE
SIM

	

FLU
IDA

NI
MA

TE
	

RA
YT
RA
CE
	

SW
AP
TIO
NS
	

DE
DU
P	

VIP
S	

AM
MP
	

X2
64
	

ST
RE
AM

CL
US
TE
R	

SW
IM
	

MG
RID
	

AR
T	

AP
SI	
 BT

	

LU
	

SP
	

UA
	
 IS	

CA
NN
EA
L	

WU
PW
ISE
	

FM
A3
D	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	

CCMC-­‐>CCMI	

97%	

(b) Execution time ratio of CCMI over CCMC

Figure 5.12: The LWSS class is defined through the measured r∪as values with the thresh-
old inspired by the performance differences between CCMC and CCMI. r∪as is measured
with the setup described in Table 5.2 except that 8 vcore are used.

has different performance variations for the changed resource mappings implies the work-

load’s characteristics. For example, performance improvement with interleaved memory

over CCMC is different on different workloads. Using the threshold shown in Figure 5.12,

120

workloads are classified in one of the two classes, LWSS and !LWSS. This classification

is now called the reference classification. CIMC vs. CIMI also conveys interleaved mem-

ory impact, but CCMC vs. CCMI is referenced because it is thought that it highlights the

degree of off-chip traffic. Consolidated vcore mapping enforces memory distance impact

(negative impact); when performance gain with interleaved memory is visible, the BW de-

mand from the workload is large enough to overcome the side effect of increased memory

distance. Therefore, this classification, the reference classification, is expected to pro-

vide an insight for the selection of the threshold by comparing execution time differences

between various resource mappings.

CacheStress (CS) Classification

On-chip memory traffic for CS classification The other metric, r∩as , is useful for clas-

sifying workloads in on-chip memory traffic. It filters the pages that are more continuously

referenced (hot pages), and the set of pages captured by r∩as is a sub-set of the pages from

r∪as . In terms of access locality, r∩as likely represents the degree of data that is best to

keep in the cache. In fact, the sensitivity check for the scanning interval selects the scan-

ning interval that matches for our benchmarks’ performance results of CCMC and CIMC.

The threshold value on r∩as is set to 10000. When a workload has r∩as above the threshold,

it is classified as CacheStress (CS); otherwise, the workload is classified as !CS. Even if

the reference classification results are different, they are only used only to establish the

classification that actually is included in the decision tree.

CS from preliminary performance results Here is a brief explanation of why CCMC

vs. CIMC is taken instead of CCMI vs. CIMI to complete the reference classification.

Moving from CCMC to CIMC includes both positive and negative impacts, including re-

duced cache contention and memory distance. The reduced execution time shown in Fig-

121

1.E+02	

1.E+03	

1.E+04	

1.E+05	

1.E+06	

BL
AC
KS
CH
OL
ES
	

FE
RR
ET
	

FA
CE
SIM

	

FLU
IDA

NI
MA

TE
	

RA
YT
RA
CE
	

SW
AP
TIO
NS
	

DE
DU
P	

VIP
S	

AM
MP
	

X2
64
	

ST
RE
AM

CL
US
TE
R	

SW
IM
	

MG
RID
	

AR
T	

AP
SI	
 BT

	

LU
	

SP
	

UA
	
 IS	

CA
NN
EA
L	

WU
PW
ISE
	

FM
A3
D	

Ac
ce
ss
ed

	
 h
ot
	
 p
ag
e	

ra
te
	

10000	

(a) Measured values for r∩as

40%	

50%	

60%	

70%	

80%	

90%	

100%	

110%	

BL
AC
KS
CH
OL
ES
	

FE
RR
ET
	

FA
CE
SIM

	

FLU
IDA

NI
MA

TE
	

RA
YT
RA
CE
	

SW
AP
TIO
NS
	

DE
DU
P	

VIP
S	

AM
MP
	

X2
64
	

ST
RE
AM

CL
US
TE
R	

SW
IM
	

MG
RID
	

AR
T	

AP
SI	
 BT

	

LU
	

SP
	

UA
	
 IS	

CA
NN
EA
L	

WU
PW
ISE
	

FM
A3
D	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	

CCMC-­‐>CIMC	

90%	

(b) Execution time ratio of CIMC over CCMC

Figure 5.13: r∩as is used to determine the CS class, and the threshold is set similar to in
the LWSS class. The performance results between CCMC and CIMC are used to define
threshold value. The specific setup is the same as described in Figure 5.12.

ure 5.13 highlights the cases in which the benefit of reduced cache contention outweighs

the increased memory distance penalty. In terms of classification, this case, CCMC vs.

CIMC, is clearer, because the negative factor distinguishes the degree of cache perfor-

122

0	

10	

20	

30	

40	

50	

60	

70	

80	

BL
AC
KS
CH
OL
ES
	

FE
RR
ET
	

FA
CE
SIM

	

FLU
IDA

NI
MA

TE
	

RA
YT
RA
CE
	

SW
AP
TIO
NS
	

DE
DU
P	

VIP
S	

AM
MP
	

X2
64
	

ST
RE
AM

CL
US
TE
R	

SW
IM
	

MG
RID
	

AR
T	

AP
SI	
 BT

	

LU
	

SP
	

UA
	
 IS	

CA
NN
EA
L	

WU
PW
ISE
	

FM
A3
D	

Ca
ch
e	

m
is
s	
 r
at
e	

(p
er
ce
nt
ag
e)
	

1.E+02	

1.E+03	

1.E+04	

1.E+05	

1.E+06	

BL
AC
KS
CH
OL
ES
	

FE
RR
ET
	

FA
CE
SIM

	

FLU
IDA

NI
MA

TE
	

RA
YT
RA
CE
	

SW
AP
TIO
NS
	

DE
DU
P	

VIP
S	

AM
MP
	

X2
64
	

ST
RE
AM

CL
US
TE
R	

SW
IM
	

MG
RID
	

AR
T	

AP
SI	
 BT

	

LU
	

SP
	

UA
	
 IS	

CA
NN
EA
L	

WU
PW
ISE
	

FM
A3
D	

in
st
ru
c(
on

	
 c
ou

nt
	
 ra

(o
	
 	

ov
er
	
 m

em
or
y	

op

er
a(

on
	

Figure 5.14: Variations in instructions across workloads

mance gains.

Correlation Check for Other Metrics

Some metrics produced by performance counters (the hardware monitor) are also mea-

sured, including the cache miss rate and the ratio of memory instructions to all instruc-

tions; however, they do not show any significant correlations as to the metrics selected

123

CacheStress (CS) LargeWorkingSetSize (LWSS)

Definition
Contiguously accessed Access page

page count is high count is high

Domains
On-chip Off-chip

memory traffic memory traffic
Resource mapping Little benefit for Large benfit for

effects interleaved vcore mapping interleaved memory mapping

Table 5.5: Comparisons of the two dimensions for the classification (the two classifiers).

above. Nonetheless, cache miss rates above 10% are the cases that are classified in CS.

Thus, it may help to check validity of the classification and cache miss rate is included

in the decision tree for NAVAR. This comparison supports the hardware-assisted software

monitor (the detection framework) over the hardware monitor (the performance counters).

5.3.2 Discussion of Classification

Further discussion is needed to clarify the implications of the classes and to explain how

the classification helps with resource mapping. The following discussions include the

conveyed meaning of each class, interactions and the relationship between the two classes,

and then the expected vcore and memory mappings for the four classes:

• Cache Stress (CS) and Large Working Set Size (LWSS): CS&LWSS

• Not Cache Stress (!CS) and Large Working Set Size (LWSS):!CS&LWSS

• Cache Stress (CS) and Not Large Working Set Size (!LWSS): CS&!LWSS

• Not Cache Stress (!CS) and Not Large Working Set Size (!LWSS): !CS&!LWSS

Implications of class The two separate classifiers are used to develop the four overall

classes: CS&LWSS, !CS&LWSS, CS&!LWSS and !CS&!LWSS. Each classifier addresses

124

a separate dimension, and the four metrics come from the combination of the dimensions.

Here, the two classifiers are compared with each other to provide a better understanding.

Two metrics, r∩as and r∪as , are used to classify workloads into four classes. Each metric

is used to divide two parts; r∩as is used to differentiate CS from !CS, and r∪as differenti-

ate LWSS from !LWSS. CS includes on such workloads that access a number pages (hot

pages) consecutively that exceeds the threshold. Therefore, the memory traffic for two

classifications, CS and LWSS, is different. CS is focused on the intensity of the on-chip

memory traffic as capturing in hot pages, whereas LWSS focused on the degree of off-

chip memory traffic as reflected in the total number of pages that are accessed. When

workloads are classified as CS, the benefit from the interleaved vcore mapping is rather

small. Conversely, the expected performance gain with the interleaved memory mapping

for the LWSS class is huge. These are the implications of and comparisons of the two

classifications. It is important to understand the differences between consequences and

characteristics. Cache miss rate is a result of interaction between provisioning cache size

and workload characteristics. These classifications are on workload characteristics, thus

CS does not refer to cache miss rate as it depends on a given cache size. Rather, CS cap-

tures the characteristic of memory traffic that it consists of heavy traffic in the on-chip

domain.

Orthogonality of the two dimensions Among the four classes, CS&!LWSS and !CS&

LWSS are somewhat difficult to accept, especially given the statement “memory bandwidth

benefit is affected by cache misses” in Section 5.1.2. Two cases are depicted in Figure 5.15.

STREAMCLUSTER is one case for CS&!LWSS and APSI is for !CS&LWSS. These two

cases are quite opposite. APSI has a very small number of hot pages, but it involves a large

number of pages, whereas STREAMCLUSTER has a huge number of hot pages, with the

hot pages making up almost all of the pages it accesses. APSI is the case that does not

125

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

40000	

45000	

STREAMCLUSTER	
 APSI	

M
ea
su
re
d	

va
lu
e	

r_∩as	
 r_∪as	

Threshold	

for	
 LWSS	

Threshold	

for	
 CS	

155	

Figure 5.15: Two cases from CS&!LWSS and !CS&LWSS classes. The comparison
demonstrates no dependency between the CS and LWSS characteristics.

Class Resource mapping
CS&LWSS CIMI
CS&!LWSS CCMC
!CS&LWSS CIMI
!CS&!LWSS CIMC

Table 5.6: Resource mapping table for the four classes.

invoke huge stress on the cache, but still demands memory bandwidth. STREAMCLUS-

TER looks to have relatively smaller working set size, but it accesses almost all of them

continuously, which effectively causes stresses on caches. The statement in Section 5.1.2

is very general, and, in these cases, the CS characteristic does not necessarily match the

LWSS characteristic and vice versa. Therefore, orthogonality exists in the two dimensions.

Mapping class to resource mapping Given the class of the workload, the question re-

mains concerning how to map it to an appropriate vcore- and memory mapping. Our

mapping strategy is as described below:

• The CS class is better for the consolidated vcore mapping for lower energy. CS

126

workloads have <10% performance gain when using a interleaved vcore mapping

instead of a consolidated vcore mapping, depending on the workload, and about

10% more power is consumed, which is usually fixed regardless of the workload.

• The !CS class is better for the interleaved vcore mapping for both energy and perfor-

mance. This class of workloads has at least 10% performance gain, when so mapped,

which is more than the cost, the increased power. Therefore, the interleaved vcore

mapping is good for energy as well.

• LWSS is better for the interleaved memory mapping. Regardless of the vcore map-

ping, the performance gain with the interleaved memory mapping is at least 3%,

which is at least comparable to the cost in power, about a 5% increase for the inter-

leaved memory mapping over the consolidated mapping.

• !LWSS is better for the consolidated memory mapping for energy efficiency. The

!LWSS class of workloads mostly does not get performance benefits with the inter-

leaved memory mapping, except for a few cases, thus, it is better to conservatively

consolidate memory to lower energy.

However, there is one case in which the listed principles needs to be adjusted. When the

LWSS type of workloads is mapped using the interleaved memory mapping, the consol-

idated vcore mapping is not a good choice for energy. Comparisons between CCMI and

CIMI show that CIMI is always better, because it reduces cache contention and increases

memory bandwidth. Therefore, the CS and LWSS classes of workloads benefit more from

CIMI mapping than from CCMI mapping. A summary of the mapping strategy is presented

in Table 5.6.

127

Class Workloads
CS&LWSS SWIM, MGRID, APPLU, CANNEAL, FLUIDANIMATE
CS&!LWSS STREAMCLUSTER

!CS&LWSS
BT, LU, SP, APPLU, GAFORT, UA, IS, WUPWISE, FMA3D, APSI,
ART

!CS&!LWSS
BLACKSCHOLES, FERRET, FACESIM, RAYTRACE, SWAPTION,
DEDUP, VIPS, GALGEL, AMMP, X264, CANNEAL

Table 5.7: Classification results. With the detection framework, each workload is clas-
sifiable during runtime; then, according to the resource mapping table, the workload is
configured with the best mapping. The decision tree equipped in the policy component
processes the described task.

5.4 Coarse-grained VCore/Memory Mapping Policies

We now describe the coarse-grained resource mapping policy for the under-subscription

situation. The coarse-grained policy includes the NAVAR policy as well as the brute-force

approach. The brute-force approach can be attempted at first, because it does not require

models and any relevant offline analysis; however, the model-based prediction without

feedback loop is chosen for the skeleton of the NAVAR policy. The followings describe

the NAVAR policy and the brute-force approach.

5.4.1 NAVAR for Under-subscription

The structure of the NAVAR policy for under-subscription is model-based prediction with

open-loop control. DecisionTree and Interim are the two core functions. DecisionTree

receives the measured metrics, r∩as , r∪as , and the cache miss rate, and determines the

mapping. The interim function controls the sleep time dynamically. By dong that, the fre-

quency of searching for an optimum mapping is dynamically adjusted. This is important

since there is no feedback. When the application is in a phase transition, multiple predic-

tions can compensate open-loop control. On other hand, when the phase is not changing,

128

infrequent predictions are sufficient as the prediction results tent to be consistent. The fol-

lowing pseudocode illustrates the NAVAR policy implementation. INTERConfigurationSpace

and CONSOLIDConfigurationSpace represent the interleaved mapping and consolidated map-

ping separately in ConfigurationSpace, either for the vcore or the memory configuration.

exe state ← INIT STATE

interim scale ← 1

tscstate init ← readtsc; tscprev ← readtsc

ovrhdprobe ← 0; ovrhdvcore ← 0; ovrhdmem ← 0

Mappingcur ← (INTERvcore , INTERmem)

while 1 do

ovrhdprobe ← Probing(metrics)

(VCoreMapPolicy , MemMapPolicy)← DecisionTreeUS(metrics)

(VCoreMapneed , MemMapneed)← ExtractMap(VCoreMapPolicy , MemMapPolicy)

if (VCoreMapcur , MemMapcur) = (VCoreMapneed , MemMapneed) then

interim scale mode ← NEED SCALE UP

else

if VCoreMapcur 6= VCoreMapnext then

ovrhd ← VCoreReMapping(VCoreMapnext , VM0)

ovrhdvcore ← ovrhd + ovrhdvcore

end if

if MemMapcur 6= MemMapnext then

ovrh ←MemReMapping(MemMapnext , VM0)

ovrhdmem ← ovrhd + ovrhdmem

end if

129

(VCoreMapcur , MemMapcur)← (VCoreMapneed , MemMapneed)

interim scale mode ← NEED RESET

end if

Interim(ovrhdprobe , ovrhdvcore , ovrhdmem)

end while

DecisionTreeUS(metrics) returns the determined mapping information. For the power ob-

jective, it first immediately returns the consolidated mappings for both vcore and memory.

For performance and energy objectives, it checks whether the measured metric values are

above the thresholds or not. Accordingly, it finds the best mappings through the embedded

decision tree.

if objective is power then

(VCoreMapPolicy , MemMapPolicy)← (CONSOLIDvcore , CONSOLIDmem)

else if r∪as > threshold LWSS then

(VCoreMapPolicy , MemMapPolicy)← (INTERvcore , INTERmem)

else if r∩as > threshold CS then

if objective is energy and CacheMissRate > threshold CS CacheMissRate then

(VCoreMapPolicy , MemMapPolicy)← (CONSOLIDvcore , CONSOLIDmem)

end if

else

(VCoreMapPolicy , MemMapPolicy)← (INTERvcore , CONSOLIDmem)

end if

return (VCoreMapPolicy , MemMapPolicy)

Probing(metrics) collects the performance metrics. It begins with a call to Init(aggregator)

to initiate a probing internal to collect the two metrics, r∪as and r∩as , and the CacheMissRate.

Then, it updates the metrics vector with updated collected values.

130

tscstart ← readtsc

Call Init(aggregator)

Measure cache miss rate

metrics ← (r∩as , r∪as , CacheMissRate).

tscend ← readtsc

return (tscend − tscstart)

ExtractMap(VCoreMapPolicy , MemMapPolicy) extracts the given mapping info from a

predefined table.

VCoreReMapping(VCoreMapnext , VMID) reconfigure the vcore mapping and returns the

overhead of the remapping:

tscstart ← readtsc

change vcore mapping to VCoreMapnext for the VMID VM

tscend ← readtsc

return (tscend − tscstart)

MemReMapping(MemMapnext , VMID) changes the memory mapping according to the

request, and returns the overhead of the remapping:

tscstart ← readtsc

change page mapping to MemMapnext for VMID VM

tscend ← readtsc

return (tscend − tscstart)

Interim(ovrhdprobe ,ovrhdremap) controls the frequency of searching for the best resource

mapping by changing the sleep time so as to call DecisionTree depending on status. When

the selected configurations are consecutively the same, the status (exe state) is set to STA-

131

BLE STATE. In this state, Interim increases sleep time incrementally to avoid unneces-

sary searches. Also, it sleeps until the demanded overhead ratio is achieved. An over-

head ratio is calculated as the measured migration time for the vcore and page migrations

plus the overall page table scanning time divided by the spent wall clock time. However,

when DecisionTree indicates a different configuration than previously found under STA-

BLE STATE, Interim changes the execution state to INIT STATE and resets sleep time to

the default. It also skips sleeps and keeps searching until STABLE STATE is reached.

if exe state is STABLE STATE and interim scale mode is NEED RESET then

exe state ← INIT STATE; tscstate init ← readtsc; interim scale ← 1

end if

sleep for (windowinterim · interim scale)

tsc ← readtsc − tscprev

if exe state is not INIT STATE then

if objective is not performance then

ovrhd ← weightprobe · ovrhdprobe + weightvcore · ovrhdvcore + weightmem · ovrhdmem

else

ovrhd ← ovrhdprobe + ovrhdvcore + ovrhdmem

end if

while ovrhd / tsc > thresholdovrhd do

sleep for windowinterim

tsc ← readtsc − tscprev

end while

ovrhdprobe ← 0; ovrhdvcore ← 0; ovrhdmem ← 0

end if

if intermin scale mode is NEED SCALEUP then

interim scale ← 2 · interim scale

132

end if

tsc ← readtsc − tscstate init

if exe state is INIT STATE and tsc > 20 · windowinterim then

exe state ← STABLE STATE

tscstate init ← readtsc

else if exe state is STABLE STATE and tsc > 30 · windowinterim then

interim scale ← 1

tscstate init ← readtsc

end if

tscprev ← readtsc

return

5.4.2 Brute-force Approach

This approach is literally brute-force searching for the best mapping. Without any model-

ing and characterization, it simply goes through all possible configurations and picks one

with the best result in the observable metric. Here, CPI4 is used. The overall skeleton is

the same as the NAVAR policy, but DecisionTree is replaced with BruteForce and Probing

is removed.

exe state ← INIT STATE

interim scale ← 1

tscstate init ← readtsc; tscprev ← readtsc

ovrhdprobe ← 0; ovrhdvcore ← 0; ovrhdmem ← 0

Mappingcur ← (INTERvcore , INTERmem)

4CPI is not an accurate metric for estimating the execution time. However, regardless of its accuracy, the
brute-force approach is found to be a limited solution.

133

while 1 do

(VCoreMapneed , MemMapneed)← BruteForce()

if (VCoreMapcur , MemMapcur) = (VCoreMapneed , MemMapneed) then

interim scale mode ← NEED SCALE UP

else

if VCoreMapcur 6= VCoreMapnext then

ovrhd ← VCoreReMapping(VCoreMapnext , VM0)

ovrhdvcore ← ovrhd + ovrhdvcore

end if

if MemMapcur 6= MemMapnext then

ovrhd ←MemReMapping(MemMapnext , VM0)

ovrhdmem ← ovrhd + ovrhdmem

end if

(VCoreMapcur , MemMapcur)← (VCoreMapneed , MemMapneed)

interim scale mode ← NEED RESET

end if

Interim(ovrhdprobe , ovrhdremap)

end while

BruteForce() basically works through all four coarse-grained resource mapping cases and

measures CPIs. Then, it picks the best one (lowest CPI).

if objective is power then

(VCoreMapneed , MemMapneed)← (CONSOLIDvcore , CONSOLIDmem)

return (VCoreMapneed , MemMapneed)

end if

CPImin ← INFINITE

134

for all (VCoreMapneed , MemMapneed) do

if VCoreMapcur 6= VCoreMapnext then

ovrhd ← VCoreReMapping(VCoreMapnext , VM0)

ovrhdvcore ← ovrhd + ovrhdvcore

end if

if MemMapcur 6= MemMapnext then

ovrhd ←MemReMapping(MemMapnext , VM0)

ovrhdmem ← ovrhd + ovrhdmem

end if

(VCoreMapcur , MemMapcur)← (VCoreMapneed , MemMapneed)

INSTprev ← readinst

CLOCKprev ← readclk

sleep for windowinterim

INSTcur ← readinst − INSTprev

CLOCKcur ← readclk − CLOCKprev

CPIcur = CLOCKcur / INSTcur

if CPImin > CPIcur then

CPImin ← CPIcur

(VCoreMapopt , MemMapopt)← (VCoreMapcur , MemMapcur)

end if

end for

return (VCoreMapopt , MemMapopt)

135

5.5 Fined-grained VCore/Memory Mapping Policies

So far, the coarse-grained resource mapping approaches have been considered and dis-

cussed. Now, a couple of fine-grained mapping policies are introduced. Fine-grained map-

ping is intended to enhance the coarse-grained interleaved mappings for both vcore and

memory. The fine-grained vcore mapping approach will relocate vcores without changing

the interleaved vcore mapping style, and the fine-grained memory mapping is similarly a

variation on memory interleaving.

5.5.1 Fine-grained VCore Mapping Policy

At first, the scope of the fine-grained configuration needs to be clarified. The fine-grained

vcore mapping approach is considered only when CIMI is configured by the coarse-grained

policy. Given that, moving vcores between different NUMA domains needs to aim for

performance improvements. The performance enhancement can be realized by minimiz-

ing average memory-access distance, and/or load-balancing cache contention across the

NUMA domains, balancing the Working Set Size (WSS) across the NUMA domains.

More specifically, the targets are rephrased like this:

• Reducing average memory distance: If the portion of remote memory-accesses in

a vcore is high, relocate the vcore.

• Balancing WSS: If the WSS is unevenly spread across NUMA domains, rebalance

WSS through the vcore remapping.

Two kinds of metrics are needed for these goals:

• Distributions of NUMA domains of accessed pages per vcore:

dvcore = (DistributionRationode0 , ...,DistributionRationodeN−1)

136

where, there are N NUMA domains.

• WSS of each vcore, WSS per NUMA domain, and, WSS ratio:

– Page access rate per memory operation of a vcore: r′∪as(vcore)

where vcore ∈ VCORE , the set of all vcores. This metric is used because we

expect it to have a high correlation with the WSS for each vcore.

– WSS per NUMA domain: r′∪as(node)=
⋃

(r′∪as(vcore))

where node ∈ NODE , and the set of all NUMA domains.

– WSS ratio:

(rawRationode) =
r ′∪as(node)∑

node′∈NODE r ′∪as(node ′)

As dvcore values are preliminary measured for the benchmarks5, they are all evenly dis-

tributed with the interleaved memory mapping. As long as the accessed pages are near

to each other in the guest physical address space, the interleaved memory mapping will

make them well balanced across the NUMA domains. Therefore, the focus should be on

the second target, balancing the WSS.

Algorithm The algorithm is designed to balance the WSS across NUMA domains. When-

ever any imbalanced WSS distribution is observed, along with the interleaved vcore map-

ping being selected by NAVAR, the fine-grained policy attempts to redistribute vcores

(fine-grained vcore remapping). In the main loop of NAVAR, a few changes are made:

Before:

(VCoreMapPolicy , MemMapPolicy)← DecisionTree(metrics)

(VCoreMapneed , MemMapneed)← ExtractMap(VCoreMapPolicy , MemMapPolicy)

5The interleaved memory preferred workloads are LU, CG, FLUIDANIMATE, WUPWISE, SWIM,
MGRID, EQUAKE, FMA3D, APSI, BT, SP, UA, APPLU, and GAFORD. They are selected to be mea-
sured.

137

After:

(VCoreMapneed , MemMapneed)← FineVCoreDecisionTree(metrics , VCoreMapcur)

The core function, DecisionTree, is now replaced by the FineVCoreDecisionTree function.

The new function contains the fine-grained vcore mapping algorithm, which is a greedy

algorithm. The procedure is as follows. It first sorts vcores in the order of the WSS val-

ues, r′∪as(vcore). Starting with the maximum, the vcore is located to the NUMA domain,

node, that currently holds the minimum value of the sum of the located vcores’ WSS,

minimum(Bucketnode), and that also has room to include more vcores, |VCORES ′node | <

MAX VCORES ′. The maximum available number of vcores, MAX VCORES ′, is the

number of vcores mapped to each NUMA domain under the interleaved vcore mapping.

When this iteration is finished, the vcore mapping is determined. Remember the ap-

proach is trying to enhance the interleaved mapping, the entire decision tree codes are

used on, as shown below (the codes before the fine-grained vcore mapping algorithm be-

gins). A few conversion functions are added to properly manage the mapping information.

SplitVCoreMap and MergeVCoreMap split and merge the allocated vcore information per

NUMA domain from/to the vcore map, VCoreMap.

FineVCoreDecisionTree(metrics6, VCoreMapcur)

if objective is power then

(VCoreMapPolicy , MemMapPolicy)← (CONSOLIDvcore , CONSOLIDmem)

else if r∪as > threshold LWSS then

(VCoreMapPolicy , MemMapPolicy)← (INTERvcore , INTERmem)

else if r∩as > threshold CS then

if objective is energy and CacheMissRate > threshold CS CacheMissRate then

(VCoreMapPolicy , MemMapPolicy)← (CONSOLIDvcore , CONSOLIDmem)
6The detection framework is slightly modified to produce the new metrics: ∀r′∪as(vcore), ∀r′∪as(node),

and rawRationode .

138

end if

else

(VCoreMapPolicy , MemMapPolicy)← (INTERvcore , CONSOLIDmem)

end if

(VCoreMapneed , MemMapneed)← ExtractMap(VCoreMapPolicy , MemMapPolicy)

(VCORESnode0 , ..., VCORESnodeN−1)← SplitVCoreMap(VCoreMapcur)

{the fine-grained vcore mapping algorithm begins}

if ∃ node, where (rawRationode) > 55% and VCoreMapPolicy is INTERvcore then

Sorted ← (sorted sequence of r′∪as(vcore), except for the max)

reset all Bucketnode and VCORES ′node , where node ∈ NODE

Bucketnode0 ← max of r′∪as(vcore)

add the vcore info to the VCORES ′node0 vector

for all r′∪as(vcore): each of Sorted in a descendant order do

while search minimum(Bucketnode) do

if |VCORES ′node | < MAX VCORES ′ then

add r′∪as(vcore) to the Bucketnode

add the vcore info to the VCORES ′node vector

break the loop

end if

end while

end for

VCoreMapneed ←MergeVCoreMap(VCORESnode0 , ..., VCORESnodeN−1)

end if

return (VCoreMapneed , MemMapneed)

139

5.5.2 Fine-grained Memory Mapping Policy

One alternative memory mapping policy is the first-touch policy, commonly used in Linux

and other platforms. Preserving the interleaved memory mapping style, a hybrid mem-

ory mapping is considered to take both the first-touch approach and the baseline one (the

modulo-base interleaved mapping). This approach is conditionally to take the first-touch

policy for pages that are privately owned by a single vcore, while the modular-base pol-

icy is applied to the rest of the pages. To do so, the ownership status, the information

on whether a page is shared or privately owned, is stored in the bitmap, OwnershipSta-

tusBitmap. This needs to be checked regularly for every single pages, where we select

and apply the memory mapping policy indicated in the PolicyBitmap. A bitmap is a suffi-

cient data structure as long as two mapping policies are considered. When the interleaved

memory mapping is consistently selected by NAVAR, OwnershipStatusBitmap needs to be

periodically updated. If the OwnershipStatusBitmap is changed considerably, for exam-

ple, >20% change, PolicyBitmap is reconfigured, and accordingly FirstTouchInfo for the

first-touch policy needs to be flushed for the first-touch selected pages.

OwnershipStatusBitmap and the ratio OwnershipStatusBitmap is updated by the ag-

gregator of the detection framework as long as the interleaved memory mapping is se-

lected. For each vcore bitmap, r ′∪as(vcore), the related bit is set if the page is privately

owned (touched by only one vcore). As this bitmap is kept updated, it needs to track the

degree of change between the old bitmap and the new one, oldBitmap and newBitmap.

One metric to represent the degree of change is the OwnershipStatsBitmapRatio which

is defined as:

OwnershipStatsBitmapRatio =
weight(newBitmap ⊕ oldBitmap)

weight(newBitmap ∧ oldBitmap)

140

where weight(bitmap) represents Hamming weight (bitmap count)7 of the bitmap, and ⊕

and ∧ refer to XOR and AND operations respectively.

Algorithm FineMemDecisionTree(metrics , VCoreMapcur) adds an additional decision

node that determines whether it needs to update PolicyBitmap and reset FirstTouchInfo or

not. PolicyBitmap determines whether the corresponding page is for the modulo-base

policy or for the first-touch one. Even with ADAPTIVE INTERLEAVED , it needs

to update OwnershipStatusBitmap. The configuration for PolicyBitmap is embedded in

ExtractMap(VCoreMapPolicy , MemMapPolicy). As it translates the mapping policy info

to the mapping info, MemMapneed , PolicyBitmap is reconfigured under ENFORCED

ADAPTIVE INTERLEAVED as described, marking the privately owned page bit for

the first-touch policy, and FirstTouchInfo is flushed. ExtractMap also needs to deliver the

old FirstTouchInfo so as to find the source data correctly.

if objective is power then

(VCoreMapPolicy , MemMapPolicy)← (CONSOLIDvcore , CONSOLIDmem)

else if r∪as > threshold LWSS then

VCoreMapPolicy ← INTERvcore

OwnershipStatsBitmapRatio ← weight(newBitmap ⊕ oldBitmap)

weight(newBitmap ∧ oldBitmap)

if OwnershipStatsBitmapRatio > threshold OwnershipStatsBitmapRatio then

MemMapPolicy ← ENFORCED ADAPTIVE INTERLEAVED

else

MemMapPolicy ← ADAPTIVE INTERLEAVED

7The number of set bits

141

end if

else if r∩as > threshold CS then

if objective is energy and CacheMissRate > threshold CS CacheMissRate then

(VCoreMapPolicy , MemMapPolicy)← (CONSOLIDvcore , CONSOLIDmem)

end if

else

(VCoreMapPolicy , MemMapPolicy)← (INTERvcore , CONSOLIDmem)

end if

(VCoreMapneed , MemMapneed)← ExtractMap(VCoreMapPolicy , MemMapPolicy)

return (VCoreMapneed , MemMapneed)

5.6 Experimental Results

There are three to the experimental results. The first is the NAVAR results, evaluating how

well the adaptive system configures the system for the user-driven objective. The next

two parts are about the comparisons of the brute-force and of the fine-grained approaches

with the NAVAR policy. All the experiments have 8 vcore/threads running on the R410

machine.

5.6.1 NAVAR Results

The NAVAR policy is designed through offline-based modeling and analysis. Since the

decision tree (the model) is established by the learning phase, the model should be vali-

dated with a separate test set of benchmarks. A few test cases8, therefore, are intentionally

excluded from the learning phase and included in the validation set for use in these experi-

8BODYTRACK, CG, EP, FREQMINE and EQUAKE are the validation cases.

142

60%	

80%	

100%	

120%	

140%	

160%	

Po
w
er
	

EX
E.
Ti
m
e	

En
er
gy
	

Po
w
er
	

EX
E.
Ti
m
e	

En
er
gy
	

Po
w
er
	

EX
E.
Ti
m
e	

En
er
gy
	

Po
w
er
	

EX
E.
Ti
m
e	

En
er
gy
	

Po
w
er
	

EX
E.
Ti
m
e	

En
er
gy
	

CCMC	
 CCMI	
 CIMC	
 CIMI	
 NAVAR	

N
or
m
al
iz
ed

	
 v
al
ue

	

BODYTRACK	

Figure 5.16: The results of BODYTRACK. NAVAR selects CCMC for the power objective,
and CIMC for the energy and performance objectives.

40%	

80%	

120%	

160%	

200%	

Po
w
er
	

EX
E.
Ti
m
e	

En
er
gy
	

Po
w
er
	

EX
E.
Ti
m
e	

En
er
gy
	

Po
w
er
	

EX
E.
Ti
m
e	

En
er
gy
	

Po
w
er
	

EX
E.
Ti
m
e	

En
er
gy
	

Po
w
er
	

EX
E.
Ti
m
e	

En
er
gy
	

CCMC	
 CCMI	
 CIMC	
 CIMI	
 NAVAR	

N
or
m
al
iz
ed

	
 v
al
ue

	

CG	

Figure 5.17: The results of CG. For the performance and energy objectives, NAVAR pro-
duces almost the same results as CIMI, and the same power by NAVAR as by CCMC.

mental results. Additionally, STREAMCLUSTER is also added even though it is included

in the learning set because of its unique characteristics. Figures 5.16, 5.17, 5.18, 5.19, 5.20,

and 5.21 show that NAVAR correctly finds the best configuration to produce the optimal

143

60%	

80%	

100%	

120%	

140%	

Po
w
er
	

EX
E.
Ti
m
e	

En
er
gy
	

Po
w
er
	

EX
E.
Ti
m
e	

En
er
gy
	

Po
w
er
	

EX
E.
Ti
m
e	

En
er
gy
	

Po
w
er
	

EX
E.
Ti
m
e	

En
er
gy
	

Po
w
er
	

EX
E.
Ti
m
e	

En
er
gy
	

CCMC	
 CCMI	
 CIMC	
 CIMI	
 NAVAR	

N
or
m
al
iz
ed

	
 v
al
ue

	

EP	

Figure 5.18: The results of EP. NAVAR selects the configurations that produce almost the
same execution time and energy as the best static mapping does.

80%	

100%	

120%	

140%	

160%	

Po
w
er
	

EX
E.
Ti
m
e	

En
er
gy
	

Po
w
er
	

EX
E.
Ti
m
e	

En
er
gy
	

Po
w
er
	

EX
E.
Ti
m
e	

En
er
gy
	

Po
w
er
	

EX
E.
Ti
m
e	

En
er
gy
	

Po
w
er
	

EX
E.
Ti
m
e	

En
er
gy
	

CCMC	
 CCMI	
 CIMC	
 CIMI	
 NAVAR	

N
or
m
al
iz
ed

	
 v
al
ue

	

FREQMINE	

Figure 5.19: The results for FREQMINE benchmark. NAVAR configures the system to be
optimized for the given objective.

results for the requested objectives. The impact of power saving from the proposed hard-

ware mechanism, the memory power-off feature, is also included with estimates of the

expected power reduction. On the test machine, the R410, the power consumed by the

144

80%	

100%	

120%	

140%	

160%	

180%	

Po
w
er
	

EX
E.
Ti
m
e	

En
er
gy
	

Po
w
er
	

EX
E.
Ti
m
e	

En
er
gy
	

Po
w
er
	

EX
E.
Ti
m
e	

En
er
gy
	

Po
w
er
	

EX
E.
Ti
m
e	

En
er
gy
	

Po
w
er
	

EX
E.
Ti
m
e	

En
er
gy
	

CCMC	
 CCMI	
 CIMC	
 CIMI	
 NAVAR	

N
or
m
al
iz
ed

	
 v
al
ue

	

EQUAKE	

Figure 5.20: The results for EQUAKE. NAVAR produces results for the optimized perfor-
mance, energy, and power respectively.

memory sub-system is relatively small compare to the entire system’s power. Therefore,

to distinguish memory power-off effects from noise, the CPU frequency is selectively9

set to the lowest one; nonetheless, this configuration is fair as in all the compared cases,

the static configuration results as well as the NAVAR results are equally determined with

the same CPU frequency. EP and FREQMINE fairly demonstrate the energy efficiency

with the consolidated memory over the interleaved mapping, saving about 4–7%, while

no significant performance differences are observed between the two.

5.6.2 Brute-force vs NAVAR

Table 5.8 shows comparisons between NAVAR and the brute-force policy. The migration

mechanisms, both vcore and memory migrations, suspend vcore execution. The mecha-

nisms have some room to be optimized, nevertheless, they have limitations in that contents

in memory have to be migrated on every comparison across all the vcore and memory

9All cases except for STREAMCLUSTER

145

80%	

90%	

100%	

110%	

120%	

130%	

Po
w
er
	

EX
E.
Ti
m
e	

En
er
gy
	

Po
w
er
	

EX
E.
Ti
m
e	

En
er
gy
	

Po
w
er
	

EX
E.
Ti
m
e	

En
er
gy
	

Po
w
er
	

EX
E.
Ti
m
e	

En
er
gy
	

Po
w
er
	

EX
E.
Ti
m
e	

En
er
gy
	

CCMC	
 CCMI	
 CIMC	
 CIMI	
 NAVAR	

N
or
m
al
iz
ed

	
 v
al
ue

	

STREAMCLUSTER	

Figure 5.21: The results of STREAMCLUSTER. Different from the rest benchmarks,
CCMC shows the best energy efficiency, and NAVAR matches it. The execution time
that NAVAR gets is less than 3% different from the best static mapping result (CIMI).

Workload NAVAR Brute-force
BODYTRACK 100% 127.19%

CG 100% 147.89%
EP 100% 116.95%

FREQMINE 100% 124.18%
EQUAKE 100% 111.43%

STREAMCLUSTER 100% 120.63%

Table 5.8: Normalized execution time comparing NAVAR with the brute-force approach.
Due to the significant overheads in the mechanism, the brute-force policy has a large
penalty to its performance.

configurations. During the migrations, some or all of the vcores need to be suspended. At

least for performance, the overall migration cost needs to be below 3% of the best execu-

tion time. According to the measured overhead, show in Table 3.1, it is quite a challenge

to achieve this threshold. Considering the rate of the comparison, the whole comparison

along with the relevant migrations are made every 10 seconds.

146

Workload NAVAR NAVAR with fine-grained vcore
FMA3D 100% 182.95%

WUPWISE 100% 100.02%
EQUAKE 100% 100.08%

Table 5.9: Normalized execution time of NAVAR (100%) and of the fine-grained vcore
mapping. WUPWISE and FMA3D are selected for the potential opportunity of mem-
ory traffic shaping (balancing). The two cases, EQUAKE and WUPWISE, turn out to
have very little vcore migrations; whereas, FMA3D has lots migrations to get performance
penalties.

5.6.3 Fine-grained Approach vs Coarse-grained (NAVAR)

Since the configuration space is conservatively set to the coarse-grained level, the fine-

grained approach may improve performance. The fine-grained mapping strategies taken

for both vcore and memory mappings are primarily focused on the enhancement of the

NAVAR policy. Unfortunately, the results do not seem to be promising. The following

discussions describe the situation.

Fine-grained vcore mapping We speculate that there are two major reasons for the

fine-grained vcore mapping is performed. The limited opportunity makes the overhead

more visible. Most of all selected benchmarks, about 14 of the cases, have well-balanced

Working Set (WS) distributions as observed in r ′∪as(node). The two cases10, WUPWISE

and FMA3D, appear to have occasional unbalanced WS distributions on the order of 60%

vs 40% across two NUMA domains. Therefore, any improvement is the effect of about

10% reshaped memory traffic, which is very limited over the whole execution time. Also,

there is a potential gap between r ′∪as(node) and the WSS. The false positive eventually

results in unnecessary migrations that may constitute a performance penalty. Nonetheless,

the limited opportunity is still true in this case, and the opportunity is possibly different

10FMA3D is observed to have more unbalanced working set distributions than WUPWISE.

147

larger scaled NUMA machines.

Fine-grained memory mapping CG and EQUAKE are compared with respect to the

NAVAR results. For both performance and energy, the difference is less than 2%, not a

huge penalty but also not a huge improvement. Separately, the two cases, statically apply-

ing the first-touch (with no flushes) policy and the interleaved vcore mapping separately,

are compared with each other, and no significant difference is found. One possible reason

is the limited impact of memory distance factors, whereas the memory bandwidth impact

is more visible and affective.

Discussion of coarse-grained vs fine-grained A more fundamental question is whether

the fine-grain configuration space is effective or not. One thought is that there is possibly

some overlap between guest-side scheduling and memory management, particularly on

the fine-grained level of configuration. The guest scheduler also tries to schedule and load

balance threads under the SMP model, and the memory manager in the guest also maps

pages in a fragmented way. These all may collectively remove the opportunities for VMM-

driven fine-grained resource managements. The coarse-grained resource management, on

the other hand, achieves decent and efficient benefits, and as far as the under-subscription

case and the test machine are concerned, the performance gain looks to be saturated when

trying to go beyond the coarse-grained configuration space.

5.7 Conclusion

This chapter has shown and compared three different approaches to addressing the re-

source management tradeoffs in the under-subscription case, along with various mapping

strategies. Overall, the coarse-grained approach looks to be the most promising, as the

148

brute-force approach has significant migration costs and the fine-grained approach does

not achieve any visible improvement, but does increase the costs. Nonetheless, the two-

dimensional configuration spaces need to be considered at the same time. Therefore, the

policy needs some elaboration. NAVAR clearly demonstrates its ability to adjust the system

to the best configuration, in the given configuration space, for the user-driven objective.

149

Chapter 6

Full-subscription

In the previous chapter, the resource management problem for the under-subscription case

was discussed and NAVAR was introduced to address the problem of the vcore and memory

mapping concerns. Workloads were classified, which helped to build a decision tree. The

decision tree model was used for the NAVAR system and compared with the brute-force

approach as well as with more fine-grained vcore and memory mapping policies. The

experimental results showed that the NAVAR system with the coarse-grained mappings

automatically configure a system as well as the best static configuration. This chapter

extends the scope of a problem to cover the full-subscription case.

6.1 Tradeoffs and Opportunities

Context of full-subscription In the under-subscription case, one VM is assumed to run

on the physical machine. In Chapter 3, a scenario for full-subscription is 2 VMs with

six vcores with 16 available hardware threads. This type of workload involves a moder-

ately utilized resource, where the system can be space-shared and does not need vcore-

150

scheduling onto a hardware thread. Consolidating multiple VMs in one machine is a

good strategy for reducing the maintenance cost. Particularly, when multiple NUMA do-

mains are incorporated in one physical machine, each VM can be allocated to a separate

NUMA domain. This resource partitioning is a conventional setup reported in recent arti-

cles [74, 62]. With this partitioning strategy under a multiple-socket multicore machine, a

VM’s vcores are separately consolidated into one NUMA domain and at most one vcore is

served by each hardware thread. Therefore, in the full-subscription case, memory mapping

is the configuration space that needs to be considered.

Tradeoffs in memory mappings The possible memory mapping cases, when there are

two NUMA domains, are as follows, and they are also depicted in Figure 6.1:

• MC2@(NUMA NODE): Map all guest pages (memory) to a single NUMA domain,

one of the two domains (N0 or N11).

• MCMC: Map each Vm’s pages to its matching host NUMA domain2. According to

the resource partitioning strategy, this is the default configuration.

• MIMC or MCMI: One of the two VMs gets the interleaved memory mapping, while

the other VM has the consolidated memory mapping in its host NUMA domain.

Each of the first two and last two letters refers to one VM, e.g. VM0 and VM1.

MIMC is the case that VM0 has the interleaved memory mapping, but VM1 has

consolidated memory mapping

• MIMI: Both VMs have the interleaved memory mapping.

1N0 refers to NUMA domain 0 and N1 refers to NUMA domain 1.
2The NUMA domain where the VM’s vcores are mapped. Also, a NUMA domain is interchangeably

called node or socket.

151

NUMA domain 0 NUMA domain 1 NUMA domain 0 NUMA domain 1

MCMC MIMC
VM0
VM1

Power	
 Off	

NUMA domain 0 NUMA domain 1 NUMA domain 0 NUMA domain 1

MC2 MCMI

Figure 6.1: Illustration of 4 of the 6 possible memory mapping cases for the full-
subscription case. MIMI and MC2@(N0) are not shown here. It is important to understand
that any MC2 type of memory mapping makes it possible to power-off the memory of the
NUMA domain that is not used.

According to the partitioning strategy, the default mapping is MCMC, which consolidates

each VM’s memory in the NUMA domain where the VM’s vcores are mapped. This

partitioning strategy isolates main memory traffic completely. However, some workloads

demand more memory bandwidth than what one node can provide. MIMC or MCMI is

useful particularly when two very different types of applications in VM0 and VM1 are

152

60%	

80%	

100%	

120%	

140%	

AR
T-­‐C
G	

AR
T-­‐U

A	

AR
T-­‐F
LU
IDA

NI
MA

TE
	

AR
T-­‐A
RT
	

AR
T-­‐I
S	

AR
T-­‐S
WI
M	

AR
T-­‐E
QU
AK
E	

AR
T-­‐W

UP
WI
SE
	

AR
T-­‐F
MA

3D
	

AR
T-­‐A
PS
I	

AR
T-­‐B
T	

AR
T-­‐S
P	

AR
T-­‐G
AF
OR
T	

AR
T-­‐A
PP
LU
	

LU
-­‐M
GR
ID	

MG
RID
-­‐LU
	

BO
DY
TR
AC
K-­‐E
QU
AK
E	

BO
DY
TR
AC
K-­‐S
TR
EA
MC
LU
ST
ER
	

BO
DY
TR
AC
K-­‐L
U	

ST
RE
AM

CL
US
TE
R-­‐L
U	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	

Normalized	
 exe.	
 Time	
 based	
 on	
 MCMC	
 at	
 100%	
 VM0/MCMI	
 VM1/MCMI	

162.24%	

142.60%	

W
or

se

B
et

te
r

Figure 6.2: Illustration of tradeoffs in the full-subscription case for paired VMs running
the noted benchmarks. The performance ratio is shown. The baseline performance is
execution time of MCMC, consolidated memory mappings for the two VMs. The exe-
cution time of MCMI, consolidated memory mappings for VM0 and interleaved memory
mappings for VM1, is divided by the execution time of the baseline for each VM. For ex-
ample, BODYTRACK-LU shows that BODYTRACKS’s execution time does not changed
between MCMC and MCMI, whereas the execution time of LU is reduced more than 20%
by using MCMI instead of MCMC. The LU benchmark clearly gains performance, while
the co-runner, BODYTRACK, does not have any penalty on the performance. However, it
is important to understand each pair of applications affects each other in different ways.

running. When the workload on VM0 demands more memory bandwidth but the available

memory bandwidth in one node is sufficient for the workload in VM1, MIMC is a reason-

able choice. MIMC provides more memory bandwidth to VM0 by allowing access to the

other NUMA domain, which VM1 also accesses, which is fine when the memory traffic

from VM1 is low. However, it should be checked whether MIMC raises traffic congestion

in the commonly accessed NUMA domain. MIMI mapping also seems appropriate, but

preliminary performance results show that MIMI does not clearly outperform MIMC or

MCMI across our benchmark pairs.

153

When both VMs’ memory bandwidth demands are small, MC2 can be selected. The

benefit of MC2 allows us to leverage the proposed hardware mechanism for powering-off

the memory in one NUMA domain. Because MC2 is not expected to increase execution

time for both VMs, this memory mapping will also save energy. Figure 6.2 shows MCMI

performance compared to MCMC (the default memory mapping) for different pairs of

benchmarks.

Test scalability and an approach to modeling Previously, when tradeoffs were ad-

dressed for resource mapping concerns, all possible configurations for our benchmarks

were compared preliminary. The reason why all cases were measured was to try to cap-

ture characteristics of workload as much as possible3. The cases for under-subscription

are limited, so it is possible to configure each static configuration and to measure execu-

tion times accordingly. However, when running multiple VMs for full-subscription, it is

hard to measure all possible cases. Two applications interact with each other in access-

ing main memory; therefore, each pair should be treated as a separate case. Given about

30 different applications, the number of combinations comes to be more than 400 cases,(
30
2

)
= 30×29

2×1 . It is laborious to do modeling based on execution time results of all possible

configuration cases4. Nonetheless, the preliminary performance results as well as classi-

fications for under-subscription are useful. Applications are individually characterized in

regard to memory traffic. This model can fit into a broaden interaction model that predicts

the benefits of the interleaved memory mapping and so on. The following sections de-

scribe the procedures to build an offline-based model, and then metrics to be measured are

described. The revised detection mechanism is also discussed. After that, policy design

and its experimental results follow.

3This assumes the model-based prediction approach, which is pursued for full-subscription case as well.
4The case refers to a learning set. A validation set should not be measured.

154

CS/CS'/LWSS

classification

EPNM

classification

CS/CS'/LWSS

classification

EPNM

classification

VM0

VM1

Abstract-level of

classifcation

Memory

mapping table

Figure 6.3: Illustration of a new classification. This classification is called EPNM classifi-
cation. EPNM stands for the four classes: Expandable, Protected, Normal, and Mergeable.
The CS/CS’/LWSS (the adjusted CS and LWSS classification) class, explained in Sec-
tion 6.2.2, can populate the memory mapping table. EPNM classification is inserted for
comprehensiveness.

6.2 Offline Modeling

Considering memory migration cost and the fact that the brute-force policy does not work

for under-subscription, the model-based prediction approach is more applicable, here.

Classification that is reproducible during runtime is presented along with measurable met-

rics. Accordingly, the detection framework is modified and the extension will be discussed

in the next section. At first, reusing the under-subscription classification, CS and LWSS,

is attempted. However, as the overall aspects of the full-subscription cases are studied,

it turns out that the four classes are not sufficient for the six memory mapping choices.

Therefore, a different classification of workloads is needed to address the memory map-

ping problem for the full-subscription problem.

155

6.2.1 Classification

As it is hard to cover all cases, the combinations of all workloads, selected test cases are

chosen and then workloads are intuitively classified to select the best memory mapping.

As shown in Figure 6.3, this classification is used to build the memory mapping table. The

following includes the descriptions of the classes and classification itself. Classifiers will

be further clarified by relating a EPNM class5 to a CS/CS’6/LWSS class.

Expandable class As shown in Figure 6.2, the performance effects of the interleaved

memory by (MIMC or MCMI) are different depending on the characteristica of work-

loads. If a >5% performance benefit is observed with the interleaved memory mapping,

the workload is classified as Expandable. With the interleaved memory mapping, this

benchmark also has energy-efficiency. On the flip side, when both two VMs are of the

Expandable type, when one VM is given an interleaved memory mapping and the other

VM is given the consolidated memory mapping, both workloads used significantly under-

perform. In fact, this case indicates that MCMC should be used when the two VMs are

in the Expandable class. Therefore, even when a workload7 is classified as Expandable, it

is conditional on the other workload whether to use interleaved. Besides the case where a

co-runner is in the Expandable class, there is another class that disallows the VM to have

interleaved memory mapping, the Protected class.

Protected class This class does not take advantage of the interleaved memory mapping,

but it does not allow its co-runner to use its memory bandwidth, particularly when the

co-runner is the Expandable class. Protected benchmarks, such as STREAMCLUSTER,

worsen then execution time when a co-runner has the interleaved memory mapping.

5EPNM class refers to one of the Expandable, Protected, Normal, and Mergeable classes.
6CS’ class is a new class used for the full-subscription case. Detail can be found in Section 6.2.2.
7As one application is assumed to run on a VM, an application or a workload refers to a VM here.

156

VM0 VM1
Memory mapping

(VM0, VM1)
Megeable Mergeable (MC2@N0, MC2@N0)

Protected or Protected or

(MC,MC)

Expandable Expandable
Normal or

Mergeable
Protected
Normal or

Normal
Protected

Expandable
Mergeable

(MI,MC)
or Normal

Table 6.1: Memory mapping table for the EPNM classes. The sequence of VM0 and VM1
is interchangeable. When either one of VMs is Expandable and the other VM is either
Mergeable or Normal, the Expandable VM takes MI while the other VM has MC. MC2 is
thought to be equivalent to either of one of two mappings as the remote memory-access
effect for Mergeable workloads is small.

Mergeable BODYTRACK and BLACKSCHOLES are example where even with MC2

there is no significant performance penalty. The execution time of MC2 over MCMC is

0.22% lower for BODYTRACK and 2.48% higher for BLACKSCHOLES, which demon-

strates that MC2 is a viable choice for energy for these benchmarks. MCMC consumes

about 5% more power than MC2. We refer to workloads as being in the Mergeable class.

Normal The Normal class includes those workloads which neither get better perfor-

mance by having the interleaved memory mapping nor get worse by the co-runner’s having

an interleaved memory mapping. Nonetheless, they produce enough traffic that the MC2

option results in a performance penalty.

Mapping strategy Given the EPNM classes, the mapping strategy is illustrated in Ta-

ble 6.1. Note that the order of classes in each pair is interchangeable for the indicated

memory mapping. There are two distinct cases that are mapped to MC2 or MIMC (or

MCMI). Otherwise, workloads under full-subscription are MCMC-mapped. MIMI is not

157

EPNM class Workloads

Expandable
SWIM, EQUAKE, MGRID, APPLU, LU, SP, GAFORT, WUPWISE,
FMA3D

Protected STREAMCLUSTER
Normal BT, CG, UA, IS

Mergeable
BLACKSCHOLES, BODYTRACK, FERRET, FACESIM, FREQMINE,
FLUIDANIMATE, RAYTRACE, SWAPTION, DEDUP, VIPS, ART
GALGEL, EP, AMMP, X264, CANNEAL, APSI

Table 6.2: Preliminary EPNM classifications for the selected benchmarks, based on obser-
vations of static mapping results. The complete classification is shown in Table 6.4.

taken into account because both the Mergeable and Normal classes have no significant

performance benefit from the interleaved memory mapping. Therefore, MIMI is, at best,

equal to MIMC in performance.

6.2.2 Revising CS and LWSS

CS and LWSS classification is already available from measurable data, but it does not

exactly match with the EPNM classification. The CS and LWSS classification, therefore,

needs to be revised.

Among the four classes produced from CS and LWSS classification, some maps to one

class of EPNM. The CS&!LWSS class is equivalent to the Protected class, the !CS&!LWSS

class is equivalent to the Mergeable class, and the workloads in the CS&LWSS class are

also classifiable as the Expandable class. These three equivalents are intuitively explicable

in terms of memory traffic demands. The CS&LWSS class indicates that both numbers of

pages either frequently accessed (r∩as) or just touched (r∪as) are high, so the type matches

with the Expandable class. On the opposite side, the !CS&!LWSS class has low mem-

ory traffic, as reflected in the two metrics, r∩as and r∪as , so it is Mergeable. Finally, the

CS&!LWSS class has high memory traffic observable by r∩as, and so, it is also classified

158

Configuration variable Setup
Machine Dell PowerEdge R410 machine

Resource mapping CCMC
Probing duration varying 0.25x 0.5x 1x of base cycles count (2,394,000,000)
Scanning interval 10,000,000 counts of write instructions
Number of vcores eight threads

Table 6.3: Summary of setup for the sensitivity check for the probing duration. Only the
probing duration is changed, compared to the previous chapter.

as the Protected class.

!CS&LWSS is the challenge, because some workloads in the !CS&LWSS class are in

the Expandable class and others are in the Normal class. For example, CG, UA and IS

are in the Normal class, and GAFORT, EQUAKE, WUPWISE, and FMA3D are in the

Expandable class. However, all six benchmarks are classified to the !CS&LWSS class.

To complete the transition from the CS and LWSS classification to the EPNM class, the

!CS&LWSS class needs to be split. With the separator, all workloads in the CS&LWSS

class and some of those in the !CS&LWSS class, called CS’&LWSS, are in the Expandable

class, and the rest of the cases in the !CS’&LWSS class are in the Normal class. This

adjusted classification is called the CS/CS’/LWSS classification. The separator is based on

metrics when the probing duration is adjusted as discussed in the next section.

6.3 Adjusted Detection Framework

We now consider how to tune the detection framework to appropriately detect the !CS&LWSS

class. The CS classification already separates the LWSS class into the CS&LWSS and

!CS&LWSS classes. Since the expected partition to separate !CS&LWSS in Expandable

and Normal is in the middle of !CS&LWSS, the threshold for CS depicted in Figure 5.13

could be lowered to include more benchmarks. However, in the metric, r∪as , WUPWISE

159

90%	

95%	

100%	

105%	

ART	
 UA	
 IS	
 FMA3D	
 WUPWISE	
 APSI	
 GAFORT	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	

VM0	
 has	
 ART	
 as	
 fixed	
 co-­‐runner;	
 VM1	
 has	
 following	
 workloads	

MCMI	
 MCMC	

95%	

Figure 6.4: Performance comparison between the CCMI and CCMC mappings. WUP-
WISE, for example, has a 5.4% execution time reduction with the interleaved memory
mapping over the consolidated memory mapping, while the co-runner best uses the consol-
idated memory mapping consistently. Note that execution time variation of the co-runner
is not shown here.

and FMA3D, for example, which are classified to the Expandable class remain indistin-

guishable with the other benchmarks such as UA and IS that are classified to the Normal

class. Another way to partition is to adjust the probing duration. The longer the probing

duration, the bigger the gap between r∪as and r∩as . For the following show the sensitivity

of the probing duration to r∩as especially for benchmarks that are in the !CS&LWSS class.

6.3.1 Sensitivity Check for Probing Duration

In Section 5.2.3, the probing duration is briefly mentioned as one of two parameters to con-

trol the detection framework. The probing duration can be used to control the relationship

between r∩as and r∪as . When the probing duration is very short, r∩as tends to be close to

r∪as , but when we increase the probing duration, r∩as begins to diverge from r∪as and its

value decreases. Given this, another sensitivity check is needed using the setup shown in

160

1.E+00	

1.E+01	

1.E+02	

1.E+03	

1.E+04	

1.E+05	

ART	
 UA	
 IS	
 FMA3D	
 WUPWISE	
 APSI	
 GAFORT	

Ac
ce
ss
ed

	
 h
ot
	
 p
ag
e	

ra
te
	

0.25x	
 0.5x	
 1x	

1000	

Figure 6.5: Sensitivity in the probing interval for r∩as . Variations in the measured value
are illustrated, as changing the probe duration. “1x” represents the baseline duration, and
the two cases are the measured value with the shorter probing durations.

Table 6.3. Figure 6.4 shows the selected benchmarks’ execution times comparing between

MIMC and MCMC. These benchmarks are in the !CS&LWSS class. For comparison,

Figure 6.5 illustrates variations of r∩as as the probing duration is changed. The baseline,

shown as “1x”, is used to classify the CS class. With the baseline probing duration, the

workloads have no differences; however, after reducing the probing duration by four times,

they become quite different. With this “0.25x” probing duration, the measured values have

some correlation with the performance results. Therefore, a threshold value can be set to

classify workloads separting Normal and Expandable. The threshold value can be 1000. In

addition, the cache miss rate8 is checked to see if it is beyond a 10% threshold. IS turns out

to be the incorrectly classified case that is detectable with the cache miss rate check. When

a workload has r∩as and cache miss rate values that are beyond the two respective thresh-

olds, they are classified as the CS’ class; otherwise, workloads are classified to the !CS’

class. CS’&LWSS ties to Expandable, and so does !CS’&LWSS to Normal. With this new
8Last-level cache miss rate

161

CS/CS’/LWSS Class
Workloads

(EPNM class)
CS’&LWSS FMA3D, WUPWISE, APSI, GAFORT, BT, LU, SP, APPLU,
(Expandable) SWIM, EQUAKE, MGRID, CANNEAL, FLUIDANIMATE
CS&!LWSS

STREAMCLUSTER
(Protected)

!CS’&LWSS
UA, IS, CG, ART

(Normal)

!CS&!LWSS
BLACKSCHOLES, FERRET, FACESIM, FREQMINE,

(Mergeable)
SWAPTION, DEDUP, VIPS, GALGEL, AMMP, X264, EP,
BODYTRACK, RAYTRACE

Table 6.4: The CS/CS’/LWSS classification results. This classification expands on the
previous CS and LWSS classification used for under-subscription. Each of previous four
classes is directly mapped to the four class of the EPNM classification with a change to
how the CS class is defined (CS’). With that, the EPNM classification is now clarified with
thresholds in the measurable metrics.

classifier, the CS/CS’/LWSS classification is completed. Table 6.4 lists the classification

results along with the matched class of the EPNM classification.

6.3.2 Algorithm

In regards to the detection mechanism, aggregating the bitmap values in the middle of a

probe needs to be added to the detection framework as shown in the last chapter. This

adjusted detection framework is very similar to the version of Chapter 4. Here, however,

we change the probing duration rather than the scanning interval. Lastly, it should be

mentioned that the probing process occurs separately for each VM.

Init(aggregator): [Invoked at startup on aggregator]

SetTimer(0.25T , SetAggregate)

Phase = 0

for all vcores i do

EnableScan i = 1

162

Force vcore i to run InitVcore(i)

end for

InitVcore(i): [Invoked at on vcore i]

hot accessed i = {k : 0 . . .m− 1}

accessed i = {k : 0 . . .m− 1}

Set PMU exception for number of store operations to trigger Scan(i).

Scan(i): [invoked when PMU exception occurs]

if EnableScan i = 1 then

for all present shadow (or nested) PTEs on vcore i do

k = DeriveGuestPhysicalPageNumberFrom(PTE)

curacci = ∅

if PTE.accessed then

curacci = curacci ∪ {k}

end if

PTE.accessed=0

end for

hot accessed i = hot accessed i ∩ curacci

accessed i = accessed i ∪ curacci

end if

SetAggregate(aggregator): [invoked when T expires on aggregator]

if Phase = 0 then

Phase = 1

quickAggregate(aggregator)

SetTimer(0.75T , SetAggregate);

else

163

Aggregate(aggregator)

end if

quickAggregate(aggregator)

for all vcores i do

hot accessed per store i = hot accessed i

accessed per store i = accessed i

end for

r∩as s =
1
n

∑n−1
i=0 |hot accessed per store i|

r∪as s =
1
n

∑n−1
i=0 |accessed per store i|

Aggregate(aggregator)

for all vcores i do

EnableScan i = 0

hot accessed per store i = hot accessed i

accessed per store i = accessed i

end for

r∩as =
1
n

∑n−1
i=0 |hot accessed per store i|

r∪as =
1
n

∑n−1
i=0 |accessed per store i|

6.4 Policies

Since the brute-force policy was not successful for the under-subscription case, it is not

attempted here. One root cause of the failure was that the memory migration cost is huge,

much higher than the vcore migration overhead. As memory migration is the key mech-

anism for the full-subscription case, no improvement on the brute-force approach is ex-

pected. Now, the NAVAR policy for the full-subscription is described. It has the same

164

overall structure as the NAVAR policy designed for the under-subscription case. Addition-

ally, a fine-grained memory mapping policy for the full-subscription case is presented. The

experimental results can be found in the next section.

6.4.1 NAVAR for Full-subscription

As mentioned, the overall structure of the NAVAR policy has not changed much from that

described in the last chapter. Most changes for the full-subscription case are made in the

decision tree function (DecisionTreeFS). Pseudocode follows.

exe state ← INIT STATE

interim scale ← 1

tscstate init ← readtsc; tscprev ← readtsc

ovrhdprobe ← 0; ovrhdvcore ← 0; ovrhdmem ← 0

MemMapPolicy ←MC 2@N0

while 1 do

ovrhdprobe ← Probing(metrics)

MemMapPolicy ← DecisionTreeFS(metrics)

MemMapingneed(VM0 ,VM1)← ExtractMap(MemMapPolicy)

if MemMapcur(VM0 ,VM1) = MemMapneed(VM0 ,VM1) then

interim scale mode ← NEED SCALE UP

else

for all VMID ∈ {VM0 ,VM1} do

if MemMapcur (VMID) 6= VM0MemMapneed (VMID) then

ovrhd ←MemReMapping(MemMapneed(VMID), VMID)

ovrhdmem ← ovrhd + ovrhdmem

165

end if

end for

MemMapcur(VM0 ,VM1)←MemMapneed(VM0 ,VM1)

interim scale mode ← NEED RESET

end if

Interim(ovrhdprobe , ovrhdvcore , ovrhdmem)

end while

DecisionTreeFS(metrics) immediately returns MC2@N0 when the power objective is re-

quested. For the other objectives, it compares the metric values to the thresholds. Accord-

ingly, it finds the EPNM classification for each VM, MappingClassVMID . The EPNM clas-

sification results are compared, and then one memory mapping configuration, MemMapPolicy ,

is selected through the predefined memory mapping table.

if objective is power then

MemMapPolicy ←MC 2@N0

return MemMapPolicy

end if

for all VMID ∈ {VM0 ,VM1} do

if r∪as > threshold LWSS then

if CacheMissRate > threshold CacheMissRate and r∩as > threshold CS ′ then

MappingClassVMID ← Expandable

else

MappingClassVMID ← Normal

end if

else

166

if CacheMissRate > threshold CacheMissRate and r∩as > threshold CS then

MappingClassVMID ← Protected

else

MappingClassVMID ←Mergeable

end if

end if

end for

switch (MappingClassVM0 , MappingClassVM1)

case (Mergeable, Mergeable):

MemMapPolicy ←MC 2@N0

case (Expandable, Mergeable) :

case (Expandable, Normal) :

MemMapPolicy ←MIMC

case (Mergeable, Expandable) :

case (Normal , Expandable) :

MemMapPolicy ←MCMI

default:

MemMapPolicy ←MCMC

end switch

return MemMapPolicy

6.4.2 Fine-grained Memory Mapping Policy

A fine-grained memory mapping policy is now described for a fine-grained interleaved

memory mapping. Similar to the parallel work in the previous chapter, the objective for

167

this fine-grained approach is to enhance the performance of the described NAVAR policy.

Basically, this approach tries to find an alternative interleaved memory mapping, to the

modulo-n approach (the baseline interleaved memory mapping). Two principles are taken

into account for partitioning pages to be mapped to the different NUMA domains. One

principle is based on the assumption that pages shared by many vcores are likely to be

hot pages. Filtering hot pages is important in order to prioritize pages to be placed in

the local node (highly-shared pages placed in the local node). Notice that vcores are

assumed to be consolidated to a socket in the full-subscription situation. Another principle

is that memory-access traffic needs to be evenly split to leverage the memory bandwidth of

multiple sockets (load-balance). To realize these principles, additional metrics need to be

measured. Two key metrics are LocalPagesBitmap and LocalPageRatio, each of which

respectively reflects the principles.

The following detection mechanism executes after the aggregation process finishes.

Each iteration in the loop searches pages that are shared by the number of vcores, NumOwners .

The loop begins to search pages that are accessed by all vcores. There pares are identified

to the hot pages, which are located in the local node as following the first principle (highly-

shared pages placed in the local node). At the same time, the overall pages need to be

distributed across all NUMA domainsfor the second principle (load-balance). Therefore,

hot pages are searched and LocalPagesBitmap is established until the number of searched

pages are equal or less than the threshold, the number of all accessed pages divided by the

number of NUMA domains.

accessed per store ←
⋃n−1

i=0 accessed per store i

LocalPagesBitmap ← accessed per store

accessed per store Set ←
⋃n−1

i=0 {accessed per store i}

LocalPageRatio ← 1; NumOwners ← MaxVCore

168

while LocalPageRatio > 1/(NumofNodes) and NumOwners > 0 do

LocalPagesBitmap ← FilteroutNumOwners(accessed per store Set ,

NumofOwners)

LocalPageRatio ← |LocalPagesBitmap|/|accessed per store|

NumOwners ← NumOwners − 1

end whilenewLocalPagesBitmap ← LocalPagesBitmap

FilteroutNumOwners(accessed per store Set , NumOwners) sets the bits for pages that

are shared by the given number of vcores, NumOwners .

FineMemDecisionTreeFS(metrics) returns selected memory mapping information. Again,

this fine-grained approach tries to enhance the coarse-grained approach (the NAVAR pol-

icy). Therefore, most procedures are maintained from DecisionTreeFS(metrics). The

following pseudocode reflects the changed portion, which is right after the memory map-

ping switch statement. LocalPagesBitmap is supposed to be updated at every probe. What

the new code does is to check the changed ratio on the LocalPagesBitmap between the

oldLocalPagesBitmap and newLocalPagesBitmap. The ratio, LocalPageBitmapRatio, is

defined as follows:

LocalPagesBitmapRatio =
weight(newLocalPageBitmap ⊕ oldLocalPageBitmap)

weight(newLocalPageBitmap ∧ oldLocalPageBitmap)

where weight(bitmap) represents Hamming weight (bitmap count)9 of the bitmap, and ⊕

and ∧ refer to XOR and AND operations respectively. To differentiate the fine-grained in-

terleaved memory mapping from the modulo-n based coarse-grained interleaved memory

mapping, the following notations are used here:

• fineMI: The fine-grained interleaved memory mapping. For example, MCfineMI

9The number of set bits

169

refers to the consolidated memory mapping for VM0 and the fine-grained inter-

leaved memory mapping for VM1.

• fineMI Enforced: Re-map pages for fineMI, according to the (updated) LocalPag-

esBitmap. fineMIMC Enforced refers to refreshing the fine-grained interleaved

memory mapping for VM0, while the consolidated memory mapping is configured

for VM1.

If the ratio is above the threshold10, the policy forces the memory mapping configuration

to be fineMIMC (fineMIMC Enforced) or MCfineMI (MCfineMI Enforced), otherwise,

the memory mapping selected by the original procedure is preserved.

...

switch (MappingClassVM0 , MappingClassVM1)

case (Mergeable, Mergeable):

MemMapPolicy ←MC 2@N0

case (Expandable, Mergeable) :

case (Expandable, Normal) :

MemMapPolicy ← fineMIMC

case (Mergeable, Expandable) :

case (Normal , Expandable) :

MemMapPolicy ←MCfineMI

default:

MemMapPolicy ←MCMC

end switch

if MemMapPolicy = MCfineMI or MemMapPolicy = fineMIMC then

if LocalPagesBitmapRatio > threshold LocalPagesBitmapRatio then
10Currently set to 20%

170

if MemMapPolicy = MCfineMI then

MemMapPolicy ← MCfineMI Enforced

else

MemMapPolicy ← fineMIMC Enforced

end if

end if

oldLocalPagesBitmap ← newLocalPagesBitmap

else

oldLocalPagesBitmap ← 0

end if

return MemMapPolicy

6.5 Experimental Setup and Results

For the full-subscription case, the memory mapping is the only configuration to be consid-

ered. The fact that there is only one configuration dimension does not necessarily make

the full-subscription case easier than the other cases with their multiple dimensions. Since

full-subscription involves to have multiple VMs, the number of mapping cases is larger

than that of the memory mapping cases for under-subscription. The choice at the coarse-

grained level is whether memory channels are shared for performance and/or energy. The

default memory mapping is configured to separately consolidate each VM’s pages on each

host node; in other words, MCMC is the default configuration. The following are the ex-

perimental results for the NAVAR policy and the fine-grained memory mapping approach.

171

Workload (VM0, VM1) EPNM class Mapping prediction
(EQUAKE, FREQMINE) (Expandable, Mergeable) MIMC

(EQUAKE, APSI) (Expandable, Expandable) MCMC
(LU, ART) (Expandable, Normal) MIMC

(LU, MGRID) (Expandable, Expandable) MCMC
(EP, FREQMINE) (Mergeable, Mergeable) MC2

(CG, STREAMCLUSTER) (Normal, Protected) MCMC

Table 6.5: Predicted memory mapping for the test scenarios, according to the memory
mapping table and the classification results.

6.5.1 NAVAR Result

Six pairs of workloads, LU-ART, LU-MGRID, EQUAKE-FREQMINE, EQUAKE-APSI,

EP-FREQMINE, and CG-STREAMCLUSTER, are selected for the validation set. Due

to the interactions in shared memory channels and controllers, each pair is treated as a

distinct case. These cases were not included in the preliminary measurements from which

the classification was developed. The experimental tests have two purposes. First, the

correctness of the offline-based model (the decision tree) needs to be validated. Second,

the adaptive system performance for the fulfillment for the objective, the configurability

through the mechanism, and the overhead controllability also have to be checked.

Validation of offline modeling Table 6.5 shows six pairs of test sets. It also includes the

expected EPNM classification results for the given pairs and the relevant memory map-

ping predictions, according to the predefined memory mapping table shown Table 6.4.

First, comparing all memory mapping cases with the static mapping will validate the cor-

rectness of the predictions. Notice that the mapping strategy is established based on treat-

ing energy and performance objectives in the same way. Except for the MC2 memory

mapping, the memory mapping configuration itself does not result in noticeable instan-

taneous power changes. Therefore, energy and performance are aligned with each other.

172

60%	

90%	

120%	

150%	

180%	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

MC^2@N0	
 MC^2@N1	
 MCMC	
 MIMC	
 MCMI	
 MIMI	
 NAVAR	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	

Performance	

W
or

se

B
et

te
r

80%	

90%	

100%	

110%	

120%	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

MC^2@N0	
 MC^2@N1	
 MCMC	
 MIMC	
 MCMI	
 MIMI	
 NAVAR	

N
or
m
al
iz
ed

	
 p
ow

er
	

Power	

W
or

se

B
et

te
r

80%	

100%	

120%	

140%	

160%	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

MC^2@N0	
 MC^2@N1	
 MCMC	
 MIMC	
 MCMI	
 MIMI	
 NAVAR	

N
or
m
al
iz
ed

	
 e
ne

rg
y	

Energy	

W
or

se

B
et

te
r

Figure 6.6: Results of LU and ART for the three different objectives. The NAVAR results
are compared with all possible static configurations (6 cases). Each objective value is
normalized to the minimum value of static configurations for VM0, VM1 and the average
(AVG) respectively. This format is all the same for the following result figures.

173

0%	

50%	

100%	

150%	

200%	

250%	

300%	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

MC^2@N0	
 MC^2@N1	
 MCMC	
 MIMC	
 MCMI	
 MIMI	
 NAVAR	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	

Performance	

80%	

90%	

100%	

110%	

120%	

130%	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

MC^2@N0	
 MC^2@N1	
 MCMC	
 MIMC	
 MCMI	
 MIMI	
 NAVAR	

N
or
m
al
iz
ed

	
 p
ow

er
	

Power	

0%	

50%	

100%	

150%	

200%	

250%	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

MC^2@N0	
 MC^2@N1	
 MCMC	
 MIMC	
 MCMI	
 MIMI	
 NAVAR	

N
or
m
al
iz
ed

	
 e
ne

rg
y	

Energy	

Figure 6.7: Results of LU and MGRID

174

80%	

90%	

100%	

110%	

120%	

130%	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

MC^2@N0	
 MC^2@N1	
 MCMC	
 MIMC	
 MCMI	
 MIMI	
 NAVAR	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	

Performance	

80%	

90%	

100%	

110%	

120%	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

MC^2@N0	
 MC^2@N1	
 MCMC	
 MIMC	
 MCMI	
 MIMI	
 NAVAR	

N
or
m
al
iz
ed

	
 p
ow

er
	

Power	

80%	

90%	

100%	

110%	

120%	

130%	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

MC^2@N0	
 MC^2@N1	
 MCMC	
 MIMC	
 MCMI	
 MIMI	
 NAVAR	

N
or
m
al
iz
ed

	
 e
ne

rg
y	

Energy	

Figure 6.8: Results of EQUAKE and FREQMINE

175

80%	

90%	

100%	

110%	

120%	

130%	

140%	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

MC^2@N0	
 MC^2@N1	
 MCMC	
 MIMC	
 MCMI	
 MIMI	
 NAVAR	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	

Performance	

80%	

90%	

100%	

110%	

120%	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

MC^2@N0	
 MC^2@N1	
 MCMC	
 MIMC	
 MCMI	
 MIMI	
 NAVAR	

N
or
m
al
iz
ed

	
 p
ow

er
	

Power	

80%	

90%	

100%	

110%	

120%	

130%	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

MC^2@N0	
 MC^2@N1	
 MCMC	
 MIMC	
 MCMI	
 MIMI	
 NAVAR	

N
or
m
al
iz
ed

	
 e
ne

rg
y	

Energy	

Figure 6.9: Results of EQUAKE and APSI

176

90%	

95%	

100%	

105%	

110%	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

MC^2@N0	
 MC^2@N1	
 MCMC	
 MIMC	
 MCMI	
 MIMI	
 NAVAR	

N
or
m
al
iz
ed

	
 p
er
fo
rm

an
ce
	

Performance	

90%	

95%	

100%	

105%	

110%	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

MC^2@N0	
 MC^2@N1	
 MCMC	
 MIMC	
 MCMI	
 MIMI	
 NAVAR	

N
or
m
al
iz
ed

	
 p
ow

er
	

Power	

80%	

90%	

100%	

110%	

120%	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

MC^2@N0	
 MC^2@N1	
 MCMC	
 MIMC	
 MCMI	
 MIMI	
 NAVAR	

N
or
m
al
iz
ed

	
 e
ne

rg
y	

Energy	

Figure 6.10: Results of EP and FREQMINE

177

70%	

85%	

100%	

115%	

130%	

145%	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

MC^2@N0	
 MC^2@N1	
 MCMC	
 MIMC	
 MCMI	
 MIMI	
 NAVAR	

N
or
m
al
iz
ed

	
 p
er
fo
rm

an
ce
	

Performance	

80%	

90%	

100%	

110%	

120%	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

MC^2@N0	
 MC^2@N1	
 MCMC	
 MIMC	
 MCMI	
 MIMI	
 NAVAR	

N
or
m
al
iz
ed

	
 p
ow

er
	

Power	

40%	

60%	

80%	

100%	

120%	

140%	

160%	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

VM
0	

VM
1	

AV
G	

MC^2@N0	
 MC^2@N1	
 MCMC	
 MIMC	
 MCMI	
 MIMI	
 NAVAR	

N
or
m
al
iz
ed

	
 e
ne

rg
y	

Energy	

Figure 6.11: Results of CG and STREAMCLUSTER

178

Additionally, power is always better for the MC2 memory mapping. As shown in Fig-

ure 6.6, 6.7, 6.8, 6.9, 6.10 and 6.11, the best static results for both performance and energy

are indeed aligned with the predictions shown in Table 6.5. MIMI looks to be a viable

option for most cases except for the CG-STREAMCLUSTER pair. However, MIMI is

not an outstanding option over the other selectable memory mapping options in terms of

performance. The decision tree, then, is still valid.

NAVAR performance results The second part of the evaluation is whether the NAVAR

system works properly or not. For the six cases, NAVAR successfully selects the best

mapping. For the full-subscription case, MCMC is set by the default. NAVAR increases

performance about 10% and saves about 5% energy, at most, over the default mapping. For

the arbitrary static mapping cases, NAVAR achieves up to 80% execution time reductions

and 50% energy savings. For the power objective, the MC2 memory mapping should be

selected; thus, the question is on how much NAVAR increases average power over the

static result of the MC2 mapping. Most cases have less than 3% increased average power

over the static mapping. The CG-STREAMCLUSTER case has 4% overhead due to the

relatively short execution time. Each memory migration consumes more power during the

migration and so needs to be amortized. Typically, about 5% additional power is spent on

the memory migration than on the normal operation with the current memory migration

implementation. This happens only one time for the power objective, since MCMC is taken

by the default. The increased portion of power can be compensated for if the execution time

takes a relatively longer.

179

Workload NAVAR Fine-grained Approach
EQUAKE-FREQMINE 100% 98.72%

LU-ART 100% 102.78%

Table 6.6: Comparison between the NAVAR and the fine-grained approaches. The ex-
ecution time of the fine-grained approach (the smaller, the better) is normalized to the
execution time result of the NAVAR system.

6.5.2 Fine-grained Policy

The NAVAR system as well as the offline-based decision tree are evaluated through the

validation test set. Now, the fine-grained approach is discussed. The key point to check

is improvement compared to the NAVAR policy. The fine-grained policy is selectively

applied to the cases that need the MIMC or MCMI memory mapping, the EQUAKE-

FREQMINE and LU-ART workload pairs. The modulo-n-based and the sharing degree-

based interleaved memory mapping approaches do not show any noticeable difference as

can be seen in Table 6.6. Considering the differences and the commonalities between the

two approaches, it is likely that the memory-access bandwidth factor is more important

than the memory-access distance factor. The memory-access distance impact is not at the

level that makes for observable overall performance differences.

6.6 Conclusion

In this chapter, the full-subscription case was investigated. The most case assumes mul-

tiple VMs are running and raises the memory mapping problem to be important. In the

full-subscription situation, the need to change vcore mapping and scheduling configura-

tion disappears. Almost all hardware threads are taken by vcores, which prevents the

interleaved vcores. Therefore, the memory mapping becomes the key factor to change

the system performance, energy, and power. The test machine has two NUMA domains,

180

and two VMs are assumed to be running. Then six different memory mapping cases are

available. Without the adaptive mapping solution, the conventional resource mapping is

resource partitioning in which each of the VMs is allocated to an entire NUMA domain.

With this resource mapping approach, the static configuration does not guarantee optimiza-

tion of memory-access traffic paths. The NAVAR system does so by adaptively selecting

one of the possible memory mappings. The selection is at least almost equal to the best

static mapping. NAVAR improves performance and energy over the conventional resource

mapping (MCMC) by 10% and 5% respectively according to the test results. The next

chapter addresses the over-subscription cases to extend the coverage of NAVAR.

181

Chapter 7

Over-subscription

Until now, a one-to-one mapping between vcores and hardware threads has been assumed,

and therefore the vcore-scheduling concern has not arisen. In this chapter the scope of

the problem is broadened to cover the over-subscription case. In contrast to the previ-

ous cases, this case not only has many-to-one mappings between vcores and hardware

threads, but also involves many vcores in the system, and this requires vcore scheduling.

A coarse-grained vcore mapping choice is not available. The subsequent sections include

discussions of the opportunities and tradeoffs in the over-subscription cases, the gang-/co-

scheduling implementation to support them, the NAVAR policy design, and the experiment

results.

7.1 Tradeoffs and Opportunities

We now discuss tradeoffs in two configuration dimensions, memory mapping and vcore-

scheduling. We begin with preliminary studies to select benchmarks for investigating the

over-subscription case.

182

80%	

90%	

100%	

110%	

120%	

130%	

140%	

SW
IM
	

FM
A3
D	
 BT

	

CG
	

LU
	

EQ
UA
KE
	

AP
SI	

SW
AP
TIO
NS
	

FR
EQ
MI
NE
	

RA
YT
RA
CE
	
 IS	

AR
T	
 SP

	

MG
RID
	

BL
AC
KS
CH
OL
ES
	

BO
DY
TR
AC
K	

CA
NN
EA
L	

FE
RR
ET
	

ST
RE
AM

CL
US
TE
R	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	
 8vcores	
 14vcores	

Figure 7.1: Preliminary performance study of the benchmarks. The purpose is to find
the applicability of using 14 threads, by comparing execution times between 14 threads
(vcores) and 8 threads (vcores). Each case has only one active VM in the test system
(R410).

7.1.1 Selection of Workloads

Figure 7.6 shows the execution time differences between 8 vcores and 14 vcores for each

benchmark. Each workload thread is mapped to a single vcore, which is mapped to a dis-

tinct hardware thread. Given 16 hardware threads, each VM can fully utilize the hardware

threads. They also use the interleaved memory mapping and the interleaved vcore map-

ping for 8 vcores. Because cache contention may increase as we increase the number of

threads in one socket, the cases with more than a 15-pecent-increased execution time are

not suitable for the 14 threads configuration. Further, when multiple workloads are running

with vcore-scheduling, CG, IS, and ART become unstable in execution, and some other

short benchmarks have fluctuations in their execution times. They are excluded. Bench-

marks with a short runtime present no issues for execution, but high fluctuations are not

good for use as experimental test cases. The fluctuation is assumed to happen when the

183

60%	

70%	

80%	

90%	

100%	

110%	

APSI-­‐EQUAKE	
 LU-­‐EQUAKE	
 LU-­‐SWIM	
 BT-­‐SWIM	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	

MC@N1,	
 MC@N1	
 MC@N0,	
 MC@N1	
 MI@N0/1,	
 MC@N1	

MC@N0,	
 MI@N0/1	
 MI@N0/1,	
 MI@N0/1	

Figure 7.2: Tradeoffs in performance for the 5 possible memory mapping cases, with
vcores fixed to the interleaved mapping. Each VM has 14 vcores and the hardware threads
mapped the vcore mapping of the two VMs are the same; thus, in each hardware thread,
two vcores from different VMs run. The interleaved memory mapping for both VMs gives
the best performance across the test cases.

co-runners have longer run-times and include multiple phases of operation. The workload

with a short run-time, then, interacts with the different phases of the co-runner when it iter-

atively run. Three types of benchmark are excluded from the over-subscription test cases,

those that have large performance degradation cases with large number of threads unsta-

ble execution when sharing hardware threads with co-runners, and fluctuations in run-time

with co-runners.

It is important to understand that the issue these excluded benchmark have is possibly

testbed- and platform-specific. The exclusion here aims to minimze noise in experiment

results. Five benchmarks, APSI, EQUAKE, SWIM, LU, and BT, are focused in the fol-

lowing experiment.

184

7.1.2 Tradeoffs of Memory Mapping

Memory mapping effects and tradeoffs are now discussed. Figure 7.2 shows performance

variations across different memory mappings. Note that this setup of 14 vcores for each

VM with 16 available hardware threads is maintained in this chapter. As seen in the re-

sults, there are memory mapping-driven performance impacts and the impacts vary by

workloads. Nonetheless, the interleaved mapping for both VMs consistently outperforms

the other four possible memory mappings. The memory bandwidth effect has been al-

ready discussed for the under-subscription and the full-subscription cases. With the fixed

interleaved vcore mapping, the consolidated memory mapping does not provide bene-

fit over the interleaved memory mapping. The comparison between the CIMC and the

CIMI mappings shown in Chapter 5 offers insight for the analysis of the test results. Once

vcore mapping is fixed to the interleaved mapping, the consolidated memory mapping

limits memory-access bandwidth and increases memory-access distances, which are both

negative impacts. Furthermore, memory bandwidth demands tend to be increased in the

over-subscription case, where workloads in multiple VMs produce more memory traffic.

With that, the interleaved memory mapping for all VMs is the best option agnostic to the

workload. Therefore, there are few tradeoffs in memory mapping.

Since the consolidated memory mapping on one NUMA domain saves power with the

proposed hardware mechanism, the interleaved memory mapping needs to be compared

for energy consumption. More details can be found in Section 7.4. The conclusion about

memory mapping concerns for both performance and energy is the static configuration

with the interleaved memory mapping for all VMs is preferrable.

185

60%	

70%	

80%	

90%	

100%	

110%	

120%	

VM0	
 VM1	
 VM2	
 VM0	
 VM1	
 VM2	
 VM0	
 VM1	
 VM2	
 VM0	
 VM1	
 VM2	

Default	
 Sgang/VM0	
 Sgang/VM1	
 Sgang/VM2	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	

VM0-­‐VM1-­‐VM2:	
 BT-­‐SWIM-­‐LU	

Figure 7.3: Preliminary results for gang-scheduling effects. The initial implementation
described in Chapter 3, called strict gang-scheduling (Sgang) here, is used. Three VMs
run with 14 vcores for each VM (42 vcores total). The vcore mapping is same for all VMs.
The 14 vcores are evenly split across the two NUMA domains of the test machine (R410).
Each application’s execution time is normalized to the default case (the case without any
gang-scheduling). The results shown in Figure 7.4 and 7.5 are also produced from the
same setup. LU (VM2) gets 25% reduced execution time when gang-scheduled.

7.1.3 Tradeoffs of Gang-scheduling

Figure 7.3, 7.4, and 7.5 show gang-scheduling tradeoffs. The initial gang-scheduling im-

plementation, the strict gang-scheduler (Sgang) described in Chapter 3, is used. Each

figure compares four scheduling cases, including the default case, which does not include

gang-scheduling for any VM. The other three cases apply the gang-scheduling to only one

VM exclusively. For clarification, one VM is gang-scheduled to check the gang-scheduling

effects, while the others are not. As shown, the gang-scheduling effects depends on the

workloads. EQUAKE and LU show consistent performance benefits from gang-scheduling

across different cases. Therefore it is important to adaptively select the right VM to gang-

schedule during runtime to optimize performance and energy of the system. Different from

memory mapping, the scheduling choice has significant tradeoffs. Before we talk about the

policy design, the scheduling mechanism needs to be improved. The next section explains

186

60%	

70%	

80%	

90%	

100%	

110%	

120%	

VM0	
 VM1	
 VM2	
 VM0	
 VM1	
 VM2	
 VM0	
 VM1	
 VM2	
 VM0	
 VM1	
 VM2	

Default	
 Sgang/VM0	
 Sgang/VM1	
 Sgang/VM2	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	

VM0-­‐VM1-­‐VM2:	
 LU-­‐APSI-­‐EQUAKE	

Figure 7.4: Gang-scheduling tradeoffs. LU and EQUAKE have significant performance
benefit with gang-scheduling.

60%	

70%	

80%	

90%	

100%	

110%	

120%	

VM0	
 VM1	
 VM2	
 VM0	
 VM1	
 VM2	
 VM0	
 VM1	
 VM2	
 VM0	
 VM1	
 VM2	

Default	
 Sgang/VM0	
 Sgang/VM1	
 Sgang/VM2	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	

VM0-­‐VM1-­‐VM2:	
 EQUAKE-­‐SWIM-­‐APSI	

Figure 7.5: Tradeoffs of gang-scheduling. EQUAKE gets about a 30% execution time
reduction with gang-scheduling.

the vcore-scheduling mechanism and the revisions.

187

Figure 7.6: Illustration of the NUMA-aware co-scheduling by comparing with default
scheduling with the gang-scheduling. The default scheduling model does not have VM-
level context information. The gang-scheduling model strictly groups all of vcores to run
in the same time slices. Gang-scheduling is known to cause some side effects like CPU
fragmentation and priority inversion, while improving concurrent workloads by reducing
synchronization waiting times and/or cache contention. The co-scheduling mechanism
tries to address the tradeoffs of gang-scheduling.

188

80%	

90%	

100%	

110%	

120%	

130%	

BT-­‐SWIM-­‐LU	
 LU-­‐APSI-­‐EQUAKE	
 EQUAKE-­‐SWIM-­‐APSI	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	
 FRIENDLY	
 VM0	

FRIENDLY	
 VM1	

FRIENDLY	
 VM2	

FRIENDLY	
 AVG	

GREEDY	
 VM0	

GREEDY	
 VM1	

GREEDY	
 VM2	

GREEDY	
 AVG	

Figure 7.7: Comparison of GREEDY and FRIENDLY on the performance, without gang-
scheduling. Each case shows three workloads on the VMs: VM0-VM1-VM2 in a se-
quence. In the case of BT-SWIM-LU, BT runs on top of VM0.

7.2 NUMA-Aware Co-scheduling

This section describes the vcore-scheduling implementation. Before I design the policy, the

vcore-scheduling mechanism was iteratively revised to improve its performance impact.

Finally, I developed the NUMA-aware co-scheduling mechanism. The memory mapping

and vcore mapping mechanisms also have some effect on performance, but they are quite

different from the scheduling mechanism as described in Section 3.3.3. Once vcore and

memory mappings are (re-)configured, the performance impact is no longer driven by these

mechanisms. However, the vcore-scheduling mechanism continues to affect performance

because it continues to make decisions. The scheduling mechanism has been iteratively

revised in two ways from the initial version described in Section 3.3.3. One way has the

goal of reducing side effects such as CPU fragmentation and priority inversion. The other

is more virtualization platform-specific.

189

7.2.1 Unconditional Yield Effect

The Palacios VMM has two different yield functions: the conditional yield function (Cond-

Yield) and the unconditional yield function (UnCondYield). CondYield is called on every

exit, and the function checks current time slice expiration. The gang-scheduler implemen-

tation shown in Section 3.3.3 is entirely in CondYield. On the contrary, UnCondYield

yields unconditionally, and the function is called mostly by the halt exit handler (HLTEx-

tHandler). In the HLTExtHandler, there is a loop that keeps on yielding via CondYield

until any type of interrupt is raised. The purpose of this loop is to quickly deliver inter-

rupts to the VM’s guest when they arise. In the over-subscription situation, when more

than one vcore shares one hardware thread, it is correct to keep on calling CondYield to

allow another vcore to run, but performming my suffer.

UnCondYield calls one of the host yield functions. The host Linux kernel provides

schedule() and schedul timeout(timeout). CondYield calls schedule()

by default which we refer to as the GREEDY policy. The other host yield function,

schedul timeout(timeout), puts the calling thread on a wait queue for the given

time interval (timeout). When UnCondYield is configured to use this host yield func-

tion, it is called the FRIENDLY policy.

Figure 7.7 shows the performance impacts of the two UnCondYield implementations in

the over-subscription case. Without gang-scheduling, FRIENDLY outperforms GREEDY,

but the FRIENDLY policy makes the gang-scheduler1 unstable. The performance of VM

with the gang-scheduling runs slower even than the default (without gang-scheduling).

Therefore, the right combination of GREEDY/FRIENDLY for the gang-scheduling needs

to be examined. After searching through various combinations, one configuration was

found. The configuration is to pick GREEDY unconditionally for the gang-scheduled VM

1At this moment, the gang-scheduler version is the initial one (Sgang).

190

94%	

96%	

98%	

100%	

102%	

BT-­‐SWIM-­‐LU	
 LU-­‐APSI-­‐EQUAKE	
 EQUAKE-­‐SWIM-­‐APSI	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	
 Sgang/VM0	
 Gang/VM0	
 Sgang/VM1	
 Gang/VM1	
 Sgang/VM2	
 Gang/VM2	

Figure 7.8: Two versions of gang-scheduling implementations are compared for perfor-
mance. Sgang refers the version with waiting (the barrier) while Gang does not have
waiting (no barrier). To get the results, each VM’s execution time with gang-scheduling
is first normalized over the VM’s execution time without gang-scheduling (default). Then
the average of the three normalized execution times is again normalized to the average of
Sgang. For example, for Gang/VM0 of BT-SWIM-LU, the execution times for the three
workloads are measured while gang-scheduling only the VM of BT, then they are normal-
ized to the execution time without any gang-scheduling. The normalized execution time is
averaged, and finally the average of Gang/VM0 is normalized to the average of Sang/VM0
to highlight the differences.

and selectively to choose GREEDY or FRIENDLY for the VMs without gang-scheduling.

During the time slice when the gang-scheduled VM is run, the other VMs use GREEDY,

and for other time slices, FRIENDLY is used by these VMs. Although the desired results

are produced by this hybrid configuration, the underlying reason is unclear.

7.2.2 Strict Gang-scheduling vs Gang-scheduling Without Waiting

So far one iteration has been taken to address the UnCondYield function. The next two

iterations were made to minimize side effects such as CPU fragmentation. We begin with

the question of whether vcores wait for all arrive a barrier before the time slice begins. As

described in Section 3.3.3, the initial version of the gang-scheduler (Sgang) keeps the gang-

191

scheduled vcores waiting until all the vcores are ready to run. Given the initial version

(Sgang), here is the pseudocode for the version without waiting. The difference from

the initial version is that the followers in the leader-driven model execute as soon as the

SchedState is changed to the GangRequested state. Previously, the GangPending state

made vcores wait until they all got to the barrier.

CondYield(...)

...

switch (SchedState)

case GangLeader :

if VMID is the VM gang-schedule selected then

if all vcores are in Running of LocalState then

if time slice expires then

call schedule()

update SchedState of all the rest HW threads to be GangRequested

end if

else

update SchedState of all the rest HW threads to be GangRequested

end if

else

if time slice expires then

call schedule()

end if

end if

case GangRequested :

if VMID is the VM gang-schedule selected then

192

if time slice expires then

set SchedState to be WaitForGang

set LocalState to Wait

call schedule()

end if

else

call schedule()

end if

case WaitForGang:

if VMID is the VM gang-schedule selected then

call schedule()

else

if time slice expires then

call schedule()

end if

end if

end switch

Figure 7.8 shows the comparison results over the three different cases. The difference in

the average execution time is less than 5 %. Even though the execution time difference

for each VM is not depicted, the difference is similar to the average execution time except

for one case. In the LU-APSI-EQUAKE case, LU with strict gang-scheduling (Sgang) for

APSI has about 10 % performance degradation compared to gang-scheduling for APSI (the

version without waiting). Although waiting helps the gang-scheduled vcores be more syn-

chronized in their time slices, performance degradation is also highly expected. Overall,

given the mixture of benefits and costs, small differences, and occasionally better per-

formance for gang-scheduling without waiting are observed. Therefore, I revised gang-

193

94%	

97%	

100%	

103%	

106%	

BT-­‐SWIM-­‐LU	
 LU-­‐APSI-­‐EQUAKE	
 EQUAKE-­‐SWIM-­‐APSI	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	

Gang/VM0	
 Co/VM0	
 Gang/VM1	
 Co/VM1	
 Gang/VM2	
 Co/VM2	

96%	

98%	

100%	

102%	

APSI-­‐EQUAKE	
 LU-­‐EQUAKE	
 LU-­‐SWIM	
 BT-­‐SWIM	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	
 Gang/VM0	
 Co/VM0	
 Gang/VM1	
 Co/VM1	

Figure 7.9: Comparison of performance between gang-scheduling (Gang) and NUMA-
aware co-scheduling (Co). The way to produce the normalized execution time is same as
Figure 7.8. Each case takes an average of normalized execution time for each workload
over the default without any VMM-level scheduling, and then the average is normalized
again to the average of Gang.

scheduling to avoid waiting (no barrier). revised without having the waiting time.

7.2.3 Gang-scheduling vs. Co-scheduling

The gang-scheduling model still has another hard restriction that defines a gang as all

of the vcores of the VM, but combining all vcores across different NUMA domains is a

different matter from combining vcores in one symmetric multiprocessor. The idea for

co-scheduling is to split the gang based on the NUMA domain. Two points motivate us

194

to do this: the co-scheduling benefit and cache effects. Along with reducing the waiting

time for synchronizations in a workload, gang-scheduling forces all the vcores of the gang

to execute, which can cause high priority task to be delayed. Co-scheduling addresses this

heuristically by partitioning the gang into multiple groups. Given the NUMA architecture,

vcores in each NUMA domain share at least the last-level cache. Scheduling the vcores of

one VM at the same time reduces cache contention by disallowing vcores from other VMs

to run.

The implementation of co-scheduling requires only grouping vcores for the target VM

and allowing multiple leader vcores.

Figure 7.9 illustrates performance differences between the gang-scheduler (Gang, the

one without waiting) and the NUMA-aware co-scheduler. The figure shows the normal-

ized average execution time for the two and three VM cases of over-subscription. Overall,

the results show no huge variations, except for the LU-APSI-EQUAKE case with APSI

co-scheduled. LU has about a 10 % execution time increase with co-scheduling compared

to the gang-scheduling, and the increase constitutes about a 5 % increase for the aver-

age execution time for the three VMs. However, the anticipated result comes from the

case when LU is co-scheduled rather than the case where APSI is co-scheduled. The LU

co-scheduled result on the same as the gang-scheduling result. Notice that our selected

benchmarks are not I/O-intensive, and I/O-intensive benchmarks can have more side ef-

fects of gang-scheduling. The NUMA-aware co-scheduler is chosen to provide a more

relaxed way of vcore-scheduling.

7.3 NAVAR Policy

The mechanism revision has resulted in the NUMA-ware co-scheduler. Along with that,

the UnCondYield operation was accordingly adjusted to integrate with the vcore-scheduler.

195

LU-EQUAKE Metric Sampl1 Sample2 Sample3

Default

L1 miss rate ≈0% ≈0% ≈0%
L2 miss rate 12% 12% 12%
L3 miss rate 47% 47% 47%

CPI 1.38 1.38 1.38
CPM 643 629 628

LU is co-scheduled

L1 miss rate ≈0% ≈0% ≈0%
L2 miss rate 13% 13% 13%
L3 miss rate 48% 47% 47%

CPI 1.41 1.41 1.41
CPM 482 476 488

Table 7.1: Correlation check of various metrics for predicting the execution time. The
co-scheduled LU has about a 15% reduction in the average of normalized execution times
over the default that does not have any co-scheduling. The CPM has high correlation with
the execution time. It is important to know that the cache miss rate for each cache level
is calculated based on exclusive memory access count. For example, almost all memory
accesses hit L1 cache, but missed accesses are only counted as L2 cache access for L2 miss
rate: L2 miss rate = (L2 cache miss count) ÷ (L2 cache access count).

Furthermore, memory mapping for the over-subscription case is set to the interleaved map-

ping for performance. Energy results will be shown in the next section. The policy needs

to focus on the VM selection for co-scheduling. The brute-force approach looks feasible

for this case because the overhead to switch between different co-scheduling configura-

tions is quite small, and the mechanism does not suspend any vcore. If the brute-force

approach is used, the accuracy of the system feedback value in predicting performance is

very important.

7.3.1 Metric

Assuming that the brute-force approach is taken, the measured metric becomes crucial

part to the correct selection. For this reason, metrics other than CPI are measured and

compared with each other. Table 7.1 shows measured values of different metrics for two

196

60%	

70%	

80%	

90%	

100%	

110%	

120%	

LU
-­‐c
os
ch
ed

	

AP
SI
-­‐c
os
ch
ed

	

EQ
U
AK

E-­‐
co
sc
he

d	

LU
-­‐c
os
ch
ed

	

EQ
U
AK

E-­‐
co
sc
he

d	

AP
SI
-­‐c
os
ch
ed

	

EQ
U
AK

E-­‐
co
sc
he

d	

LU-­‐APSI-­‐EQUAKE	
 LU-­‐EQUAKE	
 APSI-­‐EQUAKE	

N
or
m
al
iz
ed

	
 v
al
ue

s	
 CPM	
 Execu>on	
 >me	

Figure 7.10: CPM has a correlation with the execution time. The execution time is the
average of normalized execution time. Each VM’s execution time is normalized to the
default that does not have any co-scheduling.

different configurations. They are the default without any co-scheduling and the config-

uration where LU is co-scheduled. When LU is co-scheduled, execution time is reduced

by 15% compared with the default case. The metric named CPM has a high correlation

to this. The CPM metric is the spent clock cycles divided by the count of memory opera-

tions, while a memory operation count is defined as the number of load instructions from

L2 cache to main memory2. The reason for counting from L2 cache access is because

the number of L1 accesses is consistently too high. Filtering L1 access allows us to cap-

ture the scheduling effects. CPM is further compared with the execution time as shown in

Figure 7.10.

2Counting memory access from L2 cache has more correlation than from L3 cache (LLC).

197

7.3.2 Algorithm

With the high correlated metric and very low reconfiguration time, the brute-force approach

is taken for the NAVAR policy for co-scheduling. It also affects the overhead control and

the configuration searching frequency. Now there are two differences in this case. One is

the closed-loop structure itself, and the other is the style of overhead control. Previously,

the control structure is either open-loop or semi-closed-loop. In loop-based policy, the

frequency of configuration searching is accordingly adjusted to compensate for the miss-

ing feedback. Now the feedback value is available, and the reconfiguration time for the

vcore-scheduling is small. As mentioned, the brute-force approach basically compares all

possible configuration cases. One concern may arise about the overhead of searching and

comparison. Even if reconfiguration time for different targets for co-scheduling is small,

the overall time for searching and comparing increases linearly with the number of VMs.

However, in practice, the increased number of VMs in an over-subscribed system increases

the execution time as well. Thus the ratio of comparison time over the total execution time

of VMs is maintained, as the number of VMs increases. Also, during the comparison,

VMs are still executing rather than being entirely suspended. The following is the pseu-

docode of NAVAR for the over-subscription cases. It is also important to realize that the

comparison interval and threshold values are not machine-specific. In principle, this policy

is immediately applicable to different test machines.

Prev Config ← Default Sched

interim scale ← 1

while 1 do

if objective is power then

set memory mapping for all VMs to consolidated in the same NUMA domain

198

else

set memory mapping for all VMs to interleaved

end if

configure Default scheduling

sleep 10 secs

Default CPM ← (measured-CPM)

for all VM with VMID do

exclusively set co-scheduling for one VM with (VMID)

sleep 10 secs

(CPM ,VMID)← (measured-CPM, VMID)

end for

search minimum CPM pair: (minCPM ,VMID)

if minCPM < 0.95·Default CPM then

do co-scheduling on VMID

Config ← VMID

else

configure Default scheduling

Config ← Default Sched

end if

if Config = Prev Config then

interim scale ← 2· interim scale

if interim scale > 100 then

interim scale ← 1

end if

else

199

interim scale ← 1

end if

Prev Config ← Config

sleep interim scale· 100 secs

end while

7.4 Experimental Results

The NAVAR policy is described as a brute-force approach with open-loop control. With

small overhead for the system-reconfiguration time, this policy incorporates a simple con-

trol loop. This section presents experimental results with this policy. Because the policy

does not include any offline-based modeling, test sets shown in the preliminary results are

reused. At first, performance, power, and, more importantly, the energy results of the static

memory mapping are discussed, and then a set of performance results for the dynamic

adaptive co-scheduling, along with interleaved memory mappings follow.

7.4.1 Interleaved Memory Mapping for Performance and Energy

Figure 7.11 compares performance, power, and energy across different memory mappings

along with the co-scheduling configurations. The interleaved memory mapping for all

VMs is expected to boost performance over the consolidated memory mapping to one se-

lected NUMA domain for all VMs. However, we need to check whether the interleaved

memory mapping for all VMs has also the best energy efficiency. Based on the test ma-

chine measurements, the estimated power saving with the proposed memory power-off

mechanism is about 5 %, as shown for normalized power between MC2 and MIMI shown

in Figure 7.11. The LU-EQUAKE case has the smallest performance difference between

200

60%	

70%	

80%	

90%	

100%	

110%	

120%	

all	
 MI@N0/1	
 all	
 MI@N0/1	
 all	
 MI@N0/1	
 all	
 MC@N1	
 all	
 MC@N1	
 NAVAR	

default	
 VM0-­‐cosched	
 VM1-­‐cosched	
 default	
 VM0-­‐cosched	
 perf-­‐obj	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	

Performance	

VM0	
 VM1	
 AVG	

Memory

Sched

85%	

90%	

95%	

100%	

105%	

all	
 MI@N0/1	
 all	
 MI@N0/1	
 all	
 MI@N0/1	
 all	
 MC@N1	
 all	
 MC@N1	
 NAVAR	

default	
 VM0-­‐cosched	
 VM1-­‐cosched	
 default	
 VM0-­‐cosched	
 power-­‐obj	

N
or
m
al
iz
ed

	
 p
ow

er
	

Power	

VM0	
 VM1	
 AVG	

Memory

Sched

60%	

70%	

80%	

90%	

100%	

110%	

120%	

all	
 MI@N0/1	
 all	
 MI@N0/1	
 all	
 MI@N0/1	
 all	
 MC@N1	
 all	
 MC@N1	
 NAVAR	

default	
 VM0-­‐cosched	
 VM1-­‐cosched	
 default	
 VM0-­‐cosched	
 energy-­‐obj	

N
or
m
al
iz
ed

	
 e
ne

rg
y	

Energy	

VM0	
 VM1	
 AVG	

Memory

Sched

Figure 7.11: Comparison of performance, power, and energy for LU and EQUAKE bench-
marks for the MIMI and MC2 mappings and the default and co-scheduling cases. Energy
consumption, between the MIMI and MC2 mapping for both the default and the the co-
scheduled LU, demonstrate the efficiency of the MIMI mapping.

201

50%	

60%	

70%	

80%	

90%	

100%	

110%	

Default	
 VM0-­‐cosched	
 VM1-­‐cosched	
 VM2-­‐cosched	
 NAVAR	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	

LU-­‐APSI-­‐EQUAKE	
 VM0	
 VM1	
 VM2	
 Average	

0.0E+00	

2.0E+12	

4.0E+12	

6.0E+12	

8.0E+12	

1.0E+13	

1.2E+13	

Default	
 VM0-­‐cosched	
 VM1-­‐cosched	
 VM2-­‐cosched	
 NAVAR	

Ex
ec
u&

on
	
 &
m
e	

(c
lo
ck
	
 c
ou

nt
)	

VM2	
 VM1	
 VM0	

Figure 7.12: The co-scheduling results for the LU, APSI and EQUAKE benchmarks. The
top figure shows the normalized execution time over the Default case for each benchmark.
The Default case does not have any co-scheduling. The average is calculated over the nor-
malized execution time of the benchmarks. The bottom figure illustrates the raw execution
time (clock cycles) in a stacked way. Figures 7.13, 7.14, 7.15, 7.16, 7.17 and 7.18 also
these two types of figures.

MIMI and MC2 in the preliminary results shown in Figure 7.2. Nonetheless, the MIMI

configuration has a performance benefit over the MC2 mapping to overcome the increased

power, which is shown in the energy comparison in Figure 7.11. Particularly, the MC2

mapping and the MIMI mapping with LU co-scheduled, and the NAVAR result demon-

202

60%	

70%	

80%	

90%	

100%	

110%	

120%	

Default	
 VM0-­‐cosched	
 VM1-­‐cosched	
 NAVAR	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	

LU-­‐EQUAKE	
 VM0	
 VM1	
 Average	

0.E+00	

1.E+12	

2.E+12	

3.E+12	

4.E+12	

5.E+12	

Default	
 VM0-­‐cosched	
 VM1-­‐cosched	
 NAVAR	

Ex
ec
u&

on
	
 &
m
e	

(c
lo
ck
	
 c
ou

nt
)	

VM1	
 VM0	

Figure 7.13: The co-scheduling results for LU and EQUAKE benchmarks.

strate that the MIMI mapping should be selected for the energy objective as well. Increas-

ing the number of VM to more than two VMs is also expected to increase the performance

of the MIMI mapping over the MC2 mapping, as memory bandwidth demands increase.

7.4.2 Co-scheduling Results

Energy efficiency is now demonstrated for the MIMI mapping as well. Once MIMI is

used for both energy and performance objectives, the ability of NAVAR to pick the correct

203

60%	

70%	

80%	

90%	

100%	

110%	

120%	

Default	
 VM0-­‐cosched	
 VM1-­‐cosched	
 VM2-­‐cosched	
 NAVAR	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	

BT-­‐SWIM-­‐LU	
 VM0	
 VM1	
 VM2	
 Average	

0.E+00	

2.E+12	

4.E+12	

6.E+12	

8.E+12	

1.E+13	

Default	
 VM0-­‐cosched	
 VM1-­‐cosched	
 VM2-­‐cosched	
 NAVAR	

Ex
ec
u&

on
	
 &
m
e	

(c
lo
ck
	
 c
ou

nt
)	

VM2	
 VM1	
 VM0	

Figure 7.14: The co-scheduling results for BT, SWIM and LU benchmarks.

VM for co-scheduling needs to be checked. Since MIMI is to be selected for the energy

objective, energy results are expected to be aligned with performance results. The results

for the power objective are only measured for the LU and EQUAKE case because it un-

conditionally configures memory mapping to the consolidated for all guest memory to one

NUMA domain. Therefore, the results of the seven cases are for the performance objective

only. The execution time for each workload is measured while all benchmarks are running.

Therefore all benchmarks are run multiple times. Figures 7.12, 7.13, 7.14, 7.15, 7.16, 7.17,

204

50%	

60%	

70%	

80%	

90%	

100%	

110%	

120%	

Default	
 VM0-­‐cosched	
 VM1-­‐cosched	
 VM2-­‐cosched	
 NAVAR	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	

EQUAKE-­‐SWIM-­‐APSI	
 VM0	
 VM1	
 VM2	
 Average	

0.0E+00	

1.5E+12	

3.0E+12	

4.5E+12	

6.0E+12	

7.5E+12	

Default	
 VM0-­‐cosched	
 VM1-­‐cosched	
 VM2-­‐cosched	
 NAVAR	

Ex
ec
u&

on
	
 &
m
e	

(c
lo
ck
	
 c
ou

nt
)	

VM2	
 VM1	
 VM0	

Figure 7.15: The co-scheduling results for the EQUAKE, SWIM and APSI benchmarks

and 7.18 show results for the seven cases. There are two types of graphs shown in each

figure. The first type (the top graph) for each figure shows the performance with the same

weight over the VMs. The presented average is calculated by the sum of the two or three

VMs’ “normalized” execution time over the default’ sum of normalized execution time.

Instead of the normalized execution time, the raw execution time is presented along with

the sum of the two or three raw execution times, as depicted in the second type (the bottom

graph of each figure). The top graph shows the performance without considering task size

205

80%	

85%	

90%	

95%	

100%	

105%	

110%	

Default	
 VM0-­‐cosched	
 VM1-­‐cosched	
 NAVAR	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	

APSI-­‐EQUAKE	
 VM0	
 VM1	
 Average	

0.0E+00	

5.0E+11	

1.0E+12	

1.5E+12	

2.0E+12	

2.5E+12	

3.0E+12	

Default	
 VM0-­‐cosched	
 VM1-­‐cosched	
 NAVAR	

Ex
ec
u&

on
	
 &
m
e	

(c
lo
ck
	
 c
ou

nt
)	

VM1	
 VM0	

Figure 7.16: The co-scheduling results for APSI and EQUAKE benchmarks.

while the bottom graph highlights the performance individually. These two styles consti-

tute the two possible performance objectives whether to maximize speedup (top graph) or

to minimize makespan (bottom graph).

The last three figures, in fact, do not show the co-scheduling performance benefits,

but rather it demonstrate that the NAVAR system does not introduce unnecessary over-

heads. Now the focus needs to be on the first four figures to check whether the NAVAR

system selects the right VM, when clear benefits are available. As described, NAVAR

206

80%	

90%	

100%	

110%	

120%	

Default	
 VM0-­‐cosched	
 VM1-­‐cosched	
 NAVAR	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	

LU-­‐SWIM	
 VM0	
 VM1	
 Average	

0.E+00	

1.E+12	

2.E+12	

3.E+12	

4.E+12	

5.E+12	

Default	
 VM0-­‐cosched	
 VM1-­‐cosched	
 NAVAR	

Ex
ec
u&

on
	
 &
m
e	

(c
lo
ck
	
 c
ou

nt
)	

VM1	
 VM0	

Figure 7.17: The co-scheduling results for LU and SWIM benchmarks.

selects one configuration based on the immediate feedback value observed. Figure 7.12

shows one of best results, for LU, in which NAVAR almost completely replicates the best

static result. This result is equally shown in the two types of figures. It is also true for

the next two cases, the LU-EQUAKE and BT-SWIM-LU cases, where NAVAR replicates

the best performance results of the static configurations. For the EQUAKE-SWIM-APSI

case, NAVAR produces a different result than the static configuration results. As shown in

Figure 7.15, the NAVAR result is similar to the combination of the two static results, the

207

80%	

85%	

90%	

95%	

100%	

105%	

Default	
 VM0-­‐cosched	
 VM1-­‐cosched	
 NAVAR	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	

BT-­‐SWIM	
 VM0	
 VM1	
 Average	

0.E+00	

5.E+11	

1.E+12	

2.E+12	

2.E+12	

3.E+12	

3.E+12	

Default	
 VM0-­‐cosched	
 VM1-­‐cosched	
 NAVAR	

Ex
ec
u&

on
	
 &
m
e	

(c
lo
ck
	
 c
ou

nt
)	

VM1	
 VM0	

Figure 7.18: The co-scheduling results for BT and SWIM benchmarks.

VM0-cosched and VM2-cosched results. This can be interpreted as follow: in the middle

of execution, NAVAR switches the co-scheduling target between the two VMs, VM0 and

VM2, as the execution phase changes. As shown in the two types of graph, in this case,

NAVAR has slightly increased performance compared to the best static result.

Further discussion In contrast to the approaches attempted for the under-subscription

and over-subscription cases, the NAVAR policy here is simple and incorporates no model.

One upside for this policy design is its universal applicability, but it is not yet explica-

208

ble why we have such performance benefits by the co-scheduling. Two possible factors

are considered. Decreased waiting time for synchronizations in VMs, and reduced cache

contention are expected from having co-scheduling. The synchronization factor looks to

have more of an impact than the cache locality factor. As shown in Table 7.1, the cache

miss rate is unchanged between default scheduling and the co-scheduled cases for LU. The

cache miss rate changes are still small for other benchmark as well. Nonetheless, this does

not mean that the cache miss rates are not changed at all. Rather, even if some changes

are observed, they are not enough to make the cache locality factor the main reason for

the performance benefit of the co-scheduling. Consider a situation in which some vcores

wait for a lock-holder vcore. Instructions are still retired, in fact, rapidly. The CPI metric

includes all instructions, even if they are in a wait loop. In contrast, the CPM metric can

consider only the memory instructions that reache to lower caches. As we showed, CPM

has more correlation than CPI to the execution time results. This result also supports the

synchronization factor as being dominant. I believe the reductions lock waiting are the

major factor in the performance benefit of co-scheduling.

7.5 Conclusion

This chapter has described the system design for the over-subscription case. In the over-

subscription case, both computational and memory resources are heavily utilized. There-

fore the interleaved memory mapping is consistently used to provide sufficient memory-

access bandwidth, and the vcore-scheduling configuration is used to dynamically optimize

system performance and energy consumption. With a cheap reconfiguration cost and a

highly correlated metric, CPM, the brute-force approach is used by the NAVAR policy and

we can avoid an elaborate modeling process.

209

Chapter 8

Generalization

The last four chapters discussed three cases of the overall resource mapping problem in a

virtualized NUMA machine, considering cases of vcore mapping, memory mapping, and

vcore-scheduling. Each case is defined based on the total number of vcores of the active

VMs compared to the available number of hardware threads, and NUMA domains in the

machine. The under-subscription case is when the number of vcores are less than the

total number of hardware threads divided by the number of NUMA domains, and in this

case, the consolidated vcore mapping is possible. The full-subscription case is when the

number of vcores is above the threshold for the under-subscription case but less than the

total number of available hardware threads. Cases other than these types are classified as

the over-subscription case. Given this classification, we ran experiments on representative

test using a NUMA domain test machine (the R410). For the under-subscription case, a

VM ran with eight vcores in the test machine with total 16 available hardware threads.

For the full-subscription case, two VMs were set up with six vcores each mapped to each

NUMA domain for each VM, and two workloads ran separately on each VM. The test

cases chosen for over-subscription case had two or thee VMs run with 14 vcores each,

210

which were evenly distributed over each NUMA domain with identical vcore mappings to

hardware threads. Here, depending on the total number of VMs, two or three vcores shared

the same hardware thread.

This chapter begins by discussing some missing cases in the perspective of generalizing

these results. Nest, we discuss variations and experiment results in applying the method-

ology to a different test machines (the Dell R415). In the last section, potential constraints

and feasibility of applying NAVAR to other machines with more than two NUMA domains

are discussed.

8.1 Combined Policy

Given the methodology and policies, given throughout the previous chapters the three dif-

ferent case, this section discusses in combination, considering an increasing number of of

vcores. Here we assume a two NUMA domain machine. If there are significant tradeoffs

in opportunity, the NAVAR policy or protected policy design is discussed. Otherwise, a

static configuration is sufficient.

8.1.1 Under-subscription

The under-subscription case is determined by the number of active vcores and whether they

are mappable to one NUMA domain in the balanced mapping; in other words, whether the

consolidated vcore mapping is an available option or not. The cases shown in Chapter 4

and 5 have one VM with eight vcores. Although the specific case has been considered

so far as under-subscription, the NAVAR policy is also applicable for a different number

of VMs as long as the same or similar kinds of tradeoffs exist. For example, when two

VMs run, and each VM has four vcores, there is also a choice between the consolidated

211

N
U

M
A

do
m

ai
n

0

VM0 VM1 VM2

N
U

M
A

do
m

ai
n

1

Unbalanced	
 HW	
 thread	
 par++on	

Figure 8.1: Illustration of the unbalanced hardware thread partition. When three VMs run
on a two NUMA domain machine, vcores of one VM has to be mapped to the hardware
threads in the unbalanced hardware thread partition. This vcore mapping is different from
the interleaved vcore mapping.

and interleaved vcore mapping, and also for the memory mapping. The two VMs can

be treated together reducing to the situation with one VM. On the other hand, when the

total number of vcores is small, two or three vcores, for example, tradeoffs then are barely

expected.

8.1.2 Full-subscription

For the full-subscription case, the specific example considered so far has two VMs where

each has almost the same number of vcores, which is as half the number of all available

hardware threads. We need to discuss situations with one VM or three, or more VMs.

If one VM is running with as many vcores as the number of hardware threads, both

the interleaved and consolidated memory mappings are the options, and a decision can be

made similarly to the way we determine the memory mapping for the under-subscription.

When three or more VMs are running, it becomes a bit different, because it depends

on the vcore partitioning. A static vcore mapping may be sufficient, but dynamic adaptive

212

vcore mapping could be necessary. Previously, when two VMs run, it is apparent that we

can partition the vcores into two partitions, one for each NUMA domain. Now one and

more VM and its vcores are added. First, all vcores should be partitioned into a number

of groups that is same as the number of NUMA domains, and then the vcore mapping can

be fixed. If vcores from one VM are located in a group of hardware threads (HW threads)

across different NUMA domain, the unbalanced HW thread partition shown in Figure 8.1,

the VM needs to be carefully chosen. Note that the vcore mapping to the hardware threads

in the interleaved partition is different from the interleaved vcore mapping, because vcores

in the interleaved partition are not guaranteed to be evenly split across NUMA domains.

One principle should be applied when selecting a VM: VM in the CS class should not

have vcores put in the unbalanced HW thread partition. For memory mapping, similar

to the approach made for NAVAR, an estimate of the memory-access bandwidth demands

determines whether to choose the interleaved memory mapping or not.

8.1.3 Over-subscription

For over-subscription, there are some corner cases as well. For example, when the number

of vcores across VMs is just above the number of hardware threads, it is still close to the

full-subscription situation. In this case, the vcore mapping is not the balanced mapping1,

which violates the vcore-scheduling problem prerequisite, as defined in Chapter 2.

With co-scheduling here, any further improvement is hardly expected.

The other corner case is, for instance, when two VMs run and only some of each VM’s

vcores share one hardware thread. Co-scheduling may be only available on the hardware

threads shared by multiple vcores. According to the NAVAR policy, the measured perfor-

mance will indicate the performance impact of co-scheduling. Therefore, regardless of the

1The balanced mapping does not allow multiple vcores from the same VM to be mapped to the same
hardware thread.

213

amount of hardware thread sharing, the NAVAR policy is expected to configure the vcore-

scheduling appropriately. Virtual cores that are alone on their HW threads are always ready

to run. For vcore mapping, the number of vcores of one VM may be small enough to allow

the consolidated vcore mapping, but the interleaved vcore mapping is still preferred. The

benefit of the consolidated vcore mapping is for power, which also leads the energy effi-

ciency in the under-subscription case. In the over-subscription cases, however, vcores of

the other VMs are mapped to all the NUMA domains, which does not allow us to turn off

power to them. With the interleaved vcore mappings, the interleaved memory mapping

also is desired. In practice, furthermore, it is rare that all the VMs’ memory demands are

very small enough to allow us to consolidate all guest memory into one NUMA domain.

When a workload executes threads that fully utilize almost all of the hardware threads in

the machine, the workload’s memory bandwidth demand is expected to be large enough to

need more than one memory channel.

8.1.4 Combined Policy

The following pseudocode describes the combined policy, which incorporates the discus-

sions so far. Some situations need adjustments to the NAVAR policy. In particular, when

the vcore count quite small in the under-subscription case, or when the vcore partitions

are not aligned with NUMA domains in the full-subscription case, the adjusted policy is

described. The combined policy is mostly based on the NAVAR policies that were evalu-

ated through experimental test cases, which we refer to as NAVAR(US), NAVAR(FS) and

NAVAR(OS) for the under-subscription, the full-subscription, and the over-subscription

respectively. The pseudocode is:

if number of overall vcores ≤ thresholdsub under · number of hardware threads
number of NUMA domain

then

214

use interleaved vcore and memory mapping for performance, and consolidated vcore

and memory mapping for energy and power. No scheduling is needed.

else if number of overall vcores ≤ number of hardware threads
number of NUMA domains

then

apply NAVAR(US)

else if number of overall vcores ≤ number of hardware threads then

if the partitions of vcores by VMs are not aligned with the HW thread partitions by

NUMA domains then

locating a VM in the none-CS class to the unbalanced HW thread partition2.

end if

apply NAVAR(FS) to the misaligned VMs

else

if number of VMs > 1 then

apply NAVAR(OS)

end if

end if

8.2 Different Machine

All test results so far come from one test machine (the R410). Questions can be raised,

such as whether the tradeoffs we have identified are machine-specific, how much NAVAR

needs to be modified for a different machine, and whether NAVAR works properly on a

different machine. These motivated me deploy the NAVAR on a different test machine (the

R415). We begin with a discussion for the difference between the two test machines, and

then changes to the adaptive system design, particularly for modeling, are discussed. The

section ends with the experimental results.

2This VM’s vcores are placed in the unbalanced HW thread parition, so the vcore mapping is fixed.

215

R415 R410
Number of NUMA nodes 2 2

Number of cores per NUMA node 4 cores 4 cores (w/ 2 way SMT per each)
CPU / Memory frequency 2.2GHz/1333MHz 2.4GHz/1066MHz

Last level cache size 6MB 12MB
Performance counter no mem-inst counting supports mem-inst counting

Table 8.1: Differences between the two test machines with different CPU architectures.
“mem-inst” refers to memory instruction.

60%	

70%	

80%	

90%	

100%	

110%	

BL
AC
KS
CH
OL
ES
	

EP
	

FA
CE
SIM

E	
 BT
	

CG
	

LU
	

SP
	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	
 MC	
 MI	

Figure 8.2: Tradeoffs of memory mapping in the under-subscription. Depending on work-
loads, the performance benefit of interleaved memory mapping has great variances.

8.2.1 Tradeoffs and Opportunity

Table 8.1 illustrates the differences and similarities between the two test machines. Both

have the same number of sockets. The R415 test machine has a smaller cache size than the

R410 machine, and the R415 machine does not incorporate the SMT feature. The two test

machines’ CPUs have a different clock frequency, as do the memory subsystems. As each

NUMA domain of the R415 test machine provides four hardware threads (four physical

cores), ≤4 vcores is the threshold for the consolidated vcore mapping with the balanced

mapping. This scale of parallelism is smaller than on the earlier experiments. Thus, the

216

1.E+02	

1.E+03	

1.E+04	

1.E+05	

1.E+06	

BLACKSCHOLES	
 EP	
 FACESIM	
 BT	
 CG	
 LU	
 SP	

M
ea
su
re
d	

va
lu
e	

R410	
 R415	
 Threshold	
 for	

R415:	
 65000	
 Threshold	
 for	

R410:	
 28000	

Figure 8.3: Comparison of the thresholds for the LWSS classification in the two different
machines. With all differences, workloads are classifiable and even the threshold value of
R410 is possibly reusable for R415; however, the threshold for R415 is conservatively set
a little higher than that.

number of vcores is set to six, and the vcore mapping is fixed to the interleaved mapping.

Memory mapping is dynamically adjustable in the coarse-grained level during runtime,

according to the preliminary results depicted in Figure 8.2. Most workloads used here

come from the NAS benchmark suite3. Given that, the tradeoff opportunities for the R415

test machine is in the choice between the interleaved and consolidated memory mappings

in the under-subscription case.

8.2.2 NAVAR Migration to New Machine

The adaptive system is composed of three major components: (1) detection framework, (2)

the policy, and the mechanism components. The mechanism component has three kinds of

adaptation mechanisms, all of which are machine independent. No modification is needed

to deploy them. The other two components, however, need some adjustment.

3At this moment, the selected benchmarks are the most stable on the R415 test machine.

217

Detection framework migration For the detection framework, the scanning interval

has to be changed due to incompatibility of the hardware monitor (performance moni-

tor), which defines the scanning interval. The scanning interval was previously determined

based on the statistical correlation with the performance results. Accordingly, the inter-

val can be redefined here with one of the supporting hardware events. Nonetheless, the

detection framework is immediately available for the scope of the given resource map-

ping problem, which addresses only the memory mapping concerns. Previously, for the

under-subscription case, the resource mapping was established in Table 5.6. Here, with

the fixed interleaved vcore mapping, the memory mapping is determined by the LWSS

classification result. The classifier for the LWSS classification is the r∪as metric, which is

less sensitive to the scanning interval as shown in Figure 5.11. Therefore, to workaround

the incompatibility, the scanning interval is set to be the same as the probe duration. Since

the probe duration is defined in wall clock time, the metric that is actually used can be

expressed in r∪ac (the average access page ratio per clock counts). The two metrics are

approximately equal: r∪ac ≈ r∪as.

Policy migration The NAVAR policy has three different versions depending on the re-

source demand situation. Particularly, for under-subscription and over-subscription, the

policy component embeds the decision tree, the offline-based model. The thresholds, need

to be adjusted for the new machine. However, translating a threshold value defined over

r∪as to a value over r∪ac also needs to be done. Figure 8.3 depicts the similarities and differ-

ences of the measured values for the two metrics in the two different machines. The setups

of the two machines are different. The differences lie in the architectural attributes (cache

size, CPU architecture, CPU and memory frequency), the resource mappings (the CCMC

mapping for R410 and the CIMC mapping for R415), and the metrics (r∪as for R410 and

r∪ac for R415) themselves. With all the differences, the workloads are classifiable to the

218

40%	

60%	

80%	

100%	

120%	

PWR	
 ENERGY	
 EXETIME	
 PWR	
 ENERGY	
 EXETIME	
 PWR	
 ENERGY	
 EXETIME	

MC	
 MI	
 NAVAR	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	

SP	

Figure 8.4: Results of the SP benchmark in the R415 test machine. The NAVAR results are
compared with the two static configuration results. The vcore mapping is the interleaved
mapping for 6 vcores with the under-subscription situation. The setup for following three
figures, Figure 8.5, 8.6 and 8.7, are the same.

LWSS and !LWSS classes on the R415 machine as well, and also these classification re-

sults have high correlation with the preliminary results shown in Figure 8.2. Although the

threshold of the R415 is conservatively set a bit higher than that of the R410, the threshold

value of the R410 is probably usable for the R15 machine as well. The software moni-

tor based detection scheme incorporates hardware assistance to define an interval for page

scanning for each vcore. With that, the part of the decision tree is migrated to the R415

test machine, and similarly the entire decision tree can be recreated for the R415.

8.2.3 Evaluation

So far, the two points, the tradeoffs and opportunities on the different test machine and

the policy migration, have been discussed. For the experimental evaluation, four work-

loads are selected to check the NAVAR performance. The test results are shown in Fig-

219

80%	

85%	

90%	

95%	

100%	

105%	

110%	

PWR	
 ENERGY	
 EXETIME	
 PWR	
 ENERGY	
 EXETIME	
 PWR	
 ENERGY	
 EXETIME	

MC	
 MI	
 NAVAR	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	

BT	

Figure 8.5: Results of BT benchmark. NAVAR selects a correct memory mapping config-
uration for the three objectives individually.

80%	

85%	

90%	

95%	

100%	

105%	

110%	

PWR	
 ENERGY	
 EXETIME	
 PWR	
 ENERGY	
 EXETIME	
 PWR	
 ENERGY	
 EXETIME	

MC	
 MI	
 NAVAR	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	

CG	

Figure 8.6: Results of CG benchmark. NAVAR selects a correct memory mapping config-
uration for the three objectives individually.

ures 8.4, 8.5, 8.6 and 8.7. The first three cases show benefit using the interleaved memory

mapping, whereas the last case, EP, is better using the consolidated memory mapping for

the energy objective. For the interleaved memory mappings, the performance and energy

220

90%	

95%	

100%	

105%	

110%	

PWR	
 ENERGY	
 EXETIME	
 PWR	
 ENERGY	
 EXETIME	
 PWR	
 ENERGY	
 EXETIME	

MC	
 MI	
 NAVAR	

N
or
m
al
iz
ed

	
 e
xe
cu
/o

n	

/m

e	

EP	

Figure 8.7: Results of EP benchmark. Due to short execution time of EP, the memory
migration overhead results in increased power and execution time, which also increases
energy.

Mapping
Relevant 2 Nodes >2 Nodes
Factor Status Expectation

Interleaved Cache
UP Less UP

vcore mapping contention
Interleaved Memory

OP More OP
memory mapping bandwidth

Table 8.2: Summary of analysis of scaling to more NUMA domains. UP refers to under-
provisioning, so does OP to over-provisioning.

results are almost same as the best static configuration’s results. Regard the EP benchmark,

the NAVAR results perform worse than the best static configuration (MC). With a relatively

short execution time, the memory migration cost has more impact on the execution time,

power, and energy. Moreover, NAVAR has more cost for the energy consumption objec-

tive than the other two objectives, because energy is the combined metric of power and

execution time, and both of them are increased separately.

221

8.3 Scalability of NUMA Domains

Up to now only machine with the two NUMA domains have been considered. We now

consider learger number of NUMA domains. The discussion concerns mostly vcore and

memory mapping-related factors rather than vcore-scheduling, because the co-scheduling

policy does not incorporate any model. In terms of the relationship between resource pro-

visioning and demands, the vcore and memory mapping have an important difference. The

vcore mapping is related to the cache contention factor, and cache space is mostly under-

provisioned (UP). Unless the WSS fits in the cache, more cache space is demanded. The

memory mapping controls memory bandwidth, which is occasionally over-provisioned

(OP). The interleaved vcore mapping is expected to decrease cache contention. How-

ever, as observed on the two NUMA domain machines, cache contention does not seem to

change for some workloads because of their memory-access patterns, those with the large

number of hot pages (UP). With the scaled system, this type of workload may have re-

duced cache contention with the interleaved vcore mapping (Less UP). For memory map-

ping, according to the observation of the two NUMA domain machines, some workloads

are sufficiently provisioned with the one memory channel. In this case, the interleaved

memory mapping does not produce any difference due to the application’s small band-

width demand (OP). When more memory channels are added, the situation results in more

over-provisioning (More OP). These two factors and their expected impact on the scaled

NUMA domains are summarized in Table 8.2. With less under-provisioning (Less UP),

vcores tend to be still interleaved, while memory mapping wants to be more consolidated

for energy efficiency, with more over-provisioning (More OP). Overall, the consolidated

memory mapping along with the interleaved vcore mapping increases memory-access dis-

tance. Therefore, to compensate, memory mapping conversely needs to be interleaved.

Given this, we expect that memory mapping will exhibit increasing tradeoffs as the NUMA

222

system scales.

8.4 Conclusion

In discussing the generalization of NAVAR, three aspects are considered in this chapter.

They are about the combination of the NAVAR policies, the applicability of NAVAR to a

different machine, and the scalability of NAVAR for the increased NUMA domains. Some

corner cases were addressed and the expected impacts from the scaled hardware attributes

were speculated about. They are likely for the extensions for this work. Nonetheless, the

applicability of NAVAR to a different machine at least demonstrates this adaptive system

design is not ad hoc.

223

Chapter 9

Related Works

I now describe related work.

9.1 Virtual Core or Thread Mapping and Scheduling

Broadly, there are issues with the problem of thread (vcore) mapping and scheduling, par-

ticularly in virtualized systems. Synchronization-aware scheduling in a over-subscribed

system (time-sharing perspectives) and contention-aware co-scheduling and co-location

(space-sharing perspectives) are currently and heavily investigated topics.

Co-scheduling has been advocated in response to the issue of the synchronization

mismatch delays between vcores in the same domain (VM) [92, 105, 50]. Some re-

cent papers [116, 17, 115, 107, 72] argue co-scheduling or subset of co-scheduling at-

tributes (balanced scheduling) in VMs should be selectively applied to mitigate CPU frag-

mentation, a priority inversion, and execution delays. Jiang et al. [64] theoretically for-

mulate co-scheduling problem and suggest an offline-base optimal scheduling algorithm

for dual cores. Kim et al. [72] discuss detectability on synchronization events in guests

224

through monitoring inter-process interrupts. The approach is comparable with the para-

virtualization based one that Weng et al. [115] proposed. In the sense that detection does

not require any instrumentations in a guest, it is more applicable; nonetheless, a question

remains of whether a detected synchronization event is always coupled with co-scheduling

benefits on entire system performance. Lee et al. [80] address time scheduling policies for

soft real-time applications in VMs. To minimize latency, which is an important issue for

these workloads, cache-affinity and load-balance to prevent cache thrashing are incorpo-

rated. Xu et al. [117] suggest a vcore-scheduling policy that prioritizes latency-senstive

vcores of I/O-bound applications and schedules them with a smaller time slice for fairness.

Another group of recent studies [90, 22, 49] address contention issues by space sharing

and propose co-scheduling mechanisms to leverage resource sharing for the tasks that are

relevant and running on a chip multicore processor. Furthermore, Bhadauria et al. [22]

interestingly argue that space-sharing is more important factor than than time-sharing.

Therefore, they treat contention-awareness more importantly. In this branch of work,

there is much work being done to quantify the amount of contention and address mapping

problems. In investigating mapping policies for shared resource contention on caches,

Zhuravlev et al. [124] use online classification methods particularly with cache miss rates

base characterization. Zhang et al [122] demonstrate a compile-time based static analysis

on block usages between threads and suggest combined thread mapping and scheduling

strategies leveraging data locality. Tang et al. [109] utilize performance counters to profile

memory-access characteristic reflected in last-level-cache (LLC) misses, bus transactions

and MESI states of LLC requests, then take a heuristic approach to find the best performing

thread to core mappings. Hotmeyr et al. [61] take a white box approach. They implement

a framework at a user-level that tries to redistributing threads balanced to processors. Chen

et al. [31] propose a profiler design to collect very fine-grained and low-level information

such as longest instruction dependency chain in an instruction window, and primarily fo-

225

cus on the partitioning of shared resources to address contention management. Verma et

al. [111] address consolidation policies for the energy efficiency for large scaled systems.

Scale and constraints of the problem are a bit different from above; nonetheless, significant

portions of the work are put on analyzing characteristics and patterns of VMs’ workloads.

They compare two VM mapping (co-locating) policies and find that the policy based on the

correlations in peak-time loads brings better results than the other based on the correlations

overall time.

One of the key assumptions about the two issues is either over-subscription or con-

tention in resource utilization. This raises the question of how many threads or VMs are

allowable in a system, the admission control problem. Johnson et al. [65] argue that con-

tention management as a matter of controlling the number of running threads should be

decoupled from scheduling. A dedicated controller interacts with applications via a sleep

slot buffer. With that, the controller determines the number of runnable threads which are

allowed to use synchronization mechanisms. Gupta and Harchol-Balter [55] investigate

admission control design for interactive workloads. They use queuing theory to analyze

the performance in terms of response time and propose dynamic control schemes using

either fluid control or stochastic dynamic programming. Lee et al. [79] suggest an offline

static analysis technique to construct a communication graph; then, dynamic compilation

selects and combines some threads to reduce unnecessary synchronization cost.

Energy, power, and/or thermal aware scheduling and mapping are other hot issues, as

scalability on multicore processors becomes an issue [47, 59]. A group of people [37, 38,

36] investigate optimal mappings in a multicore system for power and performance. They

try to solve this with various approaches by combining performance and power models lin-

early [37], by using machine learning technique particularly artificial neural networks [38],

or by using prediction models created by multivariate regression and runtime data analy-

sis [36]. Li et al. [81] propose a task placement scheme based on analyzing task aggre-

226

gation patterns and argue that the scheme minimizes energy with performance constraints.

Much thermal-aware work is also conducted. Rangan et al. [95] address thermal migra-

tions to cores with fixed voltages and frequencies, instead of doing expensive dynamically

changes of voltage and frequency in-situ. Ge et al [51] and Yeo et al [119] investigate

thermal-aware core migration and scheduling that reduce spatial temperature variation

which increases clock skews and decreases performance and reliability. To address the

thermal hot-spot issue, Hanumaiah et al. [58] formulate the problem and do modeling with

analytical circuit formulations. Interestingly enough, from a very different aspect, Coskun

et al [35] address thermal effects on reliability and chip lifetime. They argue that the

thermal cycling effect, which comes from fluctuation of cold and heat, is more negative

than peak thermal effects; thus, moderate- or conservative-DVFS, migration and balanced

resource usage schemes are suggested.

VMM design for emerging heterogeneous multicores has been discussed either for

asymmetric scheduling [75, 70] or for a uniform resource usage model [56].

9.2 Page Allocation and Memory Scheduling Schemes

Page mapping and memory-access scheduling have been recently investigated. Page map-

pings are particularly addressed in systems with massive scale multicores and/or multiple

nodes. Dashit et al [40] investigate memory traffic effects on modern NUMA multicore

systems and suggest an adaptive memory mapping policy called CarreFour. One point that

they put emphasis on is that memory contention on the memory controller and the bus is

a more significant factor than memory-access distances in NUMA. This result is aligned

with NAVAR for memory mapping concerns. However, NAVAR precisely addresses the

tradeoffs in power and performance in leveraging memory bandwidth. CarreFour utilizes

memories in all nodes, and they try to improve performance further with mechanisms such

227

as memory replication. Blagodurov et al [28] suggest strategies for migrating both threads

and pages to manage contention in memory controllers and interconnects in a NUMA ma-

chine. Particularly, they argue that page migrations are necessary when co-located threads

hurt each other in performance. Li et al [84] address a projection of the increasing gap

between memory bandwidth and core counts per a socket. They propose a scheme to ex-

tend the memory space over different nodes through page-swapping via VMs or through

fine-grained block accesses with hardware modifications. Some suggestions for enhancing

the memory scheduler are made, albeit for hardware. Given that previous off-chip mem-

ory scheduling policies are too extreme in either maximizing throughput or maximizing

fairness, Kim et al [73] propose a hybrid memory scheduling scheme. They suggest a

hardware framework that monitors threads, groups them in two classes and schedules with

two policies accordingly. Ebrahimi et al [46] study the effects of prefeching, which is a

very popular mechanism in modern memory sub-systems. They capture memory starvation

for workloads that are not memory-intensive; therefore, hardware base perfetching coordi-

nation schemes are proposed. Similarly, Lin et al [85] use partitioning of both threads and

pages to address tradeoffs in performance, power, and heat, and apply different scheduling

policies and memory power modes to the groups. Additionally, Sudan et al. [106] argue

that the co-location of different OS pages (fine-grained data placement) in row buffers

increases their utilization, observing that memory-accesses from applications in a scaled

multicore system are aligned with contiguous cache blocks.

9.3 Energy Proportionality

Considering energy-aware system design, power, and energy measurements is essential.

Modeling based estimation has been heavily addressed in various domains and with various

approaches [103, 120, 68, 44, 21]. Interestingly, Kansal et al. [68] suggest power modeling

228

methodologies for VMs.

For energy proportionality, one of the best policies is intelligently turning off compo-

nents that are and will be idle. However, power demands, particularly in data centers, have

frequent bursty patterns [29, 20]; thus, Meisner et al. [87] propose a system that improves

power conversion with proposed components’ power state transitions (PowerNap) and a

new power supply design (RAILS). Sharma et al. [99], in the meantime, describe cost-

driven power optimization that tries to reach the best performance within a given power

budget (power-driven approach). The cost-driven power optimization has more importance

than the workload-driven approach that has been mostly pursued, because emerging use

of intermittent renewable energy sources is increaseing. Therefore, they argue for an in-

termediate power state with a middle duty cycle instead of traditional power states, which

are either fully active (100%) or inactive (0%), using PowerNap’s fast state transition con-

cept. Snowdon et al. [104] experiment with a workload-driven approach on various types

of systems thoroughly. Lim et al [83] take power-driven approaches for virtualized data

servers. They use measurement techniques shown in [68], monitoring each VM’s power,

defining control levels like top-, application-, and tier-level for data center applications and

then applying different power controls at each level. The lower the level, the more control-

lability is given. Meng et al [89] study various runtime power optimizations and propose

an analytic modeling based approach to meet a power budget through runtime adaptation

of multiprocessor cores. Motivated by the fact that online data-intensive workloads have

dynamic load ranges, Meisner et al. [88] investigate each module’s energy proportionality

and its opportunities. They conclude memory system power in particular and PowerNap,

at least for their workloads, need improvements.

For this reason, recently various works propose enhanced memory systems for power.

David et al [41] and Deng et al [42], almost at the same time, suggested dynamically scaled

voltage and frequency mechanisms and a control scheme for a memory sub-system. Sim-

229

ilarly, Chen et al [34] applied an advanced optimal MIMO control theory to control both

CPU and memory power for achieving system power proportionality. The number of active

racks is chosen as the knob for memory power control. Isen et al [63] propose a technique

to eliminate unnecessary DRAM refreshes by leveraging program semantic information.

They keep track of memory state in context of memory allocations by software. Similarly,

Amin et al. [12] try to prolong the idle time of rank idleness. Since the idea is delaying

memory-accesses, it invokes reconsideration of both the cache replacement policy and the

write buffer; nonetheless, they show results with 5 – 10 % improved energy efficiency over

state-of-the-art DRAM design.

Accounting for the total cost of power supply, cooling power is not an insignificant

portion any more as heat dissipation keeps increasing. Ahmad et al [7] consider power

management schemes for large scale systems. They figure out previous approaches are

extreme, either focusing on power reductions by increasing hot spots or balancing loads

across machines causing idle power on more machines. They try to find the optimal num-

ber of active machines to address tradeoffs, and propose management schemes at both

coarse and fine time-granularities to adapt to the pattern of resource demands. Abbasi et

al [5] and Pakbaznia et al [94] formulate the problem of thermal-aware active server pro-

visioning with nonlinear binary integer programming, and minimize data center power,

including server system power, and cooling power, with linear programming. They solve

the problems with proposed heuristics or running LP solver, and both evaluate their ap-

proaches using simulation.

9.4 Monitoring

Software based monitoring is particularly attractive for providing context information, ex-

pecially when multiple applications or multi-threaded workloads run. Zhang et al [121]

230

show a detection mechanism that scans page tables to identify hot pages in order to man-

age cache space efficiently. This detection scheme is very similar to that in NAVAR. Zhao

et al [123] try to figure out the memory-access patterns of a guest OS in a VM through the

interception of a set of pages that are determined to be less frequently accessed. Miós et

al [91] propose sharing-aware block devices integrated with guest OS modifications. The

suggested mechanism is argued to enable page sharing detection like zero-page detection,

page-table sharing, and kernel text sharing. Lu et al. [86] point out resource usage profiling

problems on VM is hard; thus, they formulate the problem as a source separation problem

and suggested solutions that use direct factor graph base models and runtime calibration

mechanisms. They demonstrate their methodology in real systems.

Hardware based detection schemes provide fine-grained information with low over-

head; thus, there are cases utilizing hardware monitors to characterize workloads and sug-

gesting software incorporation. Furthermore, extensions or redesign of the performance

counters are proposed. Kim et al [73] classify threads in multiple workloads based on

memory bandwidth usage leveraging the statistics of L2 cache and memory controller

events. Diman et al [43] utilize conventional architectural performance metrics such as

cache miss rate and IPC, to identify cache sensitivity. Metrics are used for characterizing

and scheduling threads in a heterogeneous set of workloads. Similarly, Bhattacharjee and

Martonosi [25] investigate the most correlated metrics to critical threads in multi-threaded

workloads. They argue thread criticality is one of most fundamental factors and should

be considered in scheduling or load balancing. They propose a new hardware counter

that monitors typical PMU events and additionally raises alarms if the combination of

this information goes beyond a threshold. Estimating cache contention between threads

is important to determine scheduling policies. Zhuravlev et al [124] compare a miss rate

scheme with various profiling approaches including the most well-known stack distance

profiles [30]. They argue a scheme using only the miss rate is a far more attractive option

231

for online classification. Integraty with performance counters, some recent papers sug-

gest the design of stimulus software. Govindan et al [54] try online estimation of cache

pressure by introducing a stimulus benchmark per application. It is motivated by the fact

that how to detect cache contention under multiple VMs is unclear. Hackenberg et al [57]

develop benchmark suites to measure cache and memory performance, particularly cache

coherency.

9.5 Control Scheme

Some recent works design control schemes according to a closed loop feedback structure.

Sharifi et al [98] fit their system design into the scheme of a Single-Input, Multiple-Output

controller with an Auto-Regressive-Moving-Average (ARMA) system model, to address

contention management in multicore systems. They use three separate controllers for core,

cache, and bandwidth and multiple outputs reflected in the CPI for each application over

time. Padala et al [93] similarly use ARMA for the system model and use a Multi-Input,

Multi-Output (MIMO) type of feedback controller in the context of data center with virtu-

alization, where these are as many controls and outputs as these are nodes and applications

running. Kalyvianaki et al [67] propose a resource control scheme, for a virtualized clus-

ter, that uses the Kalman filter to monitor utilization with transient fluctuations, assuming

that the system is described in a linear model and noises are white and Gaussian, then the

control scheme updates allocations. They also suggest variant designs to the input numbers

and to the noise patterns. Papers focus on a control scheme itself by using utility functions

or models, rather than fitting the system model into the feedback system structure. Xu et

al [118] optimize VM placement in datacenters for multiple objectives through cross-layer

control. They use a single objective function based on a weighted sum of normalized utility

functions for each metric. Chen et al [33] consider constraints of performance, provider’s

232

profit and user satisfaction based on Service Level Agreements (SLAs), and build a utility

model with straightforward relationships. Lim et al [83] and Wang et al [114] both men-

tion Model Predictive Control (MPC) that combines output prediction, optimization and

control into a single algorithm, to address problems like budget driven power management

in a virtual cluster, and chip-level power management with constraints for temperature per

core.

The following control schemes are MPC based approaches. Gong et al [52] esti-

mates resource demands in distributed systems by a hybrid approach, first employing a

fast Fourier transformation to identify repeating patterns, and if a signature is not found,

applying a discrete-time Markov chain. Then, they address prediction error handling and

correction in [101]. Sheikh et al [100] use a Byesian approach to estimate database query

time on virtualized servers, noticing the previous Gaussian Processing model costs too

much. Urgankar et al [110] use Lyapunov techniques to get approximately optimized on-

line control over the power supply to solve a power cost management problem in data cen-

ters. They are motivated by the fact that a popular approach using either Markov Decision

theory or Dynamic Programming is unsuitable with large scale. Chen et al [32] address

the chip-level resource management problem using performance models through gradient

performance gains and augment a conventional stack distance model. With that, they es-

timate resource demands in more architectural-level to configure memory bandwidth and

branch predictor size.

Machine learning technique based modeling approaches are also investigated for adap-

tive system design. Particularly, this approach is useful for modeling nonlinear system

characteristics. Rao et al [96] use a reinforcement learning (RL) based approach to auto-

mate the VM configuration process. Tan et al [108] also use RL for system power man-

agement in a partially observable environment. Instead of selecting one among existing

solutions, they argue instead to learn the policy through a model-free approach. Bitirgen

233

et al [27] use Artificial Neural Networks (ANNs) to address the resource allocation of het-

erogeneous threads to cores. Ge et al [51] use neural network predictor to build thermal

models while arguing previous studies that are mostly history-based are inaccurate and

have overhead. Cochran et al [39] identify multiple objectives for energy efficiency. To

address this, they proposed a multinomial logistic regression online classifier. Also they

use L1-regularization techniques to select inputs for minimizing overhead and over-fitting.

This chapter discusses related work in the five areas: virtual core (thread) schedul-

ing, memory allocation and mapping, energy efficiency, workload monitoring, and control

scheme for dynamic adaptive system. Much related works can be found. Especially the

top of virtual core scheduling (co-scheduling) and NUMA-aware memory mapping have

been and are actively researched; nonetheless, my investigation of the system optimiza-

tions (including energy efficiency) for the virtualized NUMA multicore system (for both

virtualization and the NUMA system) is unique. The contributions will be mentioned in

the next chapter, along with a summary of all the previous chapters and potential future

works.

234

Chapter 10

Conclusion

In the context of a virtualized NUMA multicore system, significant tradeoffs are observed

on resource mapping and scheduling. The tradeoffs can be reduced to three major prob-

lems: vcore-mapping, page-mapping, and vcore-scheduling. I claim that

the inference-based approach can solve these resource optimization problems. Different

from the guest OS, the VMM can provide scalability and also have observability of the

context information of the guest OS. Compared to the host OS, the VMM also has ad-

vantages in capturing the VM context as well as the guest OS context, with the same

scalability.

Since the three problems occur in combination, the situations that create specific prob-

lems were classified to be solved. The three classes are as under-subscription, full-subscrip-

tion, and over-subscription, as defined by the ratio of active vcores to the available num-

ber of hardware threads in the physical machine. In the under-subscription case, the

vcore-mapping and page-mapping problems are found to be the key problems. In

the full-subscription case, the page-mapping problem is critical. The vcore-schedu-

ling problem arises in the over-subscription case, where the memory mapping problem

235

can be addressed by a static policy.

The policy component for the NAVAR adaptive system was designed for each resource

demand class. For the under- and full-subscription cases, the model-based prediction ap-

proach works well. For the over-subscription case, a brute-force approach is taken for

the policy. For the under- and full-subscription cases, the brute-force approach, a simple

heuristic, was also tried and compared, but it failed due to the overhead of system recon-

figurations.

Along with this summary of the work, this chapter lists the contributions that my dis-

sertation gives and discusses some future work.

10.1 Contributions

The five major contributions made by my dissertation are:

• A proof-of-concept of the inference-based approach in the VMM context for

optimizing a virtualized NUMA multicore system. As claimed, the black box

based approach can solve the system optimization problem. The white box based

approach may improve the system performance with speculative resource manage-

ments; nonetheless, the inference-based model is viable in the coarse-grained level

of resource management problem. Moreover, this approach is likely to be beneficial

for larger scale system management.

• The design, implementation, and validation of the NAVAR adaptive system. An

adaptive system was actually designed, implemented, and evaluated. When an of-

fline based model (the proof-of-concept) is embedded into the system, the system

works, resulting in performance, energy, or power, comparable to the best static con-

figuration for the workload. At runtime, the system manages its own overhead and

236

the overhead of system reconfigurations.

• Identification of the tradeoffs in performance, power, and energy in a virtual-

ized NUMA multicore system. It is well-known that the NUMA multicore system

incorporates memory access tradeoffs, and recently studies of the tradeoffs have fo-

cused on the memory access bandwidth as the remote memory access penalty is

decreasing with hardware developments [40]. However, tradeoffs in energy are not

yet well studied. These are clarified and addressed through my experiments.

• Design and implementation of NUMA-aware vcore scheduling (co-scheduling)

The NUMA-aware co-scheduling model was proposed and evaluated. The vcore

scheduler is also optimized to reduce possible side effects.

• Proposal and quantification of a new hardware feature that allows powering-off

the memory of a NUMA domain, if it is unused. With real measurements, the

potential energy savings by the proposed hardware mechanism were quantified. This

proposed hardware mechanism is leveraged by the NAVAR adaptive system, which

demonstrates the effects clearly.

10.2 Future Work

Following are potential items for future work. In a short term, deploying the NAVAR

adaptive system on large scale NUMA multicore systems would validate for its scalability,

and generality.

Large scale NUMA multicore systems Our testbeds incorporate only two NUMA do-

mains. The discussions of Chapter 8 lay out the expected factors by having on increased

237

number of NUMA domains. Nonetheless, experimental tests will disclose the real inter-

actions between workloads’ memory traffic and the increased number of NUMA domains,

and the effectiveness of NAVAR.

Workloads In principle, the NAVAR policy is not specific to the workloads. The NAVAR

adaptive system could achieve node-level energy efficiency even when resource demand is

fluctuating, which would make it suited if nodes in the datacenter. Evaluating NAVAR in

such a domain would be an important study.

Comparison with a guest-level approach Besides more evaluations, the NAVAR adap-

tive system could be compared with a different black box-based approach. In particularly,

commodity OSes increasingly support NUMA-aware system optimizations themselves.

Exposing the NUMA topology from the VMM can activate the guest OS’s optimizations.

Comparisons between the VM model with respect to performance results may give insight

into the merits of both approach.

238

Bibliography

[1] Pinpoints. http://www.pintool.org/pinpoints.html.

[2] Puppy linux. http://puppylinux.org.

[3] SPEC CPU. http://www.spec.org.

[4] Intel 64 and IA-32 Architectures Software Developer’s Manual Combined Volumes

1, 2A, 2B, 2C, 3A, 3B, and 3C, June 2013.

[5] Zahra Abbasi, Georgios Varsamopoulos, and Sandeep K. S. Gupta. Thermal aware

server provisioning and workload distribution for internet data centers. In Proceed-

ings of the 19th ACM International Symposium on High Performance Distributed

Computing (HPDC), June 2010.

[6] Keith Adams and Ole Agesen. A comparison of software and hardware techniques

for x86 virtualization. In Proceedings of the 12th international conference on Ar-

chitectural support for programming languages and operating systems (ASPLOS),

October 2006.

[7] Faraz Ahmad and T. N. Vijaykumar. Joint optimization of idle and cooling power in

data centers while maintaining response time. In Proceedings of the 15th edition of

239

ASPLOS on Architectural support for programming languages and operating sys-

tems (ASPLOS), March 2010.

[8] A.R. Alameldeen and D.A. Wood. IPC Considered Harmful for Multiprocessor

Workloads. IEEE Micro, 26(4):8–17, July–August 2006.

[9] AMD, Inc. Software Optimization Guide for AMD Family 10h and 12h Processors,

February 2011.

[10] AMD, Inc. AMD64 Architecture Programmer’s Manual Vol 2: System Program-

ming, May 2013.

[11] AMD, Inc. BIOS and Kernel Developer’s Guide for AMD Family 10h Processors,

January 2013.

[12] Ahmed M. Amin and Zeshan A. Chishti. Rank-aware cache replacement and

write buffering to improve DRAM energy efficiency. In Proceedings of the

16th ACM/IEEE international symposium on Low power electronics and design

(ISLPED), August 2010.

[13] Vishal Aslot, Max Domeika, Rudolf Eigenmann, Greg Gaertner, Wesley B. Jones,

and Bodo Parady. SPEComp: A New Benchmark Suite for Measuring Parallel

Computer Performance. In Proceedings of the Workshop on OpenMP Applications

and Tools (WOMPAT), July 2001.

[14] Chang Bae, John R. Lange, and Peter A. Dinda. Comparing approaches to vir-

tualized page translation in modern vmms. Technical Report NWU-EECS-10-07,

Department of Electrical Engineering and Computer Science, Northwestern Univer-

sity, April 2010.

240

[15] Chang Bae and Jamel Tayeb. Energy-aware memory management through database

buffer management. In Third Workshop on Energy-Efficient Design (WEED), June

2011.

[16] Chang S. Bae, John R. Lange, and Peter A. Dinda. Enhancing virtualized application

performance through dynamic adaptive paging mode selection. In Proceedings of

the 8th ACM international conference on Autonomic computing (ICAC), June 2011.

[17] Yuebin Bai, Cong Xu, and Zhi Li. Task-aware based co-scheduling for virtual ma-

chine system. In Proceedings of the 2010 ACM Symposium on Applied Computing

(SAC), March 2010.

[18] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf

Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In

ACM Symposium on Operating Systems Principles (SOSP), October 2003.

[19] Thomas W. Barr, Alan L. Cox, and Scott Rixner. Translation caching: skip, don’t

walk (the page table). In Proceedings of the 37th annual international symposium

on Computer architecture (ISCA), June 2010.

[20] Cullen Bash and George Forman. Cool job allocation: measuring the power savings

of placing jobs at cooling-efficient locations in the data center. In Proceedings of the

2007 USENIX Annual Technical Conference on Proceedings of the USENIX Annual

Technical Conference (USENIX ATC), June 2007.

[21] Ramon Bertran, Marc Gonzalez, Xavier Martorell, Nacho Navarro, and Eduard

Ayguade. Decomposable and responsive power models for multicore processors

using performance counters. In Proceedings of the 24th ACM International Confer-

ence on Supercomputing (ICS), June 2010.

241

[22] Major Bhadauria and Sally A. McKee. An approach to resource-aware co-

scheduling for CMPs. In Proceedings of the 24th ACM International Conference

on Supercomputing (ICS), June 2010.

[23] Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha Manne. Accel-

erating two-dimensional page walks for virtualized systems. In in Proceedings of the

13th international conference on Architectural support for programming languages

and operating systems (ASPLOS), March 2008.

[24] Abhishek Bhattacharjee and Margaret Martonosi. Characterizing the TLB behav-

ior of emerging parallel workloads on chip multiprocessors. In Proceedings of the

8th International Conference on Parallel Architectures and Compilation Techniques

(PACT), October 2009.

[25] Abhishek Bhattacharjee and Margaret Martonosi. Thread criticality predictors for

dynamic performance, power, and resource management in chip multiprocessors. In

Proceedings of the 36th annual international symposium on Computer architecture

(ISCA), June 2009.

[26] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PARSEC

Benchmark Suite: Characterization and Architectural Implications. In Proceed-

ings of the 17th International Conference on Parallel Architectures and Compilation

Techniques (PACT), October 2008.

[27] Ramazan Bitirgen, Engin Ipek, and Jose F. Martinez. Coordinated management

of multiple interacting resources in chip multiprocessors: A machine learning ap-

proach. In 2008 41st IEEE/ACM International Symposium on Microarchitecture

(Micro), December 2008.

242

[28] Sergey Blagodurov, Sergey Zhuravlev, Mohammad Dashti, and Alexandra Fe-

dorova. A case for NUMA-aware contention management on multicore systems.

In Proceedings of the 2011 conference on USENIX Annual technical conference

(USENIX ATC), June 2011.

[29] Pat Bohrer, Elmootazbellah N. Elnozahy, Tom Keller, Michael Kistler, Charles Le-

furgy, Chandler McDowell, and Ram Rajamony. Power aware computing. chapter

The case for power management in web servers, pages 261–289. Kluwer Academic

Publishers, Norwell, MA, USA, May 2002.

[30] Dhruba Chandra, Fei Guo, Seongbeom Kim, and Yan Solihin. Predicting Inter-

Thread Cache Contention on a Chip Multi-Processor Architecture. In Proceedings

of the 11th International Symposium on High-Performance Computer Architecture

(HPDC), June 2005.

[31] Jian Chen and Lizy Kurian John. Predictive coordination of multiple on-chip re-

sources for chip multiprocessors. In Proceedings of the international conference on

Supercomputing (ICS), June 2011.

[32] Jian Chen, Lizy Kurian John, and Dimitris Kaseridis. Modeling program resource

demand using inherent program characteristics. In Proceedings of the ACM SIG-

METRICS joint international conference on Measurement and modeling of com-

puter systems (SIGMETRICS), June 2011.

[33] Junliang Chen, Chen Wang, Bing Bing Zhou, Lei Sun, Young Choon Lee, and Al-

bert Y. Zomaya. Tradeoffs Between Profit and Customer Satisfaction for Service

Provisioning in the Cloud. In Proceedings of the 20th international symposium on

High performance distributed computing (HPDC), June 2011.

243

[34] Ming Chen, Xiaorui Wang, and Xue Li. Coordinating processor and main memory

for efficientserver power control. In Proceedings of the international conference on

Supercomputing (ICS), June 2011.

[35] Ayse K. Coskun, Richard Strong, Dean M. Tullsen, and Tajana Simunic Rosing.

Evaluating the impact of job scheduling and power management on processor life-

time for chip multiprocessors. In Proceedings of the eleventh international joint

conference on Measurement and modeling of computer systems (SIGMETRICS),

June 2009.

[36] Matthew Curtis-Maury, Filip Blagojevic, Christos D. Antonopoulos, and Dim-

itrios S. Nikolopoulos. Prediction-Based Power-Performance Adaptation of Mul-

tithreaded Scientific Codes. IEEE Trans. Parallel Distrib. Syst., 19(10):1396–1410,

October 2008.

[37] Matthew Curtis-Maury, James Dzierwa, Christos D. Antonopoulos, and Dimitrios S.

Nikolopoulos. Online power-performance adaptation of multithreaded programs

using hardware event-based prediction. In Proceedings of the 20th annual interna-

tional conference on Supercomputing (ICS), June 2006.

[38] Matthew Curtis-Maury, Karan Singh, Sally A. McKee, Filip Blagojevic, Dim-

itrios S. Nikolopoulos, Bronis R. de Supinski, and Martin Schulz. Identifying

energy-efficient concurrency levels using machine learning. In Proceedings of the

2007 IEEE International Conference on Cluster Computing (CLUSTER), Septem-

ber 2007.

[39] Matthew Curtis-Maury, Karan Singh, Sally A. McKee, Filip Blagojevic, Dim-

itrios S. Nikolopoulos, Bronis R. de Supinski, and Martin Schulz. Identifying

energy-efficient concurrency levels using machine learning. In Proceedings of the

244

2007 IEEE International Conference on Cluster Computing (CLUSTER), Septem-

ber 2007.

[40] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud, Renaud

Lachaize, Baptiste Lepers, Vivien Quema, and Mark Roth. Traffic management:

a holistic approach to memory placement on numa systems. In Proceedings of the

eighteenth international conference on Architectural support for programming lan-

guages and operating systems (ASPLOS), March 2013.

[41] Howard David, Chris Fallin, Eugene Gorbatov, Ulf R. Hanebutte, and Onur Mutlu.

Memory power management via dynamic voltage/frequency scaling. In Proceed-

ings of the 8th ACM international conference on Autonomic computing (ICAC), June

2011.

[42] Qingyuan Deng, David Meisner, Luiz Ramos, Thomas F. Wenisch, and Ricardo

Bianchini. MemScale: active low-power modes for main memory. In Proceed-

ings of the 16th international conference on Architectural support for programming

languages and operating systems (ASPLOS), March 2011.

[43] Gaurav Dhiman, Vasileios Kontorinis, Dean Tullsen, Tajana Rosing, Eric Saxe, and

Jonathan Chew. Dynamic workload characterization for power efficient scheduling

on CMP systems. In Proceedings of the 16th ACM/IEEE international symposium

on Low power electronics and design (ISLPED), October 2010.

[44] Gaurav Dhiman, Kresimir Mihic, and Tajana Rosing. A system for online power

prediction in virtualized environments using Gaussian mixture models. In Proceed-

ings of the 47th Design Automation Conference (DAC), June 2010.

245

[45] Mian Dong and Lin Zhong. Self-constructive high-rate system energy modeling for

battery-powered mobile systems. In Proceedings of the 9th International Confer-

ence on Mobile Systems, Applications, and Services (MobiSys), June 2011.

[46] Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt. Prefetch-aware

shared resource management for multi-core systems. In Proceedings of the 38th

annual international symposium on Computer architecture (ISCA), June 2011.

[47] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam,

and Doug Burger. Dark silicon and the end of multicore scaling. In Proceedings of

the 38th Annual International Symposium on Computer Architecture (ISCA), June

2011.

[48] Stijn Eyerman and Lieven Eeckhout. System-Level Performance Metrics for Mul-

tiprogram Workloads. IEEE Micro, 28:42–53, May 2008.

[49] Stijn Eyerman and Lieven Eeckhout. Probabilistic job symbiosis modeling for SMT

processor scheduling. In Proceedings of the 15th edition of ASPLOS on Architec-

tural support for programming languages and operating systems (ASPLOS), March

2010.

[50] Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn. Parallel job schedul-

ing – a status report. In Proceedings of the 10th international conference on Job

Scheduling Strategies for Parallel Processing (JSSPP), June 2005.

[51] Yang Ge, Parth Malani, and Qinru Qiu. Distributed task migration for thermal

management in many-core systems. In Proceedings of the 47th Design Automation

Conference (DAC), June 2010.

246

[52] Zhenhuan Gong, Xiaohui Gu, and J. Wilkes. PRESS: PRedictive Elastic ReSource

Scaling for cloud systems. In Proceedings of International Conference on Network

and Service Management (CNSM), Octoboer 2010.

[53] Mel Gorman and Patrick Healy. Performance characteristics of explicit superpage

support. In Proceedings of the 6th Annual Workshop on the Interaction between

Operating Systems and Computer Architecture (WIOSCA), June 2010.

[54] Sriram Govindan, Jie Liu, Aman Kansal, and Anand Sivasubramaniam. Cuanta:

quantifying effects of shared on-chip resource interference for consolidated vir-

tual machines. In Proceedings of the 2nd ACM Symposium on Cloud Computing

(SOCC), October 2011.

[55] Varun Gupta and Mor Harchol-Balter. Self-adaptive admission control policies for

resource-sharing systems. In Proceedings of the eleventh international joint con-

ference on Measurement and modeling of computer systems (SIGMETRICS), June

2009.

[56] Vishakha Gupta, Karsten Schwan, Niraj Tolia, Vanish Talwar, and Parthasarathy

Ranganathan. Pegasus: coordinated scheduling for virtualized accelerator-based

systems. In Proceedings of the 2011 conference on USENIX Annual technical con-

ference (USENIX ATC), June 2011.

[57] Daniel Hackenberg, Daniel Molka, and Wolfgang E. Nagel. Comparing cache ar-

chitectures and coherency protocols on x86-64 multicore SMP systems. In Proceed-

ings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture

(Micro), December 2009.

247

[58] Vinay Hanumaiah, Ravishankar Rao, Sarma Vrudhula, and Karam S. Chatha.

Throughput optimal task allocation under thermal constraints for multi-core pro-

cessors. In Proceedings of the 46th Annual Design Automation Conference (DAC),

July 2009.

[59] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Toward dark silicon in

servers. IEEE Micro, 31(4):6–15, July–August 2011.

[60] Giang Hoang, Chang Bae, John Lange, Lide Zhang, Peter Dinda, and Russ Joseph.

A case for alternative nested paging models for virtualized systems. Computer Ar-

chitecture Letters, 9(1):17–20, January 2010.

[61] Steven Hofmeyr, Juan A. Colmenares, Costin Iancu, and John Kubiatowicz. Juggle:

proactive load balancing on multicore computers. In Proceedings of the 20th in-

ternational symposium on High performance distributed computing (HPDC), June

2011.

[62] IBM. Kernel Virtual Machine (KVM) Best Practices for KVM. Technical report,

April 2012.

[63] Ciji Isen and Lizy John. ESKIMO: Energy savings using Semantic Knowledge of

Inconsequential Memory Occupancy for DRAM subsystem. In Proceedings of the

42nd Annual IEEE/ACM International Symposium on Microarchitecture (Micro),

December 2009.

[64] Yunlian Jiang, Xipeng Shen, Jie Chen, and Rahul Tripathi. Analysis and ap-

proximation of optimal co-scheduling on chip multiprocessors. In Proceedings of

the 17th international conference on Parallel Architectures and Compilation Tech-

niques (PACT), 2008.

248

[65] F. Ryan Johnson, Radu Stoica, Anastasia Ailamaki, and Todd C. Mowry. Decou-

pling contention management from scheduling. In Proceedings of the 15th Interna-

tional Conference on Architectural Support for Programming Languages and Oper-

ating Systems (ASPLOS), March 2010.

[66] Vivek Kale. Towards using and improving the nas parallel benchmarks: a parallel

patterns approach. In Proceedings of the 2010 Workshop on Parallel Programming

Patterns (ParaPLoP), March 2010.

[67] Evangelia Kalyvianaki, Themistoklis Charalambous, and Steven Hand. Self-

adaptive and self-configured CPU resource provisioning for virtualized servers us-

ing Kalman filters. In Proceedings of the 6th international conference on Autonomic

computing (ICAC), June 2009.

[68] Aman Kansal, Feng Zhao, Jie Liu, Nupur Kothari, and Arka A. Bhattacharya. Vir-

tual machine power metering and provisioning. In Proceedings of the 1st ACM

symposium on Cloud computing (SOCC), June 2010.

[69] Paul A. Karger. Performance and security lessons learned from virtualizing the

alpha processor. In Proceedings of the 34th annual international symposium on

Computer architecture (ISCA), June 2007.

[70] Vahid Kazempour, Ali Kamali, and Alexandra Fedorova. AASH: an asymmetry-

aware scheduler for hypervisors. In Proceedings of the 6th ACM SIGPLAN/SIGOPS

international conference on Virtual Execution Environments (VEE), March 2010.

[71] Samir Khuller, Jian Li, and Barna Saha. Energy efficient scheduling via partial

shutdown. In Proceedings of the 21th Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), January 2010.

249

[72] Hwanju Kim, Sangwook Kim, Jinkyu Jeong, Joonwon Lee, and Seungryoul Maeng.

Demand-based coordinated scheduling for smp vms. In Proceedings of the eigh-

teenth international conference on Architectural support for programming lan-

guages and operating systems (ASPLOS), March 2013.

[73] Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter. Thread

Cluster Memory Scheduling: Exploiting Differences in Memory Access Behavior.

In Proceedings of the 43rd Annual IEEE/ACM International Symposium on Mi-

croarchitecture (Micro), December 2010.

[74] Brian Kocoloski, Jiannan Ouyang, and John Lange. A case for dual stack virtual-

ization: consolidating hpc and commodity applications in the cloud. In Proceedings

of the Third ACM Symposium on Cloud Computing (SOCC), October 2012.

[75] Youngjin Kwon, Changdae Kim, Seungryoul Maeng, and Jaehyuk Huh. Virtualizing

performance asymmetric multi-core systems. In Proceedings of the 38th annual

International Symposium on Computer Architecture (ISCA), June 2011.

[76] Jack Lange, Peter Dinda, Kyle Hale, and Lei Xia. An introduction to the pala-

cios virtual machine monitor—release 1.3. Technical Report NWU-EECS-11-10,

Department of Electrical Engineering and Computer Science, Northwestern Uni-

versity, October 2011.

[77] John Lange, Kevin Pedretti, Peter Dinda, Chang Bae, Patrick Bridges, Philip

Soltero, and Alexander Merritt. Minimal-overhead virtualization of a large scale

supercomputer. In Proceedings of the 2011 ACM SIGPLAN/SIGOPS International

Conference on Virtual Execution Environments (VEE), March 2011.

250

[78] John Lange, Kevin Pedretti, Trammell Hudson, Peter Dinda, Zheng Cui, Lei

Xia, Patrick Bridges, Andy Gocke, Steven Jaconette, Mike Levenhagen, and Ron

Brightwell. Palacios and kitten: New high performance operating systems for scal-

able virtualized and native supercomputing. In Proceedings of the 24th IEEE Inter-

national Parallel and Distributed Processing Symposium (IPDPS), March 2010.

[79] Janghaeng Lee, Haicheng Wu, Madhumitha Ravichandran, and Nathan Clark.

Thread tailor: dynamically weaving threads together for efficient, adaptive paral-

lel applications. In Proceedings of the 37th Annual International Symposium on

Computer Architecture (ISCA), June 2010.

[80] Min Lee, A. S. Krishnakumar, P. Krishnan, Navjot Singh, and Shalini Yajnik. Sup-

porting soft real-time tasks in the Xen hypervisor. In Proceedings of the 14th in-

ternational conference on Architectural support for programming languages and

operating systems (ASPLOS), March 2010.

[81] Dong Li, Dimitrios S. Nikolopoulos, Kirk W. Cameron, Bronis R. de Supinski, and

Martin Schulz. Power-aware mpi task aggregation prediction for high-end comput-

ing systems. In Proceedings of the 24th IEEE International Symposium on Parallel

and Distributed Processing (IPDPS), April 2010.

[82] Jacob Liberman and Garima Kochhar. Optimal BIOS Settings for High Performance

Compting with PowerEdge 11G Servers. Dell Product Group, August 2010.

[83] Harold Lim, Aman Kansal, and Jie Liu. Power budgeting for virtualized data cen-

ters. In Proceedings of the 2011 conference on USENIX Annual technical conference

(USENIX ATC), June 2011.

251

[84] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan, Steven K.

Reinhardt, and Thomas F. Wenisch. Disaggregated memory for expansion and shar-

ing in blade servers. In Proceedings of the 36th Annual International Symposium

on Computer Architecture (ISCA), June 2009.

[85] Chung-Hsiang Lin, Chia-Lin Yang, and Ku-Jei King. PPT: Joint Perfor-

mance/Power/Thermal Management of DRAM Memory for Multi-Core Systems. In

Proceedings of the 14th ACM/IEEE international symposium on Low Power Elec-

tronics and Design (ISLPED), December 2009.

[86] Lei Lu, Hui Zhang, Guofei Jiang, Haifeng Chen, Kenji Yoshihira, and Evgenia

Smirni. Untangling mixed information to calibrate resource utilization in virtual

machines. In Proceedings of the 8th ACM International Conference on Autonomic

Computing (ICAC), June 2011.

[87] David Meisner, Brian T. Gold, and Thomas F. Wenisch. PowerNap: eliminating

server idle power. In Proceedings of the 14th international conference on Archi-

tectural Support for Programming Languages and Operating Systems (ASPLOS),

March 2009.

[88] David Meisner, Christopher M. Sadler, Luiz André Barroso, Wolf-Dietrich Weber,

and Thomas F. Wenisch. Power management of online data-intensive services. In

Proceeding of the 38th Annual International Symposium on Computer Architecture

(ISCA), June 2011.

[89] Ke Meng, Russ Joseph, Robert P. Dick, and Li Shang. Multi-optimization power

management for chip multiprocessors. In Proceedings of the 17th international

conference on Parallel architectures and compilation techniques (PACT), October

2008.

252

[90] Andreas Merkel, Jan Stoess, and Frank Bellosa. Resource-conscious scheduling

for energy efficiency on multicore processors. In Proceedings of the 5th European

conference on Computer systems (EuroSys), April 2010.

[91] Grzegorz Miós, Derek G. Murray, Steven Hand, and Michael A. Fetterman. Satori:

enlightened page sharing. In Proceedings of the 2009 conference on USENIX An-

nual technical conference (USENIX ATC), June 2009.

[92] J. Ousterhout. Scheduling techniques for concurrent systems. In Third International

Conference on Distributed Computing Systems (ICDCS), June 1982.

[93] Pradeep Padala, Kai-Yuan Hou, Kang G. Shin, Xiaoyun Zhu, Mustafa Uysal, Zhikui

Wang, Sharad Singhal, and Arif Merchant. Automated control of multiple virtual-

ized resources. In Proceedings of the 4th ACM european conference on Computer

systems (EuroSys), March 2009.

[94] Ehsan Pakbaznia and Massoud Pedram. Minimizing data center cooling and server

power costs. In Proceedings of the 14th ACM/IEEE international symposium on

Low power electronics and design (ISLPED), December 2009.

[95] Krishna K. Rangan, Gu-Yeon Wei, and David Brooks. Thread motion: fine-grained

power management for multi-core systems. In Proceedings of the 36th annual in-

ternational symposium on Computer architecture (ISCA), June 2009.

[96] Jia Rao, Xiangping Bu, Cheng-Zhong Xu, Leyi Wang, and George Yin. VCONF:

a reinforcement learning approach to virtual machines auto-configuration. In Pro-

ceedings of the 6th international conference on Autonomic computing (ICAC), June

2009.

253

[97] Suzanne Rivoire, Parthasarathy Ranganathan, and Christos Kozyrakis. A compar-

ison of high-level full-system power models. In Proceedings of the 2008 Work-

shop on Hot Topics in Power-aware Computing and Systems (HotPower), December

2008.

[98] Akbar Sharifi, Shekhar Srikantaiah, Asit K. Mishra, Mahmut Kandemir, and

Chita R. Das. METE: meeting end-to-end QoS in multicores through system-wide

resource management. In Proceedings of the ACM SIGMETRICS joint international

conference on Measurement and modeling of computer systems (SIGMETRICS),

June 2011.

[99] Navin Sharma, Sean Barker, David Irwin, and Prashant Shenoy. Blink: managing

server clusters on intermittent power. In Proceedings of the 16th international con-

ference on Architectural support for programming languages and operating systems

(ASPLOS), March 2011.

[100] Muhammad Bilal Sheikh, Umar Farooq Minhas, Omar Zia Khan, Ashraf Aboul-

naga, Pascal Poupart, and David J. Taylor. A bayesian approach to online perfor-

mance modeling for database appliances using gaussian models. In Proceedings of

the 8th ACM international conference on Autonomic computing (ICAC), June 2011.

[101] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. CloudScale:

elastic resource scaling for multi-tenant cloud systems. In Proceedings of the 2nd

ACM Symposium on Cloud Computing (SOCC), October 2011.

[102] David B. Shmoys and Éva Tardos. An approximation algorithm for the generalized

assignment problem. Math. Program., 62(3):461–474, December 1993.

254

[103] Alex Shye, Benjamin Scholbrock, and Gokhan Memik. Into the wild: studying

real user activity patterns to guide power optimizations for mobile architectures. In

Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microar-

chitecture (Micro), December 2009.

[104] David C. Snowdon, Etienne Le Sueur, Stefan M. Petters, and Gernot Heiser. Koala:

a platform for OS-level power management. In Proceedings of the fourth ACM

european conference on Computer systems (EuroSys), March 2009.

[105] Peter Strazdins and John Uhlmann. A Comparison of Local and Gang Schedul-

ing on a Beowulf Cluster. In the 2004 IEEE International Conference on Cluster

Computing (Cluster), September 2004.

[106] Kshitij Sudan, Niladrish Chatterjee, David Nellans, Manu Awasthi, Rajeev Balasub-

ramonian, and Al Davis. Micro-pages: increasing DRAM efficiency with locality-

aware data placement. In Proceedings of the 15th edition of ASPLOS on Architec-

tural support for programming languages and operating systems (ASPLOS), March

2010.

[107] Orathai Sukwong and Hyong S. Kim. Is co-scheduling too expensive for SMP VMs?

In Proceedings of the 6th conference on Computer systems (EuroSys), April 2011.

[108] Ying Tan, Wei Liu, and Qinru Qiu. Adaptive power management using reinforce-

ment learning. In Proceedings of the 2009 International Conference on Computer-

Aided Design (ICCAD), November 2009.

[109] Lingjia Tang, Jason Mars, Neil Vachharajani, Robert Hundt, and Mary Lou Soffa.

The impact of memory subsystem resource sharing on datacenter applications. In

255

Proceedings of the 38th annual international symposium on Computer architecture

(ISCA), June 2011.

[110] Rahul Urgaonkar, Bhuvan Urgaonkar, Michael J. Neely, and Anand Sivasubrama-

niam. Optimal power cost management using stored energy in data centers. In

Proceedings of the ACM SIGMETRICS joint international conference on Measure-

ment and modeling of computer systems (SIGMETRICS), June 2011.

[111] Akshat Verma, Gargi Dasgupta, Tapan Kumar Nayak, Pradipta De, and Ravi

Kothari. Server workload analysis for power minimization using consolidation.

In Proceedings of the 2009 conference on USENIX Annual technical conference

(USENIX ATC), June 2009.

[112] Carl A. Waldspurger. Memory Resource Management in VMware ESX Server. In in

Proceedings of the 5th symposium on Operating systems design and implementation

(OSDI), December 2002.

[113] Chengwei Wang, Karsten Schwan, Vanish Talwar, Greg Eisenhauer, Liting Hu, and

Matthew Wolf. A flexible architecture integrating monitoring and analytics for man-

aging large-scale data centers. In Proceedings of the 8th ACM international confer-

ence on Autonomic computing (ICAC), June 2011.

[114] Yefu Wang, Kai Ma, and Xiaorui Wang. Temperature-constrained power control

for chip multiprocessors with online model estimation. In Proceedings of the 36th

annual international symposium on Computer architecture (ISCA), June 2009.

[115] Chuliang Weng, Qian Liu, Lei Yu, and Minglu Li. Dynamic adaptive scheduling

for virtual machines. In Proceedings of the 20th international symposium on High

performance distributed computing (HPDC), June 2011.

256

[116] Chuliang Weng, Zhigang Wang, Minglu Li, and Xinda Lu. The hybrid scheduling

framework for virtual machine systems. In Proceedings of the 2009 ACM SIG-

PLAN/SIGOPS international conference on Virtual execution environments (VEE),

March 2009.

[117] Cong Xu, Sahan Gamage, Pawan N. Rao, Ardalan Kangarlou, Ramana Rao Kom-

pella, and Dongyan Xu. vslicer: latency-aware virtual machine scheduling via

differentiated-frequency cpu slicing. In Proceedings of the 21st international sym-

posium on High-Performance Parallel and Distributed Computing (HPDC), June

2012.

[118] Jing Xu and José Fortes. A multi-objective approach to virtual machine manage-

ment in datacenters. In Proceedings of the 8th ACM international conference on

Autonomic computing (ICAC), June 2011.

[119] Inchoon Yeo and Eun Jung Kim. Temperature-aware scheduler based on thermal be-

havior grouping in multicore systems. In Proceedings of the Conference on Design,

Automation and Test in Europe (DATE), April 2009.

[120] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P. Dick, Zhuo-

qing Morley Mao, and Lei Yang. Accurate online power estimation and automatic

battery behavior based power model generation for smartphones. In Proceedings of

the 8th IEEE/ACM/IFIP international conference on Hardware/software codesign

and system synthesis (CODES+ISSS), October 2010.

[121] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. Towards practical page coloring-

based multicore cache management. In Proceedings of the 4th ACM european con-

ference on Computer systems (EuroSys), March 2009.

257

[122] Yuanrui Zhang, Mahmut Kandemir, and Taylan Yemliha. Studying inter-core data

reuse in multicores. In Proceedings of the ACM SIGMETRICS joint international

conference on Measurement and modeling of computer systems (SIGMETRICS),

June 2011.

[123] Weiming Zhao and Zhenlin Wang. Dynamic memory balancing for virtual ma-

chines. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS international confer-

ence on Virtual execution environments (VEE), March 2009.

[124] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. Addressing shared

resource contention in multicore processors via scheduling. In Proceedings of the

15th edition of ASPLOS on Architectural support for programming languages and

operating systems (ASPLOS), January 2010.

258

Appendix A

Dynamic Adaptive Virtualized Virtual

Memory (DAV2M)

A critical component of the overhead of a modern virtual machine monitor (VMM) for

x86 or x64 hardware is the virtualization of address translation. Conceptually, a VMM

introduces an additional layer of indirection that maps addresses that the guest OS believes

are physical addresses, but called here guest physical addresses (GPAs), to the actual host

physical addresses (HPAs). Address translation then is effectively from guest virtual ad-

dresses (GVAs) to GPAs and then to HPAs.

There are two general approaches to achieving this translation, shadow paging and

nested paging. Both approaches have several variants. Shadow paging is a software-centric

approach that flattens GVA→GPA→HPA translation to GVA→HPA translation and imple-

ments this translation in a single page table hierarchy that is under the exclusive control of

the VMM and combines guest and VMM intent. In contrast, nested paging is a hardware-

centric approach in which the hardware provides for a second page table hierarchy that the

VMM can use to separately maintain the GPA→HPA mapping without having to involve

259

itself in the guest’s GVA→GPA decisions. Section A.1 describes these approaches, and

their variants on the x86/x64 in more detail.

Although both approaches can achieve very low overhead, there is not a single best ap-

proach for minimizing overheads and hence maximizing application performance. Rather,

the best approach depends on the paging workload of the application running in the VM.

Further, even for a single application, the best approach may not be static, but may rather

vary over time. For example, an HPC application with multiple computation phases might

have a preferred paging approach for each phase. As another example, a long-running VM

might very well have different applications execute during its lifetime, each of which may

prefer a different paging approach. In Sections A.2 and A.3 we report on a study, based

largely on HPC workloads, that supports these claims. The virtualized application perfor-

mance, relative to a native environment, can vary by as much as 105% between the two

modes.

Most modern VMMs for x86/x64 hardware, including the Palacios VMM [78] in which

this work is implemented, offer several variants of both shadow and nested paging. In these

VMMs, the selection of paging approach is made at the time the VM is instantiated and

holds for the VM’s lifetime. As explained in Section A.4, the Palacios VMM is extended

to dynamically change the paging approach at run-time. As part of the handling of any exit

to the VMM, it is possible to switch to a different approach.

A prototype policy is developed, which uses this mechanism to enhance the perfor-

mance of applications as they execute. The policy is based on two metrics of paging

performance. When shadow paging is in use, the metric is the rate of VMM exits related to

paging, which is extremely easy to measure in the context of exit handling. When nested

paging is used, the metric is the TLB miss rate, which is measured at virtually zero cost us-

ing a hardware performance counter. A third metric, cycles per instruction (CPI), is used to

measure application performance. These metrics are further described in Section A.3. The

260

metrics are valuable apart from the policy since they succinctly capture the performance

of each paging approach and the effect on application performance.

The prototype policy, dynamically adaptive virtualized virtual memory (DAV2M), uses

the mechanism and metrics to probe application performance using the current and alter-

nate paging modes. Probing is triggered when the paging performance under the current

mode exceeds a threshold. Based on this probing, the thresholds associated with each pag-

ing approach are also adjusted. Performance testing takes into account transient effects due

to the paging approach switch itself, and probes are temporally limited to avoid potential

oscillations in this control algorithm. When probing identifies a clearly superior paging

approach, it is made the current one. DAV2M is described in detail in Section A.5.

DAV2M is implemented in Palacios and evaluated using the application benchmarks

described in Section A.2 that are most sensitive to particular paging approaches, including

benchmarks that are insensitive for comparison. Detailed results are shown in Section A.6.

The most salient points are as follows. First, for workloads which have a single best paging

approach, DAV2M is able to quickly converge on that approach. Because of this quick

convergence and the reasonably low overhead of the mechanism for switching the paging

approach, the performance of these workloads under DAV2M is nearly identical to that we

would have seen if we chose the paging approach correctly when the VM was configured

(≤1%). A second important result is that, for a benchmark whose best paging approach

varies over its execution, DAV2M is able to dynamically change the paging approach to

match changing circumstances, without oscillatory behavior.

A.1 Paging Approaches

In a virtualized environment, paging is complicated because there are essentially two lev-

els of address translation. Conceptually, the guest OS controls the translation from guest

261

virtual addresses (GVAs) to guest physical addresses (GPAs) by manipulating page tables

in its address space. The VMM controls the translation from GPAs to host physical ad-

dress (HPAs) by manipulating some other structure that implements the mapping. The two

structural forms we consider here are shadow paging and nested paging.

Shadow paging Shadow paging is a form of virtualized paging that is implemented in

software. In order to understand shadow paging, it is helpful to differentiate the privilege

level of the guest page tables and the VMM page tables. Because the VMM runs at a

higher privilege level, it has the ultimate control over the control registers used to control

the normal paging hardware on the machine. Because of this, it can always ensure that the

page tables in use contain the correct mapping of guest addresses to host addresses. These

page tables, the shadow page tables, contain mappings that integrate the requirements of

the guest and the VMM. The shadow page tables implement a mapping from GVA to HPA

and are in use whenever the guest is running.

The VMM must maintain the shadow page tables’ coherence with the guest’s page ta-

bles. A common approach to do so is known as the virtual TLB model [4, Chapter 32].

The x86’s architected support for native paging requires that the OS (guest OS) explic-

itly invalidate virtual address (GVAs) from the TLB and other page structure caches when

corresponding entries change in the in-memory page tables. These operations (including

INVLPG and INVLPGWB instructions, CR3 (the pointer to the current page table) writes,

CR4.PGE writes, and others) are intercepted by the VMM and used to update the shadow

page tables. The interception of guest paging operations can be expensive as each one

requires at least one exit from the guest, an appropriate manipulation of the shadow page

table, and one reentry into the guest. These operations are especially expensive when con-

text switches are frequent. A typical exit/entry pair, using hardware virtualization support,

requires in excess of 1000 cycles on typical AMD or Intel hardware.

262

In this work, shadow paging is implemented with caching, as is common in many

VMMs. Shadow paging with caching attempts to reuse shadow page tables. Ideally, the

reuse is sufficiently high enough that a context switch can be achieved essentially with

only one exit, to change the CR3 value. The VMM maintains in memory both shadow

page tables corresponding to the current context, and shadow page tables corresponding

to other contexts. The distinction is not perfect—it is perfectly legitimate for the guest to

share guest page tables among multiple contexts, or even at different levels of the same

context. Furthermore, the guest kernel has complete access to all of the guest page tables,

for all contexts, at any time.

Nested paging Nested paging is a hardware mechanism that attempts to avoid the over-

head of the exit/entry pairs needed to implement shadow paging by making the GVA→GPA

and GPA→HPA mappings explicit and separating the concerns of their control, making it

possible to avoid VMM intervention except when a GPA→HPA change is desired. Both

AMD and Intel support nested paging.

In nested paging, the guest page tables are used in the translation process to reflect the

GVA→GPA mapping, while a second set of page tables, visible only to the VMM, are

used to reflect the GPA→HPA mapping. Both the guest and the VMM have their own

copy of the control registers, such as CR3. When a guest tries to reference memory using a

GVA and there is a miss in the TLB, the hardware page-walker mechanism performs a two

dimensional traversal using the guest and nested page tables to translate the GVA to HPA.

When the page walk completes, the result is that the translation is cached in the TLB.

It is important to realize that with nested paging every step of the page walk in the

guest’s page tables requires a traversal of the nested page tables—the guest and nested

page walk lengths do not add, they multiply. The consequence is that a TLB miss can be

very expensive to handle. However, hardware page walk caching has been extended to

263

ameliorate this, and the VMM can further ameliorate it by using large pages (short walks)

in the nested page tables. In this paper, we use the AMD nested paging implementation on

the Opteron 2350. Palacios can use large pages for nested page tables.

Comparison A TLB miss under nested paging potentially incurs a very high cost com-

pared to shadow paging because of the two dimensional page walk that is needed. In the

worst case, using 4-level page tables in the guest and VMM, the cost for a TLB miss is 24

memory references. In contrast, the cost of a TLB miss for shadow paging is the same as

that of the native case. In the extreme where there is little locality of reference, it is likely

that nested paging will underperform shadow paging.

On the other hand, a shadow page fault is very expensive due to the necessary in-

volvement of the VMM. This is primarily because the cost of VM exit is quite high, as

previously noted. Furthermore, a guest page fault will often produce a pair of exits: the

first to inject the page fault into the guest, and the second to fill the shadow page table entry

appropriately. This leads to a situation in which a guest that frequently modifies its page

tables will perform better using a nested rather than shadow paging approach.

A.2 Workloads

A range of benchmarks are selected based on previously conducted studies on virtualized

paging [14, 60]. It is important to note that for many workloads, the paging approach

makes little difference to performance. In this work, we focus on specific benchmarks that

highlight the differences in performance between the two approaches. These are typically

benchmarks that stress the TLB.

The widely-used benchmarks, such as SPEC CPU (2000 and 2006) [3] and PAR-

SEC [26, 24], were surveyed under a native environment, which found TLB-intensive

264

CPU Opteron 2350 2 GHz
Cache L1 DCache (2-way): 64KB

L1 ICache (2-way): 64KB
L2 (16-way): 512KB
L3 (32-way): 2MB

TLB entries L1 DTLB (full): 48 (4K, 2M, 1G)
(page size) L2 DTLB: 512 (4K) 4-way,

128 (2M) 2-way, 16 (1G) 8-way
L1 ITLB (full): 32 (4K), 16 (2M)
L2 ITLB (4-way): 512 (4K)

BUS 1 GHz
Memory 2GB 667 MHz (DDR2)

Figure A.1: Features of primary test machine.

workloads as shown along the x-axis of Figure A.2. Our measurements were done on a

Dell PowerEdge SC1435 described in Figure A.1. The benchmarks ran under Linux 2.6.27

(64-bit). The PARSEC benchmarks used the distributed precompiled binaries. GCC 4.3.2

was used to compile SPEC CPU. Oprofile 0.9.4 is used for measuring TLB misses and

clock cycle counts, PinPoints (Pin 2.8/SimPoint 3.2) [1] to profile memory access patterns,

and libhugetlbfs 2.4 [53] to examine the effect of large pages.

Large page effects Given this set of TLB-sensitive benchmarks, the effect of the use of

large pages is also considered. One expectation is that large pages will reduce the TLB

miss rate simply by reducing contention. A second expectation is that because large pages

imply fewer levels on the page hierarchy, the number of page table entries are decreased,

making it more likely that entries will appear in the data cache. Many of the benchmarks

showed increased performance (by 10–20%) using large pages. However, there are also

cases, MCF and CACTUSADM, where just the opposite occurs.

265

 0

 5000

 10000

 15000

 20000

 25000

SW
IM

CANNEAL*
APSI
ZEUSM

P
M

CF
CACTUSADM

O
M

NETPP
ASTAR
AM

M
P

VPR
LUCAS
STREAM

CLUSTER*

XALANCM
K

ART
X264*
BZIP2
G

CC
FM

A3D
CRAFTY
G

ZIP
SIXTRACK

-20

-10

 0

 10

T
LB

 m
is

se
s

pe
r

m
ill

io
n

re
tir

ed
 in

st
ru

ct
io

ns

P
er

ce
nt

ag
e

of
 c

yc
le

 d
iff

er
en

ce
 b

y
hu

ge
 p

ag
e

* - benchmark of PARSEC

Small page (4KB)
Large page (2MB)

Delta of cycle count (%)

Figure A.2: TLB-intensive workloads surveyed for this work and their native performance
with large and small pages. The bars indicate TLB misses (smaller is better), while the
line shows the percentage performance difference between large and small pages for each
benchmark (smaller is better).

Locality in 2-level page entries To better understand why there are benchmarks where

there is a high TLB miss rate even when using large pages, SWIM, VPR, MCF and a “worst

case” microbenchmarkf1 are considered. In Figure A.3, the degree of locality is presented,

which holds in the first level (“PDE”) of the page hierarchies for these benchmarks. Two

benchmarks have more locality than the worst case. However, it is important to note that

SWIM shows a very random memory-access pattern with a large working set, which helps

1The microbenchmark scans pages in a manner designed to maximize the TLB miss rate by forcing
misses at every level of the page hierarchy.

266

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
um

ul
at

iv
e

%
 o

f m
em

or
y

ac
ce

ss

PDE(Level 2) offset entries (Normalized)

SWIM (4KB)
SWIM (2MB)

MCF (4KB)
MCF (2MB)
VPR (4KB)
VPR (2MB)

microbench (4KB)
microbench (2MB)

Figure A.3: Locality of reference analysis of benchmarks. The memory-access pattern
of SWIM is so random that TLB misses are frequent, even when large pages are used.
However, ∼20 % of the page table covers >80% of memory-accesses without large pages
(MCF) or with large pages (VPR).

to explain why large pages do not enhance its performance significantly.

A.3 Behavior and Metrics

We now consider the selection of metrics for quickly measuring the performance of shadow

and nested paging.

267

Focused benchmark set Workloads that are TLB-intensive will produce the largest dif-

ferences between the performance of shadow and nested paging. We therefore have se-

lected the following benchmarks from Figure A.2 for further study: SWIM, APSI, ZEUS-

MP, GCC and GZIP. For comparison, FMA3D and CRAFTY are also included, which are

much less TLB-intensive. GCC and GZIP use multiple sequential inputs, and thus are

likely to show phase behavior in page translation. The different inputs are expected to re-

sult in different page mappings. Hence, these benchmarks stress shadow paging, requiring

many exits to the VMM to repair the shadow page tables when phase changes occur.

Palacios VMM The shadow and nested paging implementations are implemented in

the Palacios VMM. Palacios is is an OS-independent, open source, BSD-licensed, pub-

licly available type-I VMM designed as part of the V3VEE project (http://v3vee.

org). For this work, Palacios embeds in the Kitten lightweight kernel. Detailed in-

formation about Palacios and Kitten can be found elsewhere [78] with code available

from the project web site. Specifically these commits are used: Palacios commit – hash:

#1cd2958b5eb63b2ac63ced17447ba3b45c43f51a and Kitten commit – hash: #738:02e673-

de9a2e. The machine used is as described in the previous section.

Guest OS Benchmarks ran on a guest (and native) OS based on Puppy Linux 3.01 [2],

with a 2.6.18 Linux kernel, running on a single core 32 bit guest environment.

Conservative shadow paging performance Although shadow paging with caching is

employed, the implementation is likely to produce conservative performance compared to

nested paging for several reasons:

• 32 bit guest addressing. 32 bit guest addressing results in the guest page tables being

at most 2 levels deep. This means that a nested page walk is much shorter than if 64

http://v3vee.org
http://v3vee.org

268

bit addressing (4 levels) were used in the guest.

• Small pages. The shadow paging implementation uses small pages, while the nested

paging implementation can use large pages at the nested level. As described in

Section A.2, using large pages provides an opportunity to reduce TLB contention,

thus favoring nested paging. However, it is important to note that benchmarks such

as SWIM, APSI, and ZEUSMP are relatively insensitive to the choice of large or

small pages.

• TLB tags [9, Chapter 12] and VMCB caching [10, Chapter 15.15] are not used.

These features benefit shadow paging more than nested paging as they reduce exit

costs.

Performance comparison Figure A.4 shows the performance, compared to native, of

nested and shadow paging, for the selected benchmarks. Neither approach is consistently

superior.

Metrics The selection of metrics is now considered for measuring application perfor-

mance and the performance of the current paging approach. Note that application perfor-

mance may decline for reasons unrelated to paging, so it is essential to measure it inde-

pendently. The metrics must be very inexpensive to measure. The selected metrics are

following:

• Application performance: Cycles per instruction (CPI), measured as the number of

CPU cycles needed to execute a window of instructions. The CPI value is smoothened

with a 10 step moving average.

• Nested paging performance: TLB miss rate, measured over a window of instructions.

The TLB miss rate is smoothened with a 10 step moving average.

269

 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2
 2.1
 2.2
 2.3

GZIP
GCC

SW
IM

ZEUSM
P

APSI
CRAFTY

FM
A3D

C
lo

ck
 c

ou
nt

s
ov

er
 N

at
iv

e Nested paging
Shadow paging

Figure A.4: Performance, compared to native, of selected benchmarks using nested and
shadow paging. Lower numbers are better. Neither approach is consistently superior.

• Shadow paging performance: VM exit rate due to paging, measured over a window

of instructions.

To capture the CPI and TLB miss rate, the hardware performance counter unit (PMU) [11,

Chapter3] is used. The counters used are the cycles outside of halt states, the count of re-

tired instructions, the count of L1 DTLB misses, and the count of L2 DTLB misses. The

first two are combined to create the application performance metric (CPI), and the last is

used for the nested paging performance metric. VM exits related to paging are counted

in Palacios’s exit handler. Instructions and TLB misses are counted in the context of the

guest, but the cycle count is measured under both VMM and guest context. Because of this,

270

we are measuring these metrics, as they affect the guest, over “wall clock” time (not virtual

time). Measurements are made in the context of VM exits that are already occurring, with

the window and sampling interval chosen so that there is <1% overhead.

A.4 Mechanism

The facility to switch between shadow paging and nested paging in the middle of handling

any exit is implemented in Palacios. There are essentially two elements to this mechanism,

(a) management of the paging and TLB-related aspects of the hardware-specific virtual-

ization extensions, particularly the VMCB [10] or VMCS [4], and (b) management of the

paging state for each mechanism in a manner such the guest and VMM intent represented

in one can readily be translated to the other.

Palacios maintains a relatively stable GPA→HPA mapping. Because of this, maintain-

ing nested paging state is quite straightforward. In essence, unless the guest physical mem-

ory map changes, the nested page tables can simply be kept cached. Thus, when switching

from shadow to nested paging, they can be simply reused. In contrast, the shadow page

tables include guest intent, which is not controlled. If guest page table updates are tracked

while using nested paging, the performance benefits of nested paging need to be obviated.

Instead, the shadow page tables are simply flushed when switching from nested paging to

shadow paging. Notice that shadow page caching is still used while shadow paging is used.

It is only for the transition from shadow paging to nested paging, and then return to shadow

paging in which the shadow paging cache contents is losted. Because of the asymmetry in

tracking and reconstructing paging state, it is considerably cheaper to switch from shadow

paging to nested paging than the reverse, all other things being the same. Of course, the

actual switching cost also depends on the workload.

271

A.5 Policy

DAV2M is a threshold-based policy. The performance of the current paging mode is com-

pared with a threshold. If the threshold is exceeded, we switch to the alternative mode. A

naive approach to setting these thresholds might be to make them fixed. However, as ob-

served, the selected metrics vary widely across workloads, and also across time within an

individual workload. Furthermore, even if a threshold were correct for a workload, fixing

it would make possible oscillatory behavior, bouncing between the alternative modes.

DAV2M uses dynamic thresholds that are adjusted whenever switching modes. The

adjustments to the thresholds are based on the performance difference that is seen, as

measured using CPI. If performance increases due to the switch, the threshold is adjusted

so that switch will occur at a lower threshold. Otherwise, the threshold makes the switch

less probable in the future.

States DAV2M uses five states, as shown in Figure A.5, and described in the following.

• Shadow is the state when shadow paging is used. The VM exits related to paging are

being counted in countvexit. When windowvexit instructions are retired, the counter

is reset. When it is necessary to leave the state due to countvexit exceeding its thresh-

old, thresholdvexit, the counter and cpishadow, computed from the number of retired

instructions and the number of cycles during windowvexit are stored.

• PreNested is the state in which the performance of nested paging is probed, after

deciding that shadow paging performance is insufficient. Specifically, the previous

cpishadow is compared with the current cpinested. Nested paging is being used. PreN-

ested has a limited duration that expires when at least windowvexit instructions have

been retired.

272

Shadow

Nested
PreShadow

PreNested

Prepaging

Shadow paging Nested paging

1

2

33

5

6

8

4

9

7

Figure A.5: State transition diagram.

• Prepaging is the state that is in force after the PreNested and before Nested. The

purpose of this state, during which nested paging is also in force, is to allow the TLB

miss rate behavior to quiesce before switching to Nested. Without this state, the high

TLB miss rate is easily misinterpretable right after a shadow-to-nested switch and

switch back to shadow. The workloads GZIP and GCC are examples where such

oscillation would occur.

• Nested is the state in which nested paging is used. Here, TLB misses are counted

in counttmiss, reseting every windowtmiss instructions. When this count exceeds

thresholdtmiss, cpinested is updated and this state is passed.

• PreShadow is the state in which the previous cpinested is compared with the current

cpishadow, while running with shadow paging active. Like PreNested, PreShadow

273

Shadow paging

Nested paging

P
r
e
-

N
e
s
t
e
d

S
h
a
d
o
w

Prepaging Nested

PreShadow Shadow

1 2 3 4 1retired instruction count

5 6

7

8

9

Wvexit

Wvexit

Wvexit Wvexit: windowvexit

Wtmiss: windowtmiss

Wtrans: windowtrans

►

Wtmiss

Wtrans

Wtmiss

Wtmiss

Figure A.6: State transition timeline.

holds for a limited duration. As in Shadow, VM exits are being monitored.

Because the measurement granularity is courser when operating with shadow paging (due

to operating over exits), the transient effects of switching from Nested to PreShadow are

generally over by the time the PreShadow period is over. Thus no state analogous to

PrePaging is needed.

Figure A.6 illustrates an example timing of state transitions. Transitions are labeled

by number as in the state diagram.The figure begins in the Shadow state purely for conve-

nience. The time is in retired instructions.

To avoid repeated switching between nested and shadow paging, the thresholds is mod-

ified as transitioning from state to state. Furthermore, in testing thresholds, the compared

metric ratio is multiplied by a factor, pFactor. Finally, the intervals between transitions

from nested to shadow (countn2s) and shadow to nested (counts2n) is considered and which

is compared to a window threshold windowtrans. When a transition occurs within this win-

274

dow, both thresholdvexit and thresholdtmiss are increased, which will damp the system.

Algorithm specifics DAV2M advances through handling the following two events:

VM exit for a shadow page fault:

countvexit ← countvexit + 1

determineStatenext(statecur, statenext)

transState(statecur, statenext)

VM exit for a PMU overflow:

countinst ← 0

countpunit ← countpunit + 1

counts2n ← counts2n + 1

countn2s ← countn2s + 1

determineStatenext(statecur, statenext)

transState(statecur, statenext)

The PMU is set for windowinst instructions as the as sampling period, as Section A.4.

For every retired instruction beyond this, an overflow occurs, causing a VM exit. These

exits are counted in countpunit.

transState(statecur, statenext) transitions to the next state and updates the thresholds. It

is implemented as:

if statecur 6= statenext then

if transit from PreNested to Shadow or

from Nested to PreShadow then

switch paging mode

if countn2s < windowtrans then

275

increase thresholdtmiss and thresholdvexit

countn2s ← 0

end if

else if transit from Shadow to PreNested or

from PreShadow to Nested then

switch paging mode

if counts2n < windowtrans then

increase thresholdtmiss and thresholdvexit

counts2n ← 0

end if

end if

end if

determineStatenext(statecur, statenext) determines the next state. It is implemented as:

statenext ← statecur

if statecur is PreShadow or Shadow then

if countvexit > thresholdvexit then

update cpishadow

statenext ← PreNested

countpunit ← 0

else if statecur is PreShadow then

if countpunit = windowtmiss then

update cpishadow

if cpishadow > cpinested * pFactor then

statenext ← Nested

276

counttmiss ← 0

countpunit ← 0

increment thresholdtmiss

end if

else if not (countpunit mod countvexit) then

countvexit ← 0

end if

else if statecur is Shadow and

countpunit = windowvexit then

countvexit ← 0

countpunit ← 0

end if

else if statecur is either PreNested, Prepaging or Nested then

if statecur is PreNested and

countpunit = windowvexit then

update cpinested

if cpinested > cpishadow * pFactor then

increment thresholdvexit

statenext ← Shadow

else

statenext ← Prepaging

end if

else if statecur is Nested and

countpunit = windowtmiss then

update counttmiss

277

if counttmiss > thresholdtmiss then

update cpinested

statenext ← PreShadow

else

countpunit ← 0

end if

else if statecur is Prepaging and

countpunit = windowprepaging then

countpunit ← 0

statenext ← Nested

end if

end if

Several different windows have been introduced. Their relationships must be

windowinst ≤ windowvexit < windowtmiss < windowtrans.

A.6 Results

An evaluation of DAV2M is now presented, which uses the selected benchmarks described

in Section A.3.

Parameters and initial settings The parameters and starting values for DAV2M, de-

scribed in Section A.5, were set as follows:

• pFactor = 1.1

• windowinst = 109 instructions

278

 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2
 2.1
 2.2

GZIP
GCC

SW
IM

ZEUSM
P

APSI
CRAFTY

FM
A3D

C
lo

ck
 c

ou
nt

s
ov

er
 N

at
iv

e

Opteron 2350

Nested paging
Shadow paging

DAV2M

Figure A.7: Performance of DAV2M˙DAV2M is able to provide virtually identical perfor-
mance to the best static policy for every benchmark.

• windowvexit = 109 instructions

• windowtmiss = 10× windowinst

• windowtrans = 100× windowinst

• thresholdvexit = 104

• thresholdtmiss = 105

279

 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2
 2.1
 2.2

GZIP
GCC

SW
IM

ZEUSM
P

APSI
CRAFTY

FM
A3D

C
lo

ck
 c

ou
nt

s
ov

er
 N

at
iv

e

Phenom II X2 550

Nested paging
Shadow paging

DAV2M

Figure A.8: Performance of DAV2M on the second test machine. DAV2M is also able to
produce the same performance of the best static policy.

Application performance Figure A.7 and A.8 present the application performance re-

sults comparing DAV2M with the static approaches of either shadow paging or nested

paging. The format of each graph is identical to that of Figure A.4. The bars compare

to native performance, lower bars are better. The left hand graph presents an evaluation

on the same Opteron 2350 as previously described, while the right hand graph presents

the same evaluation done on a newer machine. The newer machine is equipped with with

an AMD Phenom II X2 550 processor, 4GB RAM, 3GHz clock speed, and 6 MB of L3

cache. The most important observation is that DAV2M is able to provide virtually identical

280

performance to the best static paging approach on all of the benchmarks on both machines.

There are two important things to point out at this point. First, the measurements given

in Figure A.7 (and Figure A.4) are of the number of cycles needed to run the benchmark—

they reflect the total execution times of the benchmarks. These should not be confused

with the CPI metric (Section A.3) that DAV2M uses internally to heuristically determine

application execution rate. Secondly, recall that our evaluation focused on a set of bench-

marks that induced the most significant differences between the two paging approaches

(Section A.2). For benchmarks where there is little difference (two are included), DAV2M

correctly does not affect performance.

Deeper analysis Now focusing on the results for the Opteron 2350 machine, it is illus-

trated on how DAV2M is working, and what its overheads are.

It is possible to group the benchmarks into three sets based on which virtual paging

mode is best for performance:

1. SWIM and ZEUSMP are best under shadow paging.

2. GCC and GZIP are best under nested paging.

3. APSI, CRAFTY and FMA3D perform similarly.

For (1) and (2), DAV2M quickly chooses the right approach. For (3), DAV2M quickly

chooses an approach and avoids switching.

Figure A.9 illustrates the number of switches of paging mode that occur for each bench-

mark. Even in GCC, only 13 transitions occur. GCC has phase behavior in which short

phases where shadow paging is preferable occur. Note that despite this switching, GCC

under DAV2M performs as well as the best static policy: the costs of switching are coun-

terbalanced by the increased performance in those phases. For the other benchmarks, very

little switching is observed, as expected.

281

 0

 2

 4

 6

 8

 10

 12

 14

GZIP
GCC

SW
IM

ZEUSM
P

APSI
CRAFTY

FM
A3D

T
ot

al
 n

um
be

r
of

 m
od

e
sw

itc
hi

ng

Figure A.9: Number of transitions seen during execution.

Figure A.10 shows the percentage of time that the benchmarks spend in each mode

when run under DAV2M. Here the three sets of benchmarks are quite evident. For the

third set, in which the paging approach does not matter, we see that DAV2M has made

opposite decisions (SWIM vs. ZEUSMP), but with no real consequences for performance.

At most one switch occurred.

282

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

GZIP
GCC

SW
IM

ZEUSM
P

APSI
CRAFTY

FM
A3D

%
 o

f c
lo

ck
 c

ou
nt

s
Nested paging Shadow paging

Figure A.10: Percentage of time spent in each mode under DAV2M.

A.7 Related Work

The virtualization of paging has a history as long as virtual machine monitors themselves.

For the x86 platform, the initial descriptions of the software-based approaches of shadow

paging in VMware [112] and paravirtualized shadow paging in Xen [18] set the stage.

Bhargava et al [23] give a detailed treatment of the hardware-based approach of nested

paging and its optimization. Barr et al [19] propose new approaches to page walk caching

that could be used to further accelerate nested paging. Adams and Ageson [6] compare

hardware and software techniques in x86 virtualization, while Karger [69] compares x86

and DEC Alpha virtualization, a comparison that includes a excellent treatment of the

283

aspects of x86 paging that make it particularly challenging to virtualize with high perfor-

mance.

Wang et al [113] also propose, implement, and evaluate an adaptive approach to paging

approach selection. DAV2M uses a different mechanism and policy, and is evaluated in the

context of a different VMM. The work in this Appendix was previously described at ICAC

2010 [16]. Both papers find adaptive paging to be highly promising.

A.8 Conclusions

In this work, a case is made, in which no single approach to virtualizing virtual memory

is best for maximizing application performance, focusing on the choice between shadow

paging and nested paging. Rather, the choice is workload-dependent, and it may even vary

over the life of a virtual machine. In response, a mechanism is created in our Palacios

VMM for changing the paging approach at any time, and a policy, DAV2M, for driving

that mechanism to increase application performance. It is demonstrated that DAV2M is

able to adapt to workload, providing performance at least as good as the best statically

chosen paging approach for the workload. Although the implementation is available in

the Palacios VMM, the general idea could be applied in any VMM that supports multiple

paging approaches.

	Tech-report-cover-ChangBae

