X-Git-Url: http://v3vee.org/palacios/gitweb/gitweb.cgi?p=palacios.git;a=blobdiff_plain;f=geekos%2Fsrc%2Flwip%2Fcore%2Fpbuf.c;fp=geekos%2Fsrc%2Flwip%2Fcore%2Fpbuf.c;h=8d935b02379219a05c8493253d6580790b29ce48;hp=0000000000000000000000000000000000000000;hb=ddc16b0737cf58f7aa90a69c6652cdf4090aec51;hpb=626595465a2c6987606a6bc697df65130ad8c2d3 diff --git a/geekos/src/lwip/core/pbuf.c b/geekos/src/lwip/core/pbuf.c new file mode 100644 index 0000000..8d935b0 --- /dev/null +++ b/geekos/src/lwip/core/pbuf.c @@ -0,0 +1,777 @@ +/** + * @file + * Packet buffer management + * + * Packets are built from the pbuf data structure. It supports dynamic + * memory allocation for packet contents or can reference externally + * managed packet contents both in RAM and ROM. Quick allocation for + * incoming packets is provided through pools with fixed sized pbufs. + * + * A packet may span over multiple pbufs, chained as a singly linked + * list. This is called a "pbuf chain". + * + * Multiple packets may be queued, also using this singly linked list. + * This is called a "packet queue". + * + * So, a packet queue consists of one or more pbuf chains, each of + * which consist of one or more pbufs. CURRENTLY, PACKET QUEUES ARE + * NOT SUPPORTED!!! Use helper structs to queue multiple packets. + * + * The differences between a pbuf chain and a packet queue are very + * precise but subtle. + * + * The last pbuf of a packet has a ->tot_len field that equals the + * ->len field. It can be found by traversing the list. If the last + * pbuf of a packet has a ->next field other than NULL, more packets + * are on the queue. + * + * Therefore, looping through a pbuf of a single packet, has an + * loop end condition (tot_len == p->len), NOT (next == NULL). + */ + +/* + * Copyright (c) 2001-2004 Swedish Institute of Computer Science. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. The name of the author may not be used to endorse or promote products + * derived from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED + * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT + * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT + * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING + * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY + * OF SUCH DAMAGE. + * + * This file is part of the lwIP TCP/IP stack. + * + * Author: Adam Dunkels + * + */ + +#include "lwip/opt.h" + +#include "lwip/stats.h" +#include "lwip/def.h" +#include "lwip/mem.h" +#include "lwip/memp.h" +#include "lwip/pbuf.h" +#include "lwip/sys.h" +#include "arch/perf.h" + +#include + +#define SIZEOF_STRUCT_PBUF LWIP_MEM_ALIGN_SIZE(sizeof(struct pbuf)) +/* Since the pool is created in memp, PBUF_POOL_BUFSIZE will be automatically + aligned there. Therefore, PBUF_POOL_BUFSIZE_ALIGNED can be used here. */ +#define PBUF_POOL_BUFSIZE_ALIGNED LWIP_MEM_ALIGN_SIZE(PBUF_POOL_BUFSIZE) + +/** + * Allocates a pbuf of the given type (possibly a chain for PBUF_POOL type). + * + * The actual memory allocated for the pbuf is determined by the + * layer at which the pbuf is allocated and the requested size + * (from the size parameter). + * + * @param layer flag to define header size + * @param length size of the pbuf's payload + * @param type this parameter decides how and where the pbuf + * should be allocated as follows: + * + * - PBUF_RAM: buffer memory for pbuf is allocated as one large + * chunk. This includes protocol headers as well. + * - PBUF_ROM: no buffer memory is allocated for the pbuf, even for + * protocol headers. Additional headers must be prepended + * by allocating another pbuf and chain in to the front of + * the ROM pbuf. It is assumed that the memory used is really + * similar to ROM in that it is immutable and will not be + * changed. Memory which is dynamic should generally not + * be attached to PBUF_ROM pbufs. Use PBUF_REF instead. + * - PBUF_REF: no buffer memory is allocated for the pbuf, even for + * protocol headers. It is assumed that the pbuf is only + * being used in a single thread. If the pbuf gets queued, + * then pbuf_take should be called to copy the buffer. + * - PBUF_POOL: the pbuf is allocated as a pbuf chain, with pbufs from + * the pbuf pool that is allocated during pbuf_init(). + * + * @return the allocated pbuf. If multiple pbufs where allocated, this + * is the first pbuf of a pbuf chain. + */ +struct pbuf * +pbuf_alloc(pbuf_layer layer, u16_t length, pbuf_type type) +{ + struct pbuf *p, *q, *r; + u16_t offset; + s32_t rem_len; /* remaining length */ + LWIP_DEBUGF(PBUF_DEBUG | LWIP_DBG_TRACE | 3, ("pbuf_alloc(length=%"U16_F")\n", length)); + + /* determine header offset */ + offset = 0; + switch (layer) { + case PBUF_TRANSPORT: + /* add room for transport (often TCP) layer header */ + offset += PBUF_TRANSPORT_HLEN; + /* FALLTHROUGH */ + case PBUF_IP: + /* add room for IP layer header */ + offset += PBUF_IP_HLEN; + /* FALLTHROUGH */ + case PBUF_LINK: + /* add room for link layer header */ + offset += PBUF_LINK_HLEN; + break; + case PBUF_RAW: + break; + default: + LWIP_ASSERT("pbuf_alloc: bad pbuf layer", 0); + return NULL; + } + + switch (type) { + case PBUF_POOL: + /* allocate head of pbuf chain into p */ + p = memp_malloc(MEMP_PBUF_POOL); + LWIP_DEBUGF(PBUF_DEBUG | LWIP_DBG_TRACE | 3, ("pbuf_alloc: allocated pbuf %p\n", (void *)p)); + if (p == NULL) { + return NULL; + } + p->type = type; + p->next = NULL; + + /* make the payload pointer point 'offset' bytes into pbuf data memory */ + p->payload = LWIP_MEM_ALIGN((void *)((u8_t *)p + (SIZEOF_STRUCT_PBUF + offset))); + LWIP_ASSERT("pbuf_alloc: pbuf p->payload properly aligned", + ((mem_ptr_t)p->payload % MEM_ALIGNMENT) == 0); + /* the total length of the pbuf chain is the requested size */ + p->tot_len = length; + /* set the length of the first pbuf in the chain */ + p->len = LWIP_MIN(length, PBUF_POOL_BUFSIZE_ALIGNED - LWIP_MEM_ALIGN_SIZE(offset)); + LWIP_ASSERT("check p->payload + p->len does not overflow pbuf", + ((u8_t*)p->payload + p->len <= + (u8_t*)p + SIZEOF_STRUCT_PBUF + PBUF_POOL_BUFSIZE_ALIGNED)); + /* set reference count (needed here in case we fail) */ + p->ref = 1; + + /* now allocate the tail of the pbuf chain */ + + /* remember first pbuf for linkage in next iteration */ + r = p; + /* remaining length to be allocated */ + rem_len = length - p->len; + /* any remaining pbufs to be allocated? */ + while (rem_len > 0) { + q = memp_malloc(MEMP_PBUF_POOL); + if (q == NULL) { + /* free chain so far allocated */ + pbuf_free(p); + /* bail out unsuccesfully */ + return NULL; + } + q->type = type; + q->flags = 0; + q->next = NULL; + /* make previous pbuf point to this pbuf */ + r->next = q; + /* set total length of this pbuf and next in chain */ + LWIP_ASSERT("rem_len < max_u16_t", rem_len < 0xffff); + q->tot_len = (u16_t)rem_len; + /* this pbuf length is pool size, unless smaller sized tail */ + q->len = LWIP_MIN((u16_t)rem_len, PBUF_POOL_BUFSIZE_ALIGNED); + q->payload = (void *)((u8_t *)q + SIZEOF_STRUCT_PBUF); + LWIP_ASSERT("pbuf_alloc: pbuf q->payload properly aligned", + ((mem_ptr_t)q->payload % MEM_ALIGNMENT) == 0); + LWIP_ASSERT("check p->payload + p->len does not overflow pbuf", + ((u8_t*)p->payload + p->len <= + (u8_t*)p + SIZEOF_STRUCT_PBUF + PBUF_POOL_BUFSIZE_ALIGNED)); + q->ref = 1; + /* calculate remaining length to be allocated */ + rem_len -= q->len; + /* remember this pbuf for linkage in next iteration */ + r = q; + } + /* end of chain */ + /*r->next = NULL;*/ + + break; + case PBUF_RAM: + /* If pbuf is to be allocated in RAM, allocate memory for it. */ + p = (struct pbuf*)mem_malloc(LWIP_MEM_ALIGN_SIZE(SIZEOF_STRUCT_PBUF + offset) + LWIP_MEM_ALIGN_SIZE(length)); + if (p == NULL) { + return NULL; + } + /* Set up internal structure of the pbuf. */ + p->payload = LWIP_MEM_ALIGN((void *)((u8_t *)p + SIZEOF_STRUCT_PBUF + offset)); + p->len = p->tot_len = length; + p->next = NULL; + p->type = type; + + LWIP_ASSERT("pbuf_alloc: pbuf->payload properly aligned", + ((mem_ptr_t)p->payload % MEM_ALIGNMENT) == 0); + break; + /* pbuf references existing (non-volatile static constant) ROM payload? */ + case PBUF_ROM: + /* pbuf references existing (externally allocated) RAM payload? */ + case PBUF_REF: + /* only allocate memory for the pbuf structure */ + p = memp_malloc(MEMP_PBUF); + if (p == NULL) { + LWIP_DEBUGF(PBUF_DEBUG | LWIP_DBG_TRACE | 2, ("pbuf_alloc: Could not allocate MEMP_PBUF for PBUF_%s.\n", + (type == PBUF_ROM) ? "ROM" : "REF")); + return NULL; + } + /* caller must set this field properly, afterwards */ + p->payload = NULL; + p->len = p->tot_len = length; + p->next = NULL; + p->type = type; + break; + default: + LWIP_ASSERT("pbuf_alloc: erroneous type", 0); + return NULL; + } + /* set reference count */ + p->ref = 1; + /* set flags */ + p->flags = 0; + LWIP_DEBUGF(PBUF_DEBUG | LWIP_DBG_TRACE | 3, ("pbuf_alloc(length=%"U16_F") == %p\n", length, (void *)p)); + return p; +} + + +/** + * Shrink a pbuf chain to a desired length. + * + * @param p pbuf to shrink. + * @param new_len desired new length of pbuf chain + * + * Depending on the desired length, the first few pbufs in a chain might + * be skipped and left unchanged. The new last pbuf in the chain will be + * resized, and any remaining pbufs will be freed. + * + * @note If the pbuf is ROM/REF, only the ->tot_len and ->len fields are adjusted. + * @note May not be called on a packet queue. + * + * @note Despite its name, pbuf_realloc cannot grow the size of a pbuf (chain). + */ +void +pbuf_realloc(struct pbuf *p, u16_t new_len) +{ + struct pbuf *q; + u16_t rem_len; /* remaining length */ + s32_t grow; + + LWIP_ASSERT("pbuf_realloc: sane p->type", p->type == PBUF_POOL || + p->type == PBUF_ROM || + p->type == PBUF_RAM || + p->type == PBUF_REF); + + /* desired length larger than current length? */ + if (new_len >= p->tot_len) { + /* enlarging not yet supported */ + return; + } + + /* the pbuf chain grows by (new_len - p->tot_len) bytes + * (which may be negative in case of shrinking) */ + grow = new_len - p->tot_len; + + /* first, step over any pbufs that should remain in the chain */ + rem_len = new_len; + q = p; + /* should this pbuf be kept? */ + while (rem_len > q->len) { + /* decrease remaining length by pbuf length */ + rem_len -= q->len; + /* decrease total length indicator */ + LWIP_ASSERT("grow < max_u16_t", grow < 0xffff); + q->tot_len += (u16_t)grow; + /* proceed to next pbuf in chain */ + q = q->next; + } + /* we have now reached the new last pbuf (in q) */ + /* rem_len == desired length for pbuf q */ + + /* shrink allocated memory for PBUF_RAM */ + /* (other types merely adjust their length fields */ + if ((q->type == PBUF_RAM) && (rem_len != q->len)) { + /* reallocate and adjust the length of the pbuf that will be split */ + q = mem_realloc(q, (u8_t *)q->payload - (u8_t *)q + rem_len); + LWIP_ASSERT("mem_realloc give q == NULL", q != NULL); + } + /* adjust length fields for new last pbuf */ + q->len = rem_len; + q->tot_len = q->len; + + /* any remaining pbufs in chain? */ + if (q->next != NULL) { + /* free remaining pbufs in chain */ + pbuf_free(q->next); + } + /* q is last packet in chain */ + q->next = NULL; + +} + +/** + * Adjusts the payload pointer to hide or reveal headers in the payload. + * + * Adjusts the ->payload pointer so that space for a header + * (dis)appears in the pbuf payload. + * + * The ->payload, ->tot_len and ->len fields are adjusted. + * + * @param p pbuf to change the header size. + * @param header_size_increment Number of bytes to increment header size which + * increases the size of the pbuf. New space is on the front. + * (Using a negative value decreases the header size.) + * If hdr_size_inc is 0, this function does nothing and returns succesful. + * + * PBUF_ROM and PBUF_REF type buffers cannot have their sizes increased, so + * the call will fail. A check is made that the increase in header size does + * not move the payload pointer in front of the start of the buffer. + * @return non-zero on failure, zero on success. + * + */ +u8_t +pbuf_header(struct pbuf *p, s16_t header_size_increment) +{ + u16_t type; + void *payload; + u16_t increment_magnitude; + + LWIP_ASSERT("p != NULL", p != NULL); + if ((header_size_increment == 0) || (p == NULL)) + return 0; + + if (header_size_increment < 0){ + increment_magnitude = -header_size_increment; + /* Check that we aren't going to move off the end of the pbuf */ + LWIP_ERROR("increment_magnitude <= p->len", (increment_magnitude <= p->len), return 1;); + } else { + increment_magnitude = header_size_increment; +#if 0 + /* Can't assert these as some callers speculatively call + pbuf_header() to see if it's OK. Will return 1 below instead. */ + /* Check that we've got the correct type of pbuf to work with */ + LWIP_ASSERT("p->type == PBUF_RAM || p->type == PBUF_POOL", + p->type == PBUF_RAM || p->type == PBUF_POOL); + /* Check that we aren't going to move off the beginning of the pbuf */ + LWIP_ASSERT("p->payload - increment_magnitude >= p + SIZEOF_STRUCT_PBUF", + (u8_t *)p->payload - increment_magnitude >= (u8_t *)p + SIZEOF_STRUCT_PBUF); +#endif + } + + type = p->type; + /* remember current payload pointer */ + payload = p->payload; + + /* pbuf types containing payloads? */ + if (type == PBUF_RAM || type == PBUF_POOL) { + /* set new payload pointer */ + p->payload = (u8_t *)p->payload - header_size_increment; + /* boundary check fails? */ + if ((u8_t *)p->payload < (u8_t *)p + SIZEOF_STRUCT_PBUF) { + LWIP_DEBUGF( PBUF_DEBUG | 2, ("pbuf_header: failed as %p < %p (not enough space for new header size)\n", + (void *)p->payload, + (void *)(p + 1)));\ + /* restore old payload pointer */ + p->payload = payload; + /* bail out unsuccesfully */ + return 1; + } + /* pbuf types refering to external payloads? */ + } else if (type == PBUF_REF || type == PBUF_ROM) { + /* hide a header in the payload? */ + if ((header_size_increment < 0) && (increment_magnitude <= p->len)) { + /* increase payload pointer */ + p->payload = (u8_t *)p->payload - header_size_increment; + } else { + /* cannot expand payload to front (yet!) + * bail out unsuccesfully */ + return 1; + } + } + else { + /* Unknown type */ + LWIP_ASSERT("bad pbuf type", 0); + return 1; + } + /* modify pbuf length fields */ + p->len += header_size_increment; + p->tot_len += header_size_increment; + + LWIP_DEBUGF(PBUF_DEBUG, ("pbuf_header: old %p new %p (%"S16_F")\n", + (void *)payload, (void *)p->payload, header_size_increment)); + + return 0; +} + +/** + * Dereference a pbuf chain or queue and deallocate any no-longer-used + * pbufs at the head of this chain or queue. + * + * Decrements the pbuf reference count. If it reaches zero, the pbuf is + * deallocated. + * + * For a pbuf chain, this is repeated for each pbuf in the chain, + * up to the first pbuf which has a non-zero reference count after + * decrementing. So, when all reference counts are one, the whole + * chain is free'd. + * + * @param p The pbuf (chain) to be dereferenced. + * + * @return the number of pbufs that were de-allocated + * from the head of the chain. + * + * @note MUST NOT be called on a packet queue (Not verified to work yet). + * @note the reference counter of a pbuf equals the number of pointers + * that refer to the pbuf (or into the pbuf). + * + * @internal examples: + * + * Assuming existing chains a->b->c with the following reference + * counts, calling pbuf_free(a) results in: + * + * 1->2->3 becomes ...1->3 + * 3->3->3 becomes 2->3->3 + * 1->1->2 becomes ......1 + * 2->1->1 becomes 1->1->1 + * 1->1->1 becomes ....... + * + */ +u8_t +pbuf_free(struct pbuf *p) +{ + u16_t type; + struct pbuf *q; + u8_t count; + + if (p == NULL) { + LWIP_ASSERT("p != NULL", p != NULL); + /* if assertions are disabled, proceed with debug output */ + LWIP_DEBUGF(PBUF_DEBUG | LWIP_DBG_TRACE | 2, ("pbuf_free(p == NULL) was called.\n")); + return 0; + } + LWIP_DEBUGF(PBUF_DEBUG | LWIP_DBG_TRACE | 3, ("pbuf_free(%p)\n", (void *)p)); + + PERF_START; + + LWIP_ASSERT("pbuf_free: sane type", + p->type == PBUF_RAM || p->type == PBUF_ROM || + p->type == PBUF_REF || p->type == PBUF_POOL); + + count = 0; + /* de-allocate all consecutive pbufs from the head of the chain that + * obtain a zero reference count after decrementing*/ + while (p != NULL) { + u16_t ref; + SYS_ARCH_DECL_PROTECT(old_level); + /* Since decrementing ref cannot be guaranteed to be a single machine operation + * we must protect it. We put the new ref into a local variable to prevent + * further protection. */ + SYS_ARCH_PROTECT(old_level); + /* all pbufs in a chain are referenced at least once */ + LWIP_ASSERT("pbuf_free: p->ref > 0", p->ref > 0); + /* decrease reference count (number of pointers to pbuf) */ + ref = --(p->ref); + SYS_ARCH_UNPROTECT(old_level); + /* this pbuf is no longer referenced to? */ + if (ref == 0) { + /* remember next pbuf in chain for next iteration */ + q = p->next; + LWIP_DEBUGF( PBUF_DEBUG | 2, ("pbuf_free: deallocating %p\n", (void *)p)); + type = p->type; + /* is this a pbuf from the pool? */ + if (type == PBUF_POOL) { + memp_free(MEMP_PBUF_POOL, p); + /* is this a ROM or RAM referencing pbuf? */ + } else if (type == PBUF_ROM || type == PBUF_REF) { + memp_free(MEMP_PBUF, p); + /* type == PBUF_RAM */ + } else { + mem_free(p); + } + count++; + /* proceed to next pbuf */ + p = q; + /* p->ref > 0, this pbuf is still referenced to */ + /* (and so the remaining pbufs in chain as well) */ + } else { + LWIP_DEBUGF( PBUF_DEBUG | 2, ("pbuf_free: %p has ref %"U16_F", ending here.\n", (void *)p, ref)); + /* stop walking through the chain */ + p = NULL; + } + } + PERF_STOP("pbuf_free"); + /* return number of de-allocated pbufs */ + return count; +} + +/** + * Count number of pbufs in a chain + * + * @param p first pbuf of chain + * @return the number of pbufs in a chain + */ + +u8_t +pbuf_clen(struct pbuf *p) +{ + u8_t len; + + len = 0; + while (p != NULL) { + ++len; + p = p->next; + } + return len; +} + +/** + * Increment the reference count of the pbuf. + * + * @param p pbuf to increase reference counter of + * + */ +void +pbuf_ref(struct pbuf *p) +{ + SYS_ARCH_DECL_PROTECT(old_level); + /* pbuf given? */ + if (p != NULL) { + SYS_ARCH_PROTECT(old_level); + ++(p->ref); + SYS_ARCH_UNPROTECT(old_level); + } +} + +/** + * Concatenate two pbufs (each may be a pbuf chain) and take over + * the caller's reference of the tail pbuf. + * + * @note The caller MAY NOT reference the tail pbuf afterwards. + * Use pbuf_chain() for that purpose. + * + * @see pbuf_chain() + */ + +void +pbuf_cat(struct pbuf *h, struct pbuf *t) +{ + struct pbuf *p; + + LWIP_ERROR("(h != NULL) && (t != NULL) (programmer violates API)", + ((h != NULL) && (t != NULL)), return;); + + /* proceed to last pbuf of chain */ + for (p = h; p->next != NULL; p = p->next) { + /* add total length of second chain to all totals of first chain */ + p->tot_len += t->tot_len; + } + /* { p is last pbuf of first h chain, p->next == NULL } */ + LWIP_ASSERT("p->tot_len == p->len (of last pbuf in chain)", p->tot_len == p->len); + LWIP_ASSERT("p->next == NULL", p->next == NULL); + /* add total length of second chain to last pbuf total of first chain */ + p->tot_len += t->tot_len; + /* chain last pbuf of head (p) with first of tail (t) */ + p->next = t; + /* p->next now references t, but the caller will drop its reference to t, + * so netto there is no change to the reference count of t. + */ +} + +/** + * Chain two pbufs (or pbuf chains) together. + * + * The caller MUST call pbuf_free(t) once it has stopped + * using it. Use pbuf_cat() instead if you no longer use t. + * + * @param h head pbuf (chain) + * @param t tail pbuf (chain) + * @note The pbufs MUST belong to the same packet. + * @note MAY NOT be called on a packet queue. + * + * The ->tot_len fields of all pbufs of the head chain are adjusted. + * The ->next field of the last pbuf of the head chain is adjusted. + * The ->ref field of the first pbuf of the tail chain is adjusted. + * + */ +void +pbuf_chain(struct pbuf *h, struct pbuf *t) +{ + pbuf_cat(h, t); + /* t is now referenced by h */ + pbuf_ref(t); + LWIP_DEBUGF(PBUF_DEBUG | LWIP_DBG_FRESH | 2, ("pbuf_chain: %p references %p\n", (void *)h, (void *)t)); +} + +/** + * Dechains the first pbuf from its succeeding pbufs in the chain. + * + * Makes p->tot_len field equal to p->len. + * @param p pbuf to dechain + * @return remainder of the pbuf chain, or NULL if it was de-allocated. + * @note May not be called on a packet queue. + */ +struct pbuf * +pbuf_dechain(struct pbuf *p) +{ + struct pbuf *q; + u8_t tail_gone = 1; + /* tail */ + q = p->next; + /* pbuf has successor in chain? */ + if (q != NULL) { + /* assert tot_len invariant: (p->tot_len == p->len + (p->next? p->next->tot_len: 0) */ + LWIP_ASSERT("p->tot_len == p->len + q->tot_len", q->tot_len == p->tot_len - p->len); + /* enforce invariant if assertion is disabled */ + q->tot_len = p->tot_len - p->len; + /* decouple pbuf from remainder */ + p->next = NULL; + /* total length of pbuf p is its own length only */ + p->tot_len = p->len; + /* q is no longer referenced by p, free it */ + LWIP_DEBUGF(PBUF_DEBUG | LWIP_DBG_STATE, ("pbuf_dechain: unreferencing %p\n", (void *)q)); + tail_gone = pbuf_free(q); + if (tail_gone > 0) { + LWIP_DEBUGF(PBUF_DEBUG | LWIP_DBG_STATE, + ("pbuf_dechain: deallocated %p (as it is no longer referenced)\n", (void *)q)); + } + /* return remaining tail or NULL if deallocated */ + } + /* assert tot_len invariant: (p->tot_len == p->len + (p->next? p->next->tot_len: 0) */ + LWIP_ASSERT("p->tot_len == p->len", p->tot_len == p->len); + return ((tail_gone > 0) ? NULL : q); +} + +/** + * + * Create PBUF_RAM copies of pbufs. + * + * Used to queue packets on behalf of the lwIP stack, such as + * ARP based queueing. + * + * @note You MUST explicitly use p = pbuf_take(p); + * + * @note Only one packet is copied, no packet queue! + * + * @param p_to pbuf source of the copy + * @param p_from pbuf destination of the copy + * + * @return ERR_OK if pbuf was copied + * ERR_ARG if one of the pbufs is NULL or p_to is not big + * enough to hold p_from + */ +err_t +pbuf_copy(struct pbuf *p_to, struct pbuf *p_from) +{ + u16_t offset_to=0, offset_from=0, len; + + LWIP_DEBUGF(PBUF_DEBUG | LWIP_DBG_TRACE | 3, ("pbuf_copy(%p, %p)\n", + (void*)p_to, (void*)p_from)); + + /* is the target big enough to hold the source? */ + LWIP_ERROR("pbuf_copy: target not big enough to hold source", ((p_to != NULL) && + (p_from != NULL) && (p_to->tot_len >= p_from->tot_len)), return ERR_ARG;); + + /* iterate through pbuf chain */ + do + { + LWIP_ASSERT("p_to != NULL", p_to != NULL); + /* copy one part of the original chain */ + if ((p_to->len - offset_to) >= (p_from->len - offset_from)) { + /* complete current p_from fits into current p_to */ + len = p_from->len - offset_from; + } else { + /* current p_from does not fit into current p_to */ + len = p_to->len - offset_to; + } + MEMCPY((u8_t*)p_to->payload + offset_to, (u8_t*)p_from->payload + offset_from, len); + offset_to += len; + offset_from += len; + LWIP_ASSERT("offset_to <= p_to->len", offset_to <= p_to->len); + if (offset_to == p_to->len) { + /* on to next p_to (if any) */ + offset_to = 0; + p_to = p_to->next; + } + LWIP_ASSERT("offset_from <= p_from->len", offset_from <= p_from->len); + if (offset_from >= p_from->len) { + /* on to next p_from (if any) */ + offset_from = 0; + p_from = p_from->next; + } + + if((p_from != NULL) && (p_from->len == p_from->tot_len)) { + /* don't copy more than one packet! */ + LWIP_ERROR("pbuf_copy() does not allow packet queues!\n", + (p_from->next == NULL), return ERR_VAL;); + } + if((p_to != NULL) && (p_to->len == p_to->tot_len)) { + /* don't copy more than one packet! */ + LWIP_ERROR("pbuf_copy() does not allow packet queues!\n", + (p_to->next == NULL), return ERR_VAL;); + } + } while (p_from); + LWIP_DEBUGF(PBUF_DEBUG | LWIP_DBG_TRACE | 1, ("pbuf_copy: end of chain reached.\n")); + return ERR_OK; +} + +/** + * Copy (part of) the contents of a packet buffer + * to an application supplied buffer. + * + * @param buf the pbuf from which to copy data + * @param dataptr the application supplied buffer + * @param len length of data to copy (dataptr must be big enough) + * @param offset offset into the packet buffer from where to begin copying len bytes + */ +u16_t +pbuf_copy_partial(struct pbuf *buf, void *dataptr, u16_t len, u16_t offset) +{ + struct pbuf *p; + u16_t left; + u16_t buf_copy_len; + u16_t copied_total = 0; + + LWIP_ERROR("netbuf_copy_partial: invalid buf", (buf != NULL), return 0;); + LWIP_ERROR("netbuf_copy_partial: invalid dataptr", (dataptr != NULL), return 0;); + + left = 0; + + if((buf == NULL) || (dataptr == NULL)) { + return 0; + } + + /* Note some systems use byte copy if dataptr or one of the pbuf payload pointers are unaligned. */ + for(p = buf; len != 0 && p != NULL; p = p->next) { + if ((offset != 0) && (offset >= p->len)) { + /* don't copy from this buffer -> on to the next */ + offset -= p->len; + } else { + /* copy from this buffer. maybe only partially. */ + buf_copy_len = p->len - offset; + if (buf_copy_len > len) + buf_copy_len = len; + /* copy the necessary parts of the buffer */ + MEMCPY(&((char*)dataptr)[left], &((char*)p->payload)[offset], buf_copy_len); + copied_total += buf_copy_len; + left += buf_copy_len; + len -= buf_copy_len; + offset = 0; + } + } + return copied_total; +}