/* * This file is part of the Palacios Virtual Machine Monitor developed * by the V3VEE Project with funding from the United States National * Science Foundation and the Department of Energy. * * The V3VEE Project is a joint project between Northwestern University * and the University of New Mexico. You can find out more at * http://www.v3vee.org * * Copyright (c) 2009, Lei Xia * Copyright (c) 2009, Yuan Tang * Copyright (c) 2009, Jack Lange * Copyright (c) 2009, Peter Dinda * Copyright (c) 2009, The V3VEE Project * All rights reserved. * * Author: Lei Xia * Yuan Tang * Jack Lange * Peter Dinda static const char any_type_str[] = "any"; static const char not_type_str[] = "not"; static const char none_type_str[] = "none"; static const char empty_type_str[] = "empty"; static const char link_interface_str[] = "INTERFACE"; static const char link_edge_str[] = "EDGE"; static const char link_any_str[] = "ANY"; static const char link_prot_tcp_str[] = "tcp"; static const char link_prot_udp_str[] = "udp"; typedef enum {MAC_ANY, MAC_NOT, MAC_NONE, MAC_EMPTY} mac_type_t; //for 'src_mac_qual' and 'dst_mac_qual' typedef enum {LINK_INTERFACE, LINK_EDGE, LINK_ANY} link_type_t; //for 'type' and 'src_type' in struct routing typedef enum {TCP_TYPE, UDP_TYPE} link_prot_type_t; static const uint_t hash_key_size = 16; static SOCK g_udp_sockfd; static struct gen_queue * g_inpkt_q; static bool use_tcp = false; static uint_t vnet_udp_port = 1022; struct raw_ethernet_pkt { int size; int type; // vm or link type: INTERFACE|EDGE char data[ETHERNET_PACKET_LEN]; }; //static char *vnet_version = "0.9"; //static int vnet_server = 0; #define MAX_LINKS 1 #define MAX_ROUTES 1 #define MAX_DEVICES 16 static struct topology g_links[MAX_LINKS]; static int g_num_links; //The current number of links static int g_first_link; static int g_last_link; static struct routing g_routes[MAX_ROUTES]; static int g_num_routes; //The current number of routes static int g_first_route; static int g_last_route; static struct device_list g_devices[MAX_DEVICES]; static int g_num_devices; static int g_first_device; static int g_last_device; static void print_packet(char *pkt, int size) { PrintDebug("Vnet: print_data_packet: size: %d\n", size); v3_hexdump(pkt, size, NULL, 0); } #if 0 static void print_packet_addr(char *pkt) { PrintDebug("Vnet: print_packet_destination_addr: "); v3_hexdump(pkt + 8, 6, NULL, 0); PrintDebug("Vnet: print_packet_source_addr: "); v3_hexdump(pkt + 14, 6, NULL, 0); } static void print_device_addr(char *ethaddr) { PrintDebug("Vnet: print_device_addr: "); v3_hexdump(ethaddr, 6, NULL, 0); } #endif //network connection functions static inline void raw_ethernet_packet_init(struct raw_ethernet_pkt * pt, const char * data, const size_t size) { pt->size = size; memcpy(pt->data, data, size); } /* Hash key format: * 0-5: src_eth_addr * 6-11: dest_eth_addr * 12: src type * 13-16: src index */ typedef char * route_hashkey_t; // This is the hash value, Format: 0: num_matched_routes, 1...n: matches[] -- TY struct route_cache_entry { int num_matched_routes; int * matches; }; #define HASH_KEY_LEN 16 #define MIN_CACHE_SIZE 100 //Header of the route cache static struct hashtable * g_route_cache; static uint_t hash_from_key_fn(addr_t hashkey) { uint8_t * key = (uint8_t *)hashkey; return v3_hash_buffer(key, HASH_KEY_LEN); } static int hash_key_equal(addr_t key1, addr_t key2) { uint8_t * buf1 = (uint8_t *)key1; uint8_t * buf2 = (uint8_t *)key2; return (memcmp(buf1, buf2, HASH_KEY_LEN) == 0); } static int init_route_cache() { g_route_cache = v3_create_htable(MIN_CACHE_SIZE, &hash_from_key_fn, &hash_key_equal); if (g_route_cache == NULL){ PrintError("Vnet: Route Cache Initiate Failurely\n"); return -1; } return 0; } static void make_hash_key(route_hashkey_t hashkey, char src_addr[6], char dest_addr[6], char src_type, int src_index) { int j; for (j = 0; j < 6; j++) { hashkey[j] = src_addr[j]; hashkey[j + 6] = dest_addr[j] + 1; } hashkey[12] = src_type; *(int *)(hashkey + 12) = src_index; } static int add_route_to_cache(route_hashkey_t hashkey, int num_matched_r, int * matches) { struct route_cache_entry * new_entry = NULL; int i; new_entry = (struct route_cache_entry *)V3_Malloc(sizeof(struct route_cache_entry)); if (new_entry == NULL){ PrintError("Vnet: Malloc fails\n"); return -1; } new_entry->num_matched_routes = num_matched_r; new_entry->matches = (int *)V3_Malloc(num_matched_r * sizeof(int)); if (new_entry->matches == NULL){ PrintError("Vnet: Malloc fails\n"); return -1; } for (i = 0; i < num_matched_r; i++) { new_entry->matches[i] = matches[i]; } //here, when v3_htable_insert return 0, it means insert fails if (v3_htable_insert(g_route_cache, (addr_t)hashkey, (addr_t)new_entry) == 0){ PrintError("Vnet: Insert new route entry to cache failed\n"); V3_Free(new_entry->matches); V3_Free(new_entry); } return 0; } static int clear_hash_cache() { v3_free_htable(g_route_cache, 1, 1); g_route_cache = v3_create_htable(MIN_CACHE_SIZE, hash_from_key_fn, hash_key_equal); if (g_route_cache == NULL){ PrintError("Vnet: Route Cache Create Failurely\n"); return -1; } return 0; } static int look_into_cache(route_hashkey_t hashkey, int * matches) { int n_matches = -1; int i = 0; struct route_cache_entry * found = NULL; found = (struct route_cache_entry *)v3_htable_search(g_route_cache, (addr_t)hashkey); if (found != NULL) { n_matches = found->num_matched_routes; for (i = 0; i < n_matches; i++) { matches[i] = found->matches[i]; } } return n_matches; } static inline uint8_t hex_nybble_to_nybble(const uint8_t hexnybble) { uint8_t x = toupper(hexnybble); if (isdigit(x)) { return x - '0'; } else { return 10 + (x - 'A'); } } static inline uint8_t hex_byte_to_byte(const uint8_t hexbyte[2]) { return ((hex_nybble_to_nybble(hexbyte[0]) << 4) + (hex_nybble_to_nybble(hexbyte[1]) & 0xf)); } static inline void string_to_mac(const char * str, uint8_t mac[6]) { int k; for (k = 0; k < 6; k++) { mac[k] = hex_byte_to_byte(&(str[(2 * k) + k])); } } static inline void mac_to_string(int mac[6], char * buf) { snprintf(buf, 20, "%x:%x:%x:%x:%x:%x", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]); } #if 0 static void ip_to_string(uint32_t addr, char * buf) { uint32_t addr_st; char * tmp_str; addr_st = v3_htonl(addr); tmp_str = v3_inet_ntoa(addr_st); memcpy(buf, tmp_str, strlen(tmp_str)); } #endif int find_link_by_fd(SOCK sock) { int i; FOREACH_LINK(i, g_links, g_first_link) { if (g_links[i].link_sock == sock) { return i; } } return -1; } int vnet_add_link_entry(unsigned long dest, int type, int data_port, SOCK fd) { int i; for (i = 0; i < MAX_LINKS; i++) { if (g_links[i].use == 0) { g_links[i].dest = dest; g_links[i].type = type; g_links[i].link_sock = fd; g_links[i].remote_port = data_port; g_links[i].use = 1; if (g_first_link == -1) { g_first_link = i; } g_links[i].prev = g_last_link; g_links[i].next = -1; if (g_last_link != -1) { g_links[g_last_link].next = i; } g_last_link = i; g_num_links++; return i; } } return -1; } int add_sock(struct sock_list *socks, int len, int *first_sock, int *last_sock, SOCK fd) { int i; for (i = 0; i < len; i++) { if (socks[i].sock == -1) { socks[i].sock = fd; if (*first_sock == -1) { *first_sock = i; } socks[i].prev = *last_sock; socks[i].next = -1; if (*last_sock != -1) { socks[*last_sock].next = i; } *last_sock = i; return i; } } return -1; } int vnet_add_route_entry(char src_mac[6], char dest_mac[6], int src_mac_qual, int dest_mac_qual, int dest, int type, int src, int src_type) { int i; for(i = 0; i < MAX_ROUTES; i++) { if (g_routes[i].use == 0) { if ((src_mac_qual != MAC_ANY) && (src_mac_qual != MAC_NONE)) { memcpy(g_routes[i].src_mac, src_mac, 6); } else { memset(g_routes[i].src_mac, 0, 6); } if ((dest_mac_qual != MAC_ANY) && (dest_mac_qual != MAC_NONE)) { memcpy(g_routes[i].dest_mac, dest_mac, 6); } else { memset(g_routes[i].dest_mac, 0, 6); } g_routes[i].src_mac_qual = src_mac_qual; g_routes[i].dest_mac_qual = dest_mac_qual; g_routes[i].dest = dest; g_routes[i].type = type; g_routes[i].src = src; g_routes[i].src_type = src_type; g_routes[i].use = 1; if (g_first_route == -1) { g_first_route = i; } g_routes[i].prev = g_last_route; g_routes[i].next = -1; if (g_last_route != -1) { g_routes[g_last_route].next = i; } g_last_route = i; g_num_routes++; return i; } } clear_hash_cache(); return -1; } static int find_link_entry(unsigned long dest, int type) { int i; FOREACH_LINK(i, g_links, g_first_link) { if ((g_links[i].dest == dest) && ((type == -1) || (g_links[i].type == type)) ) { return i; } } return -1; } static int delete_link_entry(int index) { int next_i; int prev_i; if (g_links[index].use == 0) { return -1; } g_links[index].dest = 0; g_links[index].type = 0; g_links[index].link_sock = -1; g_links[index].use = 0; prev_i = g_links[index].prev; next_i = g_links[index].next; if (prev_i != -1) { g_links[prev_i].next = g_links[index].next; } if (next_i != -1) { g_links[next_i].prev = g_links[index].prev; } if (g_first_link == index) { g_first_link = g_links[index].next; } if (g_last_link == index) { g_last_link = g_links[index].prev; } g_links[index].next = -1; g_links[index].prev = -1; g_num_links--; return 0; } int vnet_delete_link_entry_by_addr(unsigned long dest, int type) { int index = find_link_entry(dest, type); if (index == -1) { return -1; } return delete_link_entry(index); } static int find_route_entry(char src_mac[6], char dest_mac[6], int src_mac_qual, int dest_mac_qual, int dest, int type, int src, int src_type) { int i; char temp_src_mac[6]; char temp_dest_mac[6]; if ((src_mac_qual != MAC_ANY) && (src_mac_qual != MAC_NONE)) { memcpy(temp_src_mac, src_mac, 6); } else { memset(temp_src_mac, 0, 6); } if ((dest_mac_qual != MAC_ANY) && (dest_mac_qual != MAC_NONE)) { memcpy(temp_dest_mac, dest_mac, 6); } else { memset(temp_dest_mac, 0, 6); } FOREACH_LINK(i, g_routes, g_first_route) { if ( (memcmp(temp_src_mac, g_routes[i].src_mac, 6) == 0) && (memcmp(temp_dest_mac, g_routes[i].dest_mac, 6) == 0) && (g_routes[i].src_mac_qual == src_mac_qual) && (g_routes[i].dest_mac_qual == dest_mac_qual) && ( (type == -1) || ( (type == g_routes[i].type) && (g_routes[i].dest == dest)) ) && ( (src_type == -1) || ( (src_type == g_routes[i].src_type) && (g_routes[i].src == src)) ) ) { return i; } } return -1; } static int delete_route_entry(int index) { int next_i; int prev_i; memset(g_routes[index].src_mac, 0, 6); memset(g_routes[index].dest_mac, 0, 6); g_routes[index].dest = 0; g_routes[index].src = 0; g_routes[index].src_mac_qual = 0; g_routes[index].dest_mac_qual = 0; g_routes[index].type = -1; g_routes[index].src_type = -1; g_routes[index].use = 0; prev_i = g_routes[index].prev; next_i = g_routes[index].next; if (prev_i != -1) { g_routes[prev_i].next = g_routes[index].next; } if (next_i != -1) { g_routes[next_i].prev = g_routes[index].prev; } if (g_first_route == index) { g_first_route = g_routes[index].next; } if (g_last_route == index) { g_last_route = g_routes[index].prev; } g_routes[index].next = -1; g_routes[index].prev = -1; g_num_routes--; clear_hash_cache(); return 0; } int vnet_delete_route_entry_by_addr(char src_mac[6], char dest_mac[6], int src_mac_qual, int dest_mac_qual, int dest, int type, int src, int src_type) { int index = find_route_entry(src_mac, dest_mac, src_mac_qual, dest_mac_qual, dest, type, src, src_type); if (index == -1) { return -1; } delete_route_entry(index); return 0; } int delete_sock(struct sock_list * socks, int * first_sock, int * last_sock, SOCK fd) { int i; int prev_i; int next_i; FOREACH_SOCK(i, socks, (*first_sock)) { if (socks[i].sock == fd) { V3_Close_Socket(socks[i].sock); socks[i].sock = -1; prev_i = socks[i].prev; next_i = socks[i].next; if (prev_i != -1) { socks[prev_i].next = socks[i].next; } if (next_i != -1) { socks[next_i].prev = socks[i].prev; } if (*first_sock == i) { *first_sock = socks[i].next; } if (*last_sock == i) { *last_sock = socks[i].prev; } socks[i].next = -1; socks[i].prev = -1; return 0; } } return -1; } //setup the topology of the testing network static void store_topologies(SOCK fd) { int i; int src_mac_qual = MAC_ANY; int dest_mac_qual = MAC_ANY; uint_t dest; #ifndef VNET_SERVER dest = (0 | 172 << 24 | 23 << 16 | 1 ); PrintDebug("VNET: store_topologies. NOT VNET_SERVER, dest = %x\n", dest); #else dest = (0 | 172 << 24 | 23 << 16 | 2 ); PrintDebug("VNET: store_topologies. VNET_SERVER, dest = %x\n", dest); #endif int type = UDP_TYPE; int src = 0; int src_type= LINK_ANY; //ANY_SRC_TYPE int data_port = 22; //store link table for (i = 0; i < MAX_LINKS; i++) { if (g_links[i].use == 0) { g_links[i].dest = (int)dest; g_links[i].type = type; g_links[i].link_sock = fd; g_links[i].remote_port = data_port; g_links[i].use = 1; if (g_first_link == -1) { g_first_link = i; } g_links[i].prev = g_last_link; g_links[i].next = -1; if (g_last_link != -1) { g_links[g_last_link].next = i; } g_last_link = i; g_num_links++; PrintDebug("VNET: store_topologies. new link: socket: %d, remote %x:[%d]\n", g_links[i].link_sock, (uint_t)g_links[i].dest, g_links[i].remote_port); } } //store route table type = LINK_EDGE; dest = 0; for (i = 0; i < MAX_ROUTES; i++) { if (g_routes[i].use == 0) { if ((src_mac_qual != MAC_ANY) && (src_mac_qual != MAC_NONE)) { // memcpy(g_routes[i].src_mac, src_mac, 6); } else { memset(g_routes[i].src_mac, 0, 6); } if ((dest_mac_qual != MAC_ANY) && (dest_mac_qual != MAC_NONE)) { // memcpy(g_routes[i].dest_mac, dest_mac, 6); } else { memset(g_routes[i].dest_mac, 0, 6); } g_routes[i].src_mac_qual = src_mac_qual; g_routes[i].dest_mac_qual = dest_mac_qual; g_routes[i].dest = (int)dest; g_routes[i].type = type; g_routes[i].src = src; g_routes[i].src_type = src_type; g_routes[i].use = 1; if (g_first_route == -1) { g_first_route = i; } g_routes[i].prev = g_last_route; g_routes[i].next = -1; if (g_last_route != -1) { g_routes[g_last_route].next = i; } g_last_route = i; g_num_routes++; PrintDebug("VNET: store_topologies. new route: src_mac: %s, dest_mac: %s, dest: %d\n", g_routes[i].src_mac, g_routes[i].dest_mac, dest); } } } static int match_route(uint8_t * src_mac, uint8_t * dst_mac, int src_type, int src_index, int * matches) { int values[MAX_ROUTES]; int matched_routes[MAX_ROUTES]; int num_matches = 0; int i; int max = 0; int no = 0; int exact_match = 0; FOREACH_ROUTE(i, g_routes, g_first_route) { if ((g_routes[i].src_type != LINK_ANY) && ((g_routes[i].src_type != src_type) || ((g_routes[i].src != src_index) && (g_routes[i].src != -1)))) { PrintDebug("Vnet: MatchRoute: Source route is on and does not match\n"); continue; } if ( (g_routes[i].dest_mac_qual == MAC_ANY) && (g_routes[i].src_mac_qual == MAC_ANY) ) { matched_routes[num_matches] = i; values[num_matches] = 3; num_matches++; } if (memcmp((void *)&g_routes[i].src_mac, (void *)src_mac, 6) == 0) { if (g_routes[i].src_mac_qual != MAC_NOT) { if (g_routes[i].dest_mac_qual == MAC_ANY) { matched_routes[num_matches] = i; values[num_matches] = 6; num_matches++; } else if (memcmp((void *)&g_routes[i].dest_mac, (void *)dst_mac, 6) == 0) { if (g_routes[i].dest_mac_qual != MAC_NOT) { matched_routes[num_matches] = i; values[num_matches] = 8; exact_match = 1; num_matches++; } } } } if (memcmp((void *)&g_routes[i].dest_mac, (void *)dst_mac, 6) == 0) { if (g_routes[i].dest_mac_qual != MAC_NOT) { if (g_routes[i].src_mac_qual == MAC_ANY) { matched_routes[num_matches] = i; values[num_matches] = 6; num_matches++; } else if (memcmp((void *)&g_routes[i].src_mac, (void *)src_mac, 6) == 0) { if (g_routes[i].src_mac_qual != MAC_NOT) { if (exact_match == 0) { matched_routes[num_matches] = i; values[num_matches] = 8; num_matches++; } } } } } if ((g_routes[i].dest_mac_qual == MAC_NOT) && (memcmp((void *)&g_routes[i].dest_mac, (void *)dst_mac, 6) != 0)) { if (g_routes[i].src_mac_qual == MAC_ANY) { matched_routes[num_matches] = i; values[num_matches] = 5; num_matches++; } else if (memcmp((void *)&g_routes[i].src_mac, (void *)src_mac, 6) == 0) { if (g_routes[i].src_mac_qual != MAC_NOT) { matched_routes[num_matches] = i; values[num_matches] = 7; num_matches++; } } } if ((g_routes[i].src_mac_qual == MAC_NOT) && (memcmp((void *)&g_routes[i].src_mac, (void *)src_mac, 6) != 0)) { if (g_routes[i].dest_mac_qual == MAC_ANY) { matched_routes[num_matches] = i; values[num_matches] = 5; num_matches++; } else if (memcmp((void *)&g_routes[i].dest_mac, (void *)dst_mac, 6) == 0) { if (g_routes[i].dest_mac_qual != MAC_NOT) { matched_routes[num_matches] = i; values[num_matches] = 7; num_matches++; } } } } //end FOREACH_ROUTE FOREACH_ROUTE(i, g_routes, g_first_route) { if ((memcmp((void *)&g_routes[i].src_mac, (void *)src_mac, 6) == 0) && (g_routes[i].dest_mac_qual == MAC_NONE) && ((g_routes[i].src_type == LINK_ANY) || ((g_routes[i].src_type == src_type) && ((g_routes[i].src == src_index) || (g_routes[i].src == -1))))) { matched_routes[num_matches] = i; values[num_matches] = 4; PrintDebug("Vnet: MatchRoute: We matched a default route (%d)\n", i); num_matches++; } } //If many rules have been matched, we choose one which has the highest value rating if (num_matches == 0) { return 0; } for (i = 0; i < num_matches; i++) { if (values[i] > max) { no = 0; max = values[i]; matches[no] = matched_routes[i]; no++; } else if (values[i] == max) { matches[no] = matched_routes[i]; no++; } } return no; } static int process_udpdata() { struct raw_ethernet_pkt * pt; uint32_t dest = 0; uint16_t remote_port = 0; SOCK link_sock = g_udp_sockfd; int length = sizeof(struct raw_ethernet_pkt) - (2 * sizeof(int)); //minus the "size" and "type" //run in a loop to get packets from outside network, adding them to the incoming packet queue while (1) { pt = (struct raw_ethernet_pkt *)V3_Malloc(sizeof(struct raw_ethernet_pkt)); if (pt == NULL){ PrintError("Vnet: process_udp: Malloc fails\n"); continue; } PrintDebug("Vnet: route_thread: socket: [%d]. ready to receive from ip [%x], port [%d] or from VMs\n", link_sock, (uint_t)dest, remote_port); pt->size = V3_RecvFrom_IP( link_sock, dest, remote_port, pt->data, length); PrintDebug("Vnet: route_thread: socket: [%d] receive from ip [%x], port [%d]\n", link_sock, (uint_t)dest, remote_port); if (pt->size <= 0) { PrintDebug("Vnet: process_udp: receiving packet from UDP fails\n"); V3_Free(pt); return -1; } PrintDebug("Vnet: process_udp: get packet\n"); print_packet(pt->data, pt->size); //V3_Yield(); } } static int indata_handler( ) { if (!use_tcp) process_udpdata(); return 0; } static int start_recv_data() { if (use_tcp){ } else { SOCK udp_data_socket; if ((udp_data_socket = V3_Create_UDP_Socket()) < 0){ PrintError("VNET: Can't setup udp socket\n"); return -1; } PrintDebug("Vnet: vnet_setup_udp: get socket: %d\n", udp_data_socket); g_udp_sockfd = udp_data_socket; store_topologies(udp_data_socket); if (V3_Bind_Socket(udp_data_socket, vnet_udp_port) < 0){ PrintError("VNET: Can't bind socket\n"); return -1; } PrintDebug("VNET: vnet_setup_udp: bind socket successful\n"); } V3_CREATE_THREAD(&indata_handler, NULL, "VNET_DATA_HANDLER"); return 0; } static inline int if_write_pkt(struct vnet_if_device *iface, struct raw_ethernet_pkt * pkt) { return iface->input((uchar_t *)pkt->data, pkt->size); } static int handle_one_pkt(struct raw_ethernet_pkt * pkt) { int src_link_index = 0; //the value of src_link_index of udp always is 0 int i; char src_mac[6]; char dst_mac[6]; int matches[g_num_routes]; int num_matched_routes = 0; struct HEADERS headers; // get the ethernet and ip headers from the packet memcpy((void *)&headers, (void *)pkt->data, sizeof(headers)); int j; for (j = 0;j < 6; j++) { src_mac[j] = headers.ethernetsrc[j]; dst_mac[j] = headers.ethernetdest[j]; } #ifdef DEBUG char dest_str[18]; char src_str[18]; mac_to_string(src_mac, src_str); mac_to_string(dst_mac, dest_str); PrintDebug("Vnet: HandleDataOverLink. SRC(%s), DEST(%s)\n", src_str, dest_str); #endif char hash_key[hash_key_size]; make_hash_key(hash_key, src_mac, dst_mac, LINK_EDGE, src_link_index);//link_edge -> pt->type??? num_matched_routes = look_into_cache((route_hashkey_t)hash_key, matches); if (num_matched_routes == -1) { //no match num_matched_routes = match_route(src_mac, dst_mac, pkt->type, src_link_index, matches); if (num_matched_routes > 0) { add_route_to_cache(hash_key, num_matched_routes,matches); } } PrintDebug("Vnet: HandleDataOverLink: Matches=%d\n", num_matched_routes); for (i = 0; i < num_matched_routes; i++) { int route_index = -1; int link_index = -1; int dev_index = -1; route_index = matches[i]; PrintDebug("Vnet: HandleDataOverLink: Forward packet from link according to Route entry %d\n", route_index); if (g_routes[route_index].type == LINK_EDGE) { link_index = g_routes[route_index].dest; if(g_links[link_index].type == UDP_TYPE) { int size; PrintDebug("===Vnet: HandleDataOverLink: Serializing UDP Packet to link_sock [%d], dest [%x], remote_port [%d], size [%d]\n", g_links[link_index].link_sock, (uint_t)g_links[link_index].dest, g_links[link_index].remote_port, (int)pkt->size); if ((size = V3_SendTo_IP(g_links[link_index].link_sock, g_links[link_index].dest, g_links[link_index].remote_port, pkt->data, pkt->size)) != pkt->size) { PrintError("Vnet: sending by UDP Exception, %x\n", size); return -1; } PrintDebug("Vnet: HandleDataOverLink: Serializing UDP Packet to link_sock [%d], dest [%x], remote_port [%d], size [%d]\n", g_links[link_index].link_sock, (uint_t)g_links[link_index].dest, g_links[link_index].remote_port, (int)pkt->size); } else if (g_links[link_index].type == TCP_TYPE) { } } else if (g_routes[route_index].type == LINK_INTERFACE) { dev_index = g_routes[route_index].dest; PrintDebug("Writing Packet to device=%s\n", g_devices[dev_index].device->name); if (if_write_pkt(g_devices[dev_index].device, pkt) == -1) { PrintDebug("Can't write output packet to link\n"); return -1; } } else { PrintDebug("Vnet: Wrong Edge type\n"); } } return 0; } static int send_ethernet_pkt(char * buf, int length) { struct raw_ethernet_pkt * pt; pt = (struct raw_ethernet_pkt *)V3_Malloc(sizeof(struct raw_ethernet_pkt)); raw_ethernet_packet_init(pt, buf, length); //====here we copy sending data once PrintDebug("VNET: vm_send_pkt: transmitting packet: (size:%d)\n", (int)pt->size); print_packet((char *)buf, length); v3_enqueue(g_inpkt_q, (addr_t)pt); return 0; } int v3_Send_pkt(uchar_t *buf, int length) { PrintDebug("VNET: In V3_Send_pkt: pkt length %d\n", length); return send_ethernet_pkt((char *)buf, length); } static int add_device_to_table(struct vnet_if_device*device, int type) { int i; for (i = 0; i < MAX_DEVICES; i++) { if (g_devices[i].use == 0) { g_devices[i].type = type; g_devices[i].use = 1; if (g_first_device == -1) { g_first_device = i; } g_devices[i].prev = g_last_device; g_devices[i].next = -1; if (g_last_device != -1) { g_devices[g_last_device].next = i; } g_last_device = i; g_num_devices++; return i; } } return -1; } static int search_device(char *device_name) { int i; for (i = 0; i < MAX_DEVICES; i++) { if (g_devices[i].use == 1) { if (!strcmp(device_name, g_devices[i].device->name)) { return i; } } } return -1; } static struct vnet_if_device * delete_device_from_table(int index) { int next_i; int prev_i; struct vnet_if_device * device = NULL; if (g_devices[index].use == 0) { return NULL; } g_devices[index].use = 0; prev_i = g_devices[index].prev; next_i = g_devices[index].next; if (prev_i != -1) { g_devices[prev_i].next = g_devices[index].next; } if (next_i != -1) { g_devices[next_i].prev = g_devices[index].prev; } if (g_first_device == index) { g_first_device = g_devices[index].next; } if (g_last_device == index) { g_last_device = g_devices[index].prev; } g_devices[index].next = -1; g_devices[index].prev = -1; device = g_devices[index].device; g_devices[index].device = NULL; g_num_devices--; return device; } int vnet_register_device(char * dev_name, int (*netif_input)(uchar_t * pkt, uint_t size), void * data) { struct vnet_if_device * dev; dev = (struct vnet_if_device *)V3_Malloc(sizeof(struct vnet_if_device)); if (dev == NULL){ PrintError("VNET: Malloc fails\n"); return -1; } strncpy(dev->name, dev_name, 50); dev->input = netif_input; dev->data = data; if (add_device_to_table(dev, GENERAL_NIC) == -1) { return -1; } return 0; } int vnet_unregister_device(char * dev_name) { int i; i = search_device(dev_name); if (i == -1) { return -1; } struct vnet_if_device * device = delete_device_from_table(i); if (device == NULL) { return -1; } V3_Free(device); return 0; } int v3_Register_pkt_event(int (*netif_input)(uchar_t * pkt, uint_t size)) { return vnet_register_device("NE2000", netif_input, NULL); } int v3_vnet_pkt_process() { struct raw_ethernet_pkt * pt; PrintDebug("VNET: In vnet_check\n"); while ((pt = (struct raw_ethernet_pkt *)v3_dequeue(g_inpkt_q)) != NULL) { PrintDebug("VNET: In vnet_check: pt length %d, pt type %d\n", (int)pt->size, (int)pt->type); v3_hexdump(pt->data, pt->size, NULL, 0); if(handle_one_pkt(pt)) { PrintDebug("VNET: vnet_check: handle one packet!\n"); } V3_Free(pt); //be careful here } return 0; } static void init_link_table() { int i; for (i = 0; i < MAX_LINKS; i++) { g_links[i].use = 0; g_links[i].next = -1; g_links[i].prev = -1; } g_first_link = -1; g_last_link = -1; g_num_links = 0; } static void init_device_table() { int i; for (i = 0; i < MAX_DEVICES; i++) { g_devices[i].use = 0; g_devices[i].next = -1; g_devices[i].prev = -1; } g_first_device = -1; g_last_device = -1; g_num_devices = 0; } static void init_route_table() { int i; for (i = 0; i < MAX_ROUTES; i++) { g_routes[i].use = 0; g_routes[i].next = -1; g_routes[i].prev = -1; } g_first_route = -1; g_last_route = -1; g_num_routes = 0; } static void init_tables() { init_link_table(); init_device_table(); init_route_table(); init_route_cache(); } static void init_pkt_queue() { PrintDebug("VNET Init package receiving queue\n"); g_inpkt_q = v3_create_queue(); v3_init_queue(g_inpkt_q); } void v3_vnet_init() { PrintDebug("VNET Init: Vnet input queue successful.\n"); init_tables(); init_pkt_queue(); //store_topologies(udp_data_socket); start_recv_data(); }