/* * This file is part of the Palacios Virtual Machine Monitor developed * by the V3VEE Project with funding from the United States National * Science Foundation and the Department of Energy. * * The V3VEE Project is a joint project between Northwestern University * and the University of New Mexico. You can find out more at * http://www.v3vee.org * * Copyright (c) 2008, Jack Lange * Copyright (c) 2008, The V3VEE Project * All rights reserved. * * Author: Jack Lange * * This is free software. You are permitted to use, * redistribute, and modify it as specified in the file "V3VEE_LICENSE". */ #include #include #include #include #include #include #include static int mem_offset_hypercall(struct guest_info * info, uint_t hcall_id, void * private_data) { PrintDebug("V3Vee: Memory offset hypercall (offset=%p)\n", (void *)(info->vm_info->mem_map.base_region.host_addr)); info->vm_regs.rbx = info->vm_info->mem_map.base_region.host_addr; return 0; } static int unhandled_err(struct guest_info * core, addr_t guest_va, addr_t guest_pa, struct v3_mem_region * reg, pf_error_t access_info) { PrintError("Unhandled memory access error (gpa=%p, gva=%p, error_code=%d)\n", (void *)guest_pa, (void *)guest_va, *(uint32_t *)&access_info); v3_print_mem_map(core->vm_info); v3_print_guest_state(core); return -1; } int v3_init_mem_map(struct v3_vm_info * vm) { struct v3_mem_map * map = &(vm->mem_map); addr_t mem_pages = vm->mem_size >> 12; memset(&(map->base_region), 0, sizeof(struct v3_mem_region)); map->mem_regions.rb_node = NULL; // There is an underlying region that contains all of the guest memory // PrintDebug("Mapping %d pages of memory (%u bytes)\n", (int)mem_pages, (uint_t)info->mem_size); // 2MB page alignment needed for 2MB hardware nested paging map->base_region.guest_start = 0; map->base_region.guest_end = mem_pages * PAGE_SIZE_4KB; #ifdef V3_CONFIG_ALIGNED_PG_ALLOC map->base_region.host_addr = (addr_t)V3_AllocAlignedPages(mem_pages, vm->mem_align); #else map->base_region.host_addr = (addr_t)V3_AllocPages(mem_pages); #endif // Clear the memory... memset(V3_VAddr((void *)map->base_region.host_addr), 0, mem_pages * PAGE_SIZE_4KB); map->base_region.flags.read = 1; map->base_region.flags.write = 1; map->base_region.flags.exec = 1; map->base_region.flags.base = 1; map->base_region.flags.alloced = 1; map->base_region.unhandled = unhandled_err; if ((void *)map->base_region.host_addr == NULL) { PrintError("Could not allocate Guest memory\n"); return -1; } //memset(V3_VAddr((void *)map->base_region.host_addr), 0xffffffff, map->base_region.guest_end); v3_register_hypercall(vm, MEM_OFFSET_HCALL, mem_offset_hypercall, NULL); return 0; } void v3_delete_mem_map(struct v3_vm_info * vm) { struct rb_node * node = v3_rb_first(&(vm->mem_map.mem_regions)); struct v3_mem_region * reg; struct rb_node * tmp_node = NULL; addr_t mem_pages = vm->mem_size >> 12; while (node) { reg = rb_entry(node, struct v3_mem_region, tree_node); tmp_node = node; node = v3_rb_next(node); v3_delete_mem_region(vm, reg); } V3_FreePages((void *)(vm->mem_map.base_region.host_addr), mem_pages); } struct v3_mem_region * v3_create_mem_region(struct v3_vm_info * vm, uint16_t core_id, addr_t guest_addr_start, addr_t guest_addr_end) { struct v3_mem_region * entry = (struct v3_mem_region *)V3_Malloc(sizeof(struct v3_mem_region)); memset(entry, 0, sizeof(struct v3_mem_region)); entry->guest_start = guest_addr_start; entry->guest_end = guest_addr_end; entry->core_id = core_id; entry->unhandled = unhandled_err; return entry; } int v3_add_shadow_mem( struct v3_vm_info * vm, uint16_t core_id, addr_t guest_addr_start, addr_t guest_addr_end, addr_t host_addr) { struct v3_mem_region * entry = NULL; entry = v3_create_mem_region(vm, core_id, guest_addr_start, guest_addr_end); entry->host_addr = host_addr; entry->flags.read = 1; entry->flags.write = 1; entry->flags.exec = 1; entry->flags.alloced = 1; if (v3_insert_mem_region(vm, entry) == -1) { V3_Free(entry); return -1; } return 0; } static inline struct v3_mem_region * __insert_mem_region(struct v3_vm_info * vm, struct v3_mem_region * region) { struct rb_node ** p = &(vm->mem_map.mem_regions.rb_node); struct rb_node * parent = NULL; struct v3_mem_region * tmp_region; while (*p) { parent = *p; tmp_region = rb_entry(parent, struct v3_mem_region, tree_node); if (region->guest_end <= tmp_region->guest_start) { p = &(*p)->rb_left; } else if (region->guest_start >= tmp_region->guest_end) { p = &(*p)->rb_right; } else { if ((region->guest_end != tmp_region->guest_end) || (region->guest_start != tmp_region->guest_start)) { PrintError("Trying to map a partial overlapped core specific page...\n"); return tmp_region; // This is ugly... } else if (region->core_id == tmp_region->core_id) { return tmp_region; } else if (region->core_id < tmp_region->core_id) { p = &(*p)->rb_left; } else { p = &(*p)->rb_right; } } } rb_link_node(&(region->tree_node), parent, p); return NULL; } int v3_insert_mem_region(struct v3_vm_info * vm, struct v3_mem_region * region) { struct v3_mem_region * ret; int i = 0; if ((ret = __insert_mem_region(vm, region))) { return -1; } v3_rb_insert_color(&(region->tree_node), &(vm->mem_map.mem_regions)); for (i = 0; i < vm->num_cores; i++) { struct guest_info * info = &(vm->cores[i]); // flush virtual page tables // 3 cases shadow, shadow passthrough, and nested if (info->shdw_pg_mode == SHADOW_PAGING) { v3_mem_mode_t mem_mode = v3_get_vm_mem_mode(info); if (mem_mode == PHYSICAL_MEM) { addr_t cur_addr; for (cur_addr = region->guest_start; cur_addr < region->guest_end; cur_addr += PAGE_SIZE_4KB) { v3_invalidate_passthrough_addr(info, cur_addr); } } else { v3_invalidate_shadow_pts(info); } } else if (info->shdw_pg_mode == NESTED_PAGING) { addr_t cur_addr; for (cur_addr = region->guest_start; cur_addr < region->guest_end; cur_addr += PAGE_SIZE_4KB) { v3_invalidate_nested_addr(info, cur_addr); } } } return 0; } struct v3_mem_region * v3_get_mem_region(struct v3_vm_info * vm, uint16_t core_id, addr_t guest_addr) { struct rb_node * n = vm->mem_map.mem_regions.rb_node; struct v3_mem_region * reg = NULL; while (n) { reg = rb_entry(n, struct v3_mem_region, tree_node); if (guest_addr < reg->guest_start) { n = n->rb_left; } else if (guest_addr >= reg->guest_end) { n = n->rb_right; } else { if (reg->core_id == V3_MEM_CORE_ANY) { // found relevant region, it's available on all cores return reg; } else if (core_id == reg->core_id) { // found relevant region, it's available on the indicated core return reg; } else if (core_id < reg->core_id) { // go left, core too big n = n->rb_left; } else if (core_id > reg->core_id) { // go right, core too small n = n->rb_right; } else { PrintDebug("v3_get_mem_region: Impossible!\n"); return NULL; } } } // There is not registered region, so we check if its a valid address in the base region if (guest_addr > vm->mem_map.base_region.guest_end) { PrintError("Guest Address Exceeds Base Memory Size (ga=0x%p), (limit=0x%p) (core=0x%x)\n", (void *)guest_addr, (void *)vm->mem_map.base_region.guest_end, core_id); v3_print_mem_map(vm); return NULL; } return &(vm->mem_map.base_region); } /* This returns the next memory region based on a given address. * If the address falls inside a sub region, that region is returned. * If the address falls outside a sub region, the next sub region is returned * NOTE that we have to be careful about core_ids here... */ static struct v3_mem_region * get_next_mem_region( struct v3_vm_info * vm, uint16_t core_id, addr_t guest_addr) { struct rb_node * n = vm->mem_map.mem_regions.rb_node; struct v3_mem_region * reg = NULL; struct v3_mem_region * parent = NULL; if (n == NULL) { return NULL; } while (n) { reg = rb_entry(n, struct v3_mem_region, tree_node); if (guest_addr < reg->guest_start) { n = n->rb_left; } else if (guest_addr >= reg->guest_end) { n = n->rb_right; } else { if (reg->core_id == V3_MEM_CORE_ANY) { // found relevant region, it's available on all cores return reg; } else if (core_id == reg->core_id) { // found relevant region, it's available on the indicated core return reg; } else if (core_id < reg->core_id) { // go left, core too big n = n->rb_left; } else if (core_id > reg->core_id) { // go right, core too small n = n->rb_right; } else { PrintError("v3_get_mem_region: Impossible!\n"); return NULL; } } if ((reg->core_id == core_id) || (reg->core_id == V3_MEM_CORE_ANY)) { parent = reg; } } if (parent->guest_start > guest_addr) { return parent; } else if (parent->guest_end < guest_addr) { struct rb_node * node = &(parent->tree_node); while ((node = v3_rb_next(node)) != NULL) { struct v3_mem_region * next_reg = rb_entry(node, struct v3_mem_region, tree_node); if ((next_reg->core_id == V3_MEM_CORE_ANY) || (next_reg->core_id == core_id)) { // This check is not strictly necessary, but it makes it clearer if (next_reg->guest_start > guest_addr) { return next_reg; } } } } return NULL; } /* Given an address region of memory, find if there are any regions that overlap with it. * This checks that the range lies in a single region, and returns that region if it does, * this can be either the base region or a sub region. * IF there are multiple regions in the range then it returns NULL */ static struct v3_mem_region * get_overlapping_region(struct v3_vm_info * vm, uint16_t core_id, addr_t start_gpa, addr_t end_gpa) { struct v3_mem_region * start_region = v3_get_mem_region(vm, core_id, start_gpa); if (start_region == NULL) { PrintError("Invalid memory region\n"); return NULL; } if (start_region->guest_end < end_gpa) { // Region ends before range return NULL; } else if (start_region->flags.base == 0) { // sub region overlaps range return start_region; } else { // Base region, now we have to scan forward for the next sub region struct v3_mem_region * next_reg = get_next_mem_region(vm, core_id, start_gpa); if (next_reg == NULL) { // no sub regions after start_addr, base region is ok return start_region; } else if (next_reg->guest_start >= end_gpa) { // Next sub region begins outside range return start_region; } else { return NULL; } } // Should never get here return NULL; } void v3_delete_mem_region(struct v3_vm_info * vm, struct v3_mem_region * reg) { int i = 0; if (reg == NULL) { return; } v3_rb_erase(&(reg->tree_node), &(vm->mem_map.mem_regions)); // If the guest isn't running then there shouldn't be anything to invalidate. // Page tables should __always__ be created on demand during execution // NOTE: This is a sanity check, and can be removed if that assumption changes if (vm->run_state != VM_RUNNING) { V3_Free(reg); return; } for (i = 0; i < vm->num_cores; i++) { struct guest_info * info = &(vm->cores[i]); // flush virtual page tables // 3 cases shadow, shadow passthrough, and nested if (info->shdw_pg_mode == SHADOW_PAGING) { v3_mem_mode_t mem_mode = v3_get_vm_mem_mode(info); if (mem_mode == PHYSICAL_MEM) { addr_t cur_addr; for (cur_addr = reg->guest_start; cur_addr < reg->guest_end; cur_addr += PAGE_SIZE_4KB) { v3_invalidate_passthrough_addr(info, cur_addr); } } else { v3_invalidate_shadow_pts(info); } } else if (info->shdw_pg_mode == NESTED_PAGING) { addr_t cur_addr; for (cur_addr = reg->guest_start; cur_addr < reg->guest_end; cur_addr += PAGE_SIZE_4KB) { v3_invalidate_nested_addr(info, cur_addr); } } } V3_Free(reg); // flush virtual page tables // 3 cases shadow, shadow passthrough, and nested } // Determine if a given address can be handled by a large page of the requested size uint32_t v3_get_max_page_size(struct guest_info * core, addr_t page_addr, v3_cpu_mode_t mode) { addr_t pg_start = 0; addr_t pg_end = 0; uint32_t page_size = PAGE_SIZE_4KB; struct v3_mem_region * reg = NULL; switch (mode) { case PROTECTED: if (core->use_large_pages == 1) { pg_start = PAGE_ADDR_4MB(page_addr); pg_end = (pg_start + PAGE_SIZE_4MB); reg = get_overlapping_region(core->vm_info, core->vcpu_id, pg_start, pg_end); if ((reg) && ((reg->host_addr % PAGE_SIZE_4MB) == 0)) { page_size = PAGE_SIZE_4MB; } } break; case PROTECTED_PAE: if (core->use_large_pages == 1) { pg_start = PAGE_ADDR_2MB(page_addr); pg_end = (pg_start + PAGE_SIZE_2MB); reg = get_overlapping_region(core->vm_info, core->vcpu_id, pg_start, pg_end); if ((reg) && ((reg->host_addr % PAGE_SIZE_2MB) == 0)) { page_size = PAGE_SIZE_2MB; } } break; case LONG: case LONG_32_COMPAT: case LONG_16_COMPAT: if (core->use_giant_pages == 1) { pg_start = PAGE_ADDR_1GB(page_addr); pg_end = (pg_start + PAGE_SIZE_1GB); reg = get_overlapping_region(core->vm_info, core->vcpu_id, pg_start, pg_end); if ((reg) && ((reg->host_addr % PAGE_SIZE_1GB) == 0)) { page_size = PAGE_SIZE_1GB; break; } } if (core->use_large_pages == 1) { pg_start = PAGE_ADDR_2MB(page_addr); pg_end = (pg_start + PAGE_SIZE_2MB); reg = get_overlapping_region(core->vm_info, core->vcpu_id, pg_start, pg_end); if ((reg) && ((reg->host_addr % PAGE_SIZE_2MB) == 0)) { page_size = PAGE_SIZE_2MB; } } break; default: PrintError("Invalid CPU mode: %s\n", v3_cpu_mode_to_str(v3_get_vm_cpu_mode(core))); return -1; } return page_size; } void v3_print_mem_map(struct v3_vm_info * vm) { struct rb_node * node = v3_rb_first(&(vm->mem_map.mem_regions)); struct v3_mem_region * reg = &(vm->mem_map.base_region); int i = 0; V3_Print("Memory Layout (all cores):\n"); V3_Print("Base Region (all cores): 0x%p - 0x%p -> 0x%p\n", (void *)(reg->guest_start), (void *)(reg->guest_end - 1), (void *)(reg->host_addr)); // If the memory map is empty, don't print it if (node == NULL) { return; } do { reg = rb_entry(node, struct v3_mem_region, tree_node); V3_Print("%d: 0x%p - 0x%p -> 0x%p\n", i, (void *)(reg->guest_start), (void *)(reg->guest_end - 1), (void *)(reg->host_addr)); V3_Print("\t(flags=0x%x) (core=0x%x) (unhandled = 0x%p)\n", reg->flags.value, reg->core_id, reg->unhandled); i++; } while ((node = v3_rb_next(node))); }