/* * This file is part of the Palacios Virtual Machine Monitor developed * by the V3VEE Project with funding from the United States National * Science Foundation and the Department of Energy. * * The V3VEE Project is a joint project between Northwestern University * and the University of New Mexico. You can find out more at * http://www.v3vee.org * * Copyright (c) 2008, Jack Lange * Copyright (c) 2008, The V3VEE Project * All rights reserved. * * Author: Jack Lange * * This is free software. You are permitted to use, * redistribute, and modify it as specified in the file "V3VEE_LICENSE". */ #include #include #include #include #include #include #include #include #ifndef V3_CONFIG_DEBUG_CTRL_REGS #undef PrintDebug #define PrintDebug(fmt, args...) #endif static int handle_lmsw(struct guest_info * info, struct x86_instr * dec_instr); static int handle_clts(struct guest_info * info, struct x86_instr * dec_instr); static int handle_mov_to_cr0(struct guest_info * info, struct x86_instr * dec_instr); // First Attempt = 494 lines // current = 106 lines int v3_handle_cr0_write(struct guest_info * info) { uchar_t instr[15]; int ret; struct x86_instr dec_instr; if (info->mem_mode == PHYSICAL_MEM) { ret = v3_read_gpa_memory(info, get_addr_linear(info, info->rip, &(info->segments.cs)), 15, instr); } else { ret = v3_read_gva_memory(info, get_addr_linear(info, info->rip, &(info->segments.cs)), 15, instr); } if (ret!=15) { PrintError(info->vm_info, info, "Could not read instruction\n"); return -1; } if (v3_decode(info, (addr_t)instr, &dec_instr) == -1) { PrintError(info->vm_info, info, "Could not decode instruction\n"); return -1; } if (dec_instr.op_type == V3_OP_LMSW) { if (handle_lmsw(info, &dec_instr) == -1) { return -1; } } else if (dec_instr.op_type == V3_OP_MOV2CR) { if (handle_mov_to_cr0(info, &dec_instr) == -1) { return -1; } } else if (dec_instr.op_type == V3_OP_CLTS) { if (handle_clts(info, &dec_instr) == -1) { return -1; } } else { PrintError(info->vm_info, info, "Unhandled opcode in handle_cr0_write\n"); return -1; } info->rip += dec_instr.instr_length; return 0; } // The CR0 register only has flags in the low 32 bits // The hardware does a format check to make sure the high bits are zero // Because of this we can ignore the high 32 bits here static int handle_mov_to_cr0(struct guest_info * info, struct x86_instr * dec_instr) { // 32 bit registers struct cr0_32 * shadow_cr0 = (struct cr0_32 *)&(info->ctrl_regs.cr0); struct cr0_32 * new_cr0 = (struct cr0_32 *)(dec_instr->src_operand.operand); struct cr0_32 * guest_cr0 = (struct cr0_32 *)&(info->shdw_pg_state.guest_cr0); uint_t paging_transition = 0; PrintDebug(info->vm_info, info, "MOV2CR0 (MODE=%s)\n", v3_cpu_mode_to_str(info->cpu_mode)); PrintDebug(info->vm_info, info, "OperandVal = %x, length=%d\n", *(uint_t *)new_cr0, dec_instr->src_operand.size); PrintDebug(info->vm_info, info, "Old CR0=%x\n", *(uint_t *)shadow_cr0); PrintDebug(info->vm_info, info, "Old Guest CR0=%x\n", *(uint_t *)guest_cr0); // We detect if this is a paging transition if (guest_cr0->pg != new_cr0->pg) { paging_transition = 1; } // Guest always sees the value they wrote *guest_cr0 = *new_cr0; // This value must always be set to 1 guest_cr0->et = 1; // Set the shadow register to catch non-virtualized flags *shadow_cr0 = *guest_cr0; // Paging is always enabled shadow_cr0->pg = 1; if (guest_cr0->pg == 0) { // If paging is not enabled by the guest, then we always enable write-protect to catch memory hooks shadow_cr0->wp = 1; } // Was there a paging transition // Meaning we need to change the page tables if (paging_transition) { if (v3_get_vm_mem_mode(info) == VIRTUAL_MEM) { struct efer_64 * guest_efer = (struct efer_64 *)&(info->shdw_pg_state.guest_efer); struct efer_64 * shadow_efer = (struct efer_64 *)&(info->ctrl_regs.efer); // Check long mode LME to set LME if (guest_efer->lme == 1) { PrintDebug(info->vm_info, info, "Enabing Long Mode\n"); guest_efer->lma = 1; shadow_efer->lma = 1; shadow_efer->lme = 1; PrintDebug(info->vm_info, info, "New EFER %p\n", (void *)*(addr_t *)(shadow_efer)); } PrintDebug(info->vm_info, info, "Activating Shadow Page Tables\n"); if (v3_activate_shadow_pt(info) == -1) { PrintError(info->vm_info, info, "Failed to activate shadow page tables\n"); return -1; } } else { shadow_cr0->wp = 1; if (v3_activate_passthrough_pt(info) == -1) { PrintError(info->vm_info, info, "Failed to activate passthrough page tables\n"); return -1; } } } PrintDebug(info->vm_info, info, "New Guest CR0=%x\n",*(uint_t *)guest_cr0); PrintDebug(info->vm_info, info, "New CR0=%x\n", *(uint_t *)shadow_cr0); return 0; } static int handle_clts(struct guest_info * info, struct x86_instr * dec_instr) { // CLTS struct cr0_32 * real_cr0 = (struct cr0_32*)&(info->ctrl_regs.cr0); real_cr0->ts = 0; if (info->shdw_pg_mode == SHADOW_PAGING) { struct cr0_32 * guest_cr0 = (struct cr0_32 *)&(info->shdw_pg_state.guest_cr0); guest_cr0->ts = 0; } return 0; } static int handle_lmsw(struct guest_info * info, struct x86_instr * dec_instr) { struct cr0_real * real_cr0 = (struct cr0_real *)&(info->ctrl_regs.cr0); // XED is a mess, and basically reverses the operand order for an LMSW struct cr0_real * new_cr0 = (struct cr0_real *)(dec_instr->dst_operand.operand); uchar_t new_cr0_val; PrintDebug(info->vm_info, info, "LMSW\n"); new_cr0_val = (*(char*)(new_cr0)) & 0x0f; PrintDebug(info->vm_info, info, "OperandVal = %x\n", new_cr0_val); // We can just copy the new value through // we don't need to virtualize the lower 4 bits PrintDebug(info->vm_info, info, "Old CR0=%x\n", *(uint_t *)real_cr0); *(uchar_t*)real_cr0 &= 0xf0; *(uchar_t*)real_cr0 |= new_cr0_val; PrintDebug(info->vm_info, info, "New CR0=%x\n", *(uint_t *)real_cr0); // If Shadow paging is enabled we push the changes to the virtualized copy of cr0 if (info->shdw_pg_mode == SHADOW_PAGING) { struct cr0_real * guest_cr0 = (struct cr0_real*)&(info->shdw_pg_state.guest_cr0); PrintDebug(info->vm_info, info, "Old Guest CR0=%x\n", *(uint_t *)guest_cr0); *(uchar_t*)guest_cr0 &= 0xf0; *(uchar_t*)guest_cr0 |= new_cr0_val; PrintDebug(info->vm_info, info, "New Guest CR0=%x\n", *(uint_t *)guest_cr0); } return 0; } // First attempt = 253 lines // current = 51 lines int v3_handle_cr0_read(struct guest_info * info) { uchar_t instr[15]; int ret; struct x86_instr dec_instr; if (info->mem_mode == PHYSICAL_MEM) { ret = v3_read_gpa_memory(info, get_addr_linear(info, info->rip, &(info->segments.cs)), 15, instr); } else { ret = v3_read_gva_memory(info, get_addr_linear(info, info->rip, &(info->segments.cs)), 15, instr); } if (ret!=15) { PrintError(info->vm_info, info, "Could not read instruction\n"); return -1; } if (v3_decode(info, (addr_t)instr, &dec_instr) == -1) { PrintError(info->vm_info, info, "Could not decode instruction\n"); return -1; } if (dec_instr.op_type == V3_OP_MOVCR2) { PrintDebug(info->vm_info, info, "MOVCR2 (mode=%s)\n", v3_cpu_mode_to_str(info->cpu_mode)); if ((v3_get_vm_cpu_mode(info) == LONG) || (v3_get_vm_cpu_mode(info) == LONG_32_COMPAT)) { struct cr0_64 * dst_reg = (struct cr0_64 *)(dec_instr.dst_operand.operand); if (info->shdw_pg_mode == SHADOW_PAGING) { struct cr0_64 * guest_cr0 = (struct cr0_64 *)&(info->shdw_pg_state.guest_cr0); *dst_reg = *guest_cr0; } else { struct cr0_64 * shadow_cr0 = (struct cr0_64 *)&(info->ctrl_regs.cr0); *dst_reg = *shadow_cr0; } PrintDebug(info->vm_info, info, "returned CR0: %p\n", (void *)*(addr_t *)dst_reg); } else { struct cr0_32 * dst_reg = (struct cr0_32 *)(dec_instr.dst_operand.operand); if (info->shdw_pg_mode == SHADOW_PAGING) { struct cr0_32 * guest_cr0 = (struct cr0_32 *)&(info->shdw_pg_state.guest_cr0); *dst_reg = *guest_cr0; } else { struct cr0_32 * shadow_cr0 = (struct cr0_32 *)&(info->ctrl_regs.cr0); *dst_reg = *shadow_cr0; } PrintDebug(info->vm_info, info, "returned CR0: %x\n", *(uint_t*)dst_reg); } } else if (dec_instr.op_type == V3_OP_SMSW) { struct cr0_real * shadow_cr0 = (struct cr0_real *)&(info->ctrl_regs.cr0); struct cr0_real * dst_reg = (struct cr0_real *)(dec_instr.dst_operand.operand); char cr0_val = *(char*)shadow_cr0 & 0x0f; PrintDebug(info->vm_info, info, "SMSW\n"); // The lower 4 bits of the guest/shadow CR0 are mapped through // We can treat nested and shadow paging the same here *(char *)dst_reg &= 0xf0; *(char *)dst_reg |= cr0_val; } else { PrintError(info->vm_info, info, "Unhandled opcode in handle_cr0_read\n"); return -1; } info->rip += dec_instr.instr_length; return 0; } // First Attempt = 256 lines // current = 65 lines int v3_handle_cr3_write(struct guest_info * info) { int ret; uchar_t instr[15]; struct x86_instr dec_instr; if (info->mem_mode == PHYSICAL_MEM) { ret = v3_read_gpa_memory(info, get_addr_linear(info, info->rip, &(info->segments.cs)), 15, instr); } else { ret = v3_read_gva_memory(info, get_addr_linear(info, info->rip, &(info->segments.cs)), 15, instr); } if (ret!=15) { PrintError(info->vm_info, info, "Could not read instruction\n"); return -1; } if (v3_decode(info, (addr_t)instr, &dec_instr) == -1) { PrintError(info->vm_info, info, "Could not decode instruction\n"); return -1; } if (dec_instr.op_type == V3_OP_MOV2CR) { PrintDebug(info->vm_info, info, "MOV2CR3 (cpu_mode=%s)\n", v3_cpu_mode_to_str(info->cpu_mode)); if (info->shdw_pg_mode == SHADOW_PAGING) { PrintDebug(info->vm_info, info, "Old Shadow CR3=%p; Old Guest CR3=%p\n", (void *)(addr_t)(info->ctrl_regs.cr3), (void*)(addr_t)(info->shdw_pg_state.guest_cr3)); // We update the guest CR3 if (info->cpu_mode == LONG) { struct cr3_64 * new_cr3 = (struct cr3_64 *)(dec_instr.src_operand.operand); struct cr3_64 * guest_cr3 = (struct cr3_64 *)&(info->shdw_pg_state.guest_cr3); *guest_cr3 = *new_cr3; } else { struct cr3_32 * new_cr3 = (struct cr3_32 *)(dec_instr.src_operand.operand); struct cr3_32 * guest_cr3 = (struct cr3_32 *)&(info->shdw_pg_state.guest_cr3); *guest_cr3 = *new_cr3; } // If Paging is enabled in the guest then we need to change the shadow page tables if (info->mem_mode == VIRTUAL_MEM) { if (v3_activate_shadow_pt(info) == -1) { PrintError(info->vm_info, info, "Failed to activate 32 bit shadow page table\n"); return -1; } } PrintDebug(info->vm_info, info, "New Shadow CR3=%p; New Guest CR3=%p\n", (void *)(addr_t)(info->ctrl_regs.cr3), (void*)(addr_t)(info->shdw_pg_state.guest_cr3)); } else if (info->shdw_pg_mode == NESTED_PAGING) { // This is just a passthrough operation which we probably don't need here if (info->cpu_mode == LONG) { struct cr3_64 * new_cr3 = (struct cr3_64 *)(dec_instr.src_operand.operand); struct cr3_64 * guest_cr3 = (struct cr3_64 *)&(info->ctrl_regs.cr3); *guest_cr3 = *new_cr3; } else { struct cr3_32 * new_cr3 = (struct cr3_32 *)(dec_instr.src_operand.operand); struct cr3_32 * guest_cr3 = (struct cr3_32 *)&(info->ctrl_regs.cr3); *guest_cr3 = *new_cr3; } } } else { PrintError(info->vm_info, info, "Unhandled opcode in handle_cr3_write\n"); return -1; } info->rip += dec_instr.instr_length; return 0; } // first attempt = 156 lines // current = 36 lines int v3_handle_cr3_read(struct guest_info * info) { uchar_t instr[15]; int ret; struct x86_instr dec_instr; if (info->mem_mode == PHYSICAL_MEM) { ret = v3_read_gpa_memory(info, get_addr_linear(info, info->rip, &(info->segments.cs)), 15, instr); } else { ret = v3_read_gva_memory(info, get_addr_linear(info, info->rip, &(info->segments.cs)), 15, instr); } if (ret!=15) { PrintError(info->vm_info, info, "Could not read instruction\n"); return -1; } if (v3_decode(info, (addr_t)instr, &dec_instr) == -1) { PrintError(info->vm_info, info, "Could not decode instruction\n"); return -1; } if (dec_instr.op_type == V3_OP_MOVCR2) { PrintDebug(info->vm_info, info, "MOVCR32 (mode=%s)\n", v3_cpu_mode_to_str(info->cpu_mode)); if (info->shdw_pg_mode == SHADOW_PAGING) { if ((v3_get_vm_cpu_mode(info) == LONG) || (v3_get_vm_cpu_mode(info) == LONG_32_COMPAT)) { struct cr3_64 * dst_reg = (struct cr3_64 *)(dec_instr.dst_operand.operand); struct cr3_64 * guest_cr3 = (struct cr3_64 *)&(info->shdw_pg_state.guest_cr3); *dst_reg = *guest_cr3; } else { struct cr3_32 * dst_reg = (struct cr3_32 *)(dec_instr.dst_operand.operand); struct cr3_32 * guest_cr3 = (struct cr3_32 *)&(info->shdw_pg_state.guest_cr3); *dst_reg = *guest_cr3; } } else if (info->shdw_pg_mode == NESTED_PAGING) { // This is just a passthrough operation which we probably don't need here if ((v3_get_vm_cpu_mode(info) == LONG) || (v3_get_vm_cpu_mode(info) == LONG_32_COMPAT)) { struct cr3_64 * dst_reg = (struct cr3_64 *)(dec_instr.dst_operand.operand); struct cr3_64 * guest_cr3 = (struct cr3_64 *)&(info->ctrl_regs.cr3); *dst_reg = *guest_cr3; } else { struct cr3_32 * dst_reg = (struct cr3_32 *)(dec_instr.dst_operand.operand); struct cr3_32 * guest_cr3 = (struct cr3_32 *)&(info->ctrl_regs.cr3); *dst_reg = *guest_cr3; } } } else { PrintError(info->vm_info, info, "Unhandled opcode in handle_cr3_read\n"); return -1; } info->rip += dec_instr.instr_length; return 0; } //return guest cr4 - shadow PAE is always on int v3_handle_cr4_read(struct guest_info * info) { uchar_t instr[15]; int ret; struct x86_instr dec_instr; if (info->mem_mode == PHYSICAL_MEM) { ret = v3_read_gpa_memory(info, get_addr_linear(info, info->rip, &(info->segments.cs)), 15, instr); } else { ret = v3_read_gva_memory(info, get_addr_linear(info, info->rip, &(info->segments.cs)), 15, instr); } if (ret!=15) { PrintError(info->vm_info, info, "Could not read instruction\n"); return -1; } if (v3_decode(info, (addr_t)instr, &dec_instr) == -1) { PrintError(info->vm_info, info, "Could not decode instruction\n"); return -1; } if (dec_instr.op_type != V3_OP_MOVCR2) { PrintError(info->vm_info, info, "Invalid opcode in read CR4\n"); return -1; } if (info->shdw_pg_mode == SHADOW_PAGING) { if ((v3_get_vm_cpu_mode(info) == LONG) || (v3_get_vm_cpu_mode(info) == LONG_32_COMPAT)) { struct cr4_64 * dst_reg = (struct cr4_64 *)(dec_instr.dst_operand.operand); struct cr4_64 * guest_cr4 = (struct cr4_64 *)&(info->ctrl_regs.cr4); *dst_reg = *guest_cr4; } else { struct cr4_32 * dst_reg = (struct cr4_32 *)(dec_instr.dst_operand.operand); struct cr4_32 * guest_cr4 = (struct cr4_32 *)&(info->shdw_pg_state.guest_cr4); *dst_reg = *guest_cr4; } } else if (info->shdw_pg_mode == NESTED_PAGING) { if ((v3_get_vm_cpu_mode(info) == LONG) || (v3_get_vm_cpu_mode(info) == LONG_32_COMPAT)) { struct cr4_64 * dst_reg = (struct cr4_64 *)(dec_instr.dst_operand.operand); struct cr4_64 * guest_cr4 = (struct cr4_64 *)&(info->ctrl_regs.cr4); *dst_reg = *guest_cr4; } else { struct cr4_32 * dst_reg = (struct cr4_32 *)(dec_instr.dst_operand.operand); struct cr4_32 * guest_cr4 = (struct cr4_32 *)&(info->ctrl_regs.cr4); *dst_reg = *guest_cr4; } } info->rip += dec_instr.instr_length; return 0; } int v3_handle_cr4_write(struct guest_info * info) { uchar_t instr[15]; int ret; int flush_tlb=0; struct x86_instr dec_instr; v3_cpu_mode_t cpu_mode = v3_get_vm_cpu_mode(info); if (info->mem_mode == PHYSICAL_MEM) { ret = v3_read_gpa_memory(info, get_addr_linear(info, info->rip, &(info->segments.cs)), 15, instr); } else { ret = v3_read_gva_memory(info, get_addr_linear(info, info->rip, &(info->segments.cs)), 15, instr); } if (ret!=15) { PrintError(info->vm_info, info, "Could not read instruction\n"); return -1; } if (v3_decode(info, (addr_t)instr, &dec_instr) == -1) { PrintError(info->vm_info, info, "Could not decode instruction\n"); return -1; } if (dec_instr.op_type != V3_OP_MOV2CR) { PrintError(info->vm_info, info, "Invalid opcode in write to CR4\n"); return -1; } // Check to see if we need to flush the tlb if (v3_get_vm_mem_mode(info) == VIRTUAL_MEM) { struct cr4_32 * new_cr4 = (struct cr4_32 *)(dec_instr.src_operand.operand); struct cr4_32 * cr4 = (struct cr4_32 *)&(info->shdw_pg_state.guest_cr4); // if pse, pge, or pae have changed while PG (in any mode) is on // the side effect is a TLB flush, which means we need to // toss the current shadow page tables too // // // TODO - PAE FLAG needs to be special cased if ((cr4->pse != new_cr4->pse) || (cr4->pge != new_cr4->pge) || (cr4->pae != new_cr4->pae)) { PrintDebug(info->vm_info, info, "Handling PSE/PGE/PAE -> TLBFlush case, flag set\n"); flush_tlb = 1; } } if ((cpu_mode == PROTECTED) || (cpu_mode == PROTECTED_PAE)) { struct cr4_32 * new_cr4 = (struct cr4_32 *)(dec_instr.src_operand.operand); struct cr4_32 * shadow_cr4 = (struct cr4_32 *)&(info->ctrl_regs.cr4); struct cr4_32 * guest_cr4 = (struct cr4_32 *)&(info->shdw_pg_state.guest_cr4); PrintDebug(info->vm_info, info, "OperandVal = %x, length = %d\n", *(uint_t *)new_cr4, dec_instr.src_operand.size); PrintDebug(info->vm_info, info, "Old guest CR4=%x\n", *(uint_t *)guest_cr4); if ((info->shdw_pg_mode == SHADOW_PAGING)) { if (v3_get_vm_mem_mode(info) == PHYSICAL_MEM) { if ((guest_cr4->pae == 0) && (new_cr4->pae == 1)) { PrintDebug(info->vm_info, info, "Creating PAE passthrough tables\n"); // create 32 bit PAE direct map page table if (v3_reset_passthrough_pts(info) == -1) { PrintError(info->vm_info, info, "Could not create 32 bit PAE passthrough pages tables\n"); return -1; } // reset cr3 to new page tables info->ctrl_regs.cr3 = *(addr_t*)&(info->direct_map_pt); } else if ((guest_cr4->pae == 1) && (new_cr4->pae == 0)) { // Create passthrough standard 32bit pagetables PrintError(info->vm_info, info, "Switching From PAE to Protected mode not supported\n"); return -1; } } } *guest_cr4 = *new_cr4; *shadow_cr4 = *guest_cr4; shadow_cr4->pae = 1; // always on for the shadow pager PrintDebug(info->vm_info, info, "New guest CR4=%x and shadow CR4=%x\n", *(uint_t *)guest_cr4,*(uint_t*)shadow_cr4); } else if ((cpu_mode == LONG) || (cpu_mode == LONG_32_COMPAT)) { struct cr4_64 * new_cr4 = (struct cr4_64 *)(dec_instr.src_operand.operand); struct cr4_64 * cr4 = (struct cr4_64 *)&(info->ctrl_regs.cr4); PrintDebug(info->vm_info, info, "Old CR4=%p\n", (void *)*(addr_t *)cr4); PrintDebug(info->vm_info, info, "New CR4=%p\n", (void *)*(addr_t *)new_cr4); if (new_cr4->pae == 0) { // cannot turn off PAE in long mode GPF the guest PrintError(info->vm_info, info, "Cannot disable PAE in long mode, should send GPF\n"); return -1; } *cr4 = *new_cr4; } else { PrintError(info->vm_info, info, "CR4 write not supported in CPU_MODE: %s\n", v3_cpu_mode_to_str(cpu_mode)); return -1; } if (info->shdw_pg_mode == SHADOW_PAGING) { if (flush_tlb) { PrintDebug(info->vm_info, info, "Handling PSE/PGE/PAE -> TLBFlush (doing flush now!)\n"); if (v3_activate_shadow_pt(info) == -1) { PrintError(info->vm_info, info, "Failed to activate shadow page tables when emulating TLB flush in handling cr4 write\n"); return -1; } } } info->rip += dec_instr.instr_length; return 0; } /* The CR8 and APIC TPR interaction are kind of crazy. CR8 mandates that the priority class is in bits 3:0 The interaction of CR8 and an actual APIC is somewhat implementation dependent, but a basic current APIC has the priority class at 7:4 and the *subclass* at 3:0 The APIC TPR (both fields) can be written as the APIC register A write to CR8 sets the priority class field, and should zero the subclass A read from CR8 gets just the priority class field In the apic_tpr storage location, we have: zeros [class] [subclass] Because of this, an APIC implementation should use apic_tpr to store its TPR In fact, it *should* do this, otherwise its TPR may get out of sync with the architected TPR On a CR8 read, we return just zeros 0000 [class] On a CR8 write, we set the register to zeros [class] 0000 */ int v3_handle_cr8_write(struct guest_info * info) { int ret; uchar_t instr[15]; struct x86_instr dec_instr; if (info->mem_mode == PHYSICAL_MEM) { ret = v3_read_gpa_memory(info, get_addr_linear(info, info->rip, &(info->segments.cs)), 15, instr); } else { ret = v3_read_gva_memory(info, get_addr_linear(info, info->rip, &(info->segments.cs)), 15, instr); } if (ret!=15) { PrintError(info->vm_info, info, "Could not read instruction\n"); return -1; } if (v3_decode(info, (addr_t)instr, &dec_instr) == -1) { PrintError(info->vm_info, info, "Could not decode instruction\n"); return -1; } if (dec_instr.op_type == V3_OP_MOV2CR) { PrintDebug(info->vm_info, info, "MOV2CR8 (cpu_mode=%s)\n", v3_cpu_mode_to_str(info->cpu_mode)); if ((info->cpu_mode == LONG) || (info->cpu_mode == LONG_32_COMPAT)) { uint64_t *val = (uint64_t *)(dec_instr.src_operand.operand); info->ctrl_regs.apic_tpr = (*val & 0xf) << 4; V3_Print(info->vm_info, info, "Write of CR8 sets apic_tpr to 0x%llx\n",info->ctrl_regs.apic_tpr); } else { // probably should raise exception here } } else { PrintError(info->vm_info, info, "Unhandled opcode in handle_cr8_write\n"); return -1; } info->rip += dec_instr.instr_length; return 0; } int v3_handle_cr8_read(struct guest_info * info) { uchar_t instr[15]; int ret; struct x86_instr dec_instr; if (info->mem_mode == PHYSICAL_MEM) { ret = v3_read_gpa_memory(info, get_addr_linear(info, info->rip, &(info->segments.cs)), 15, instr); } else { ret = v3_read_gva_memory(info, get_addr_linear(info, info->rip, &(info->segments.cs)), 15, instr); } if (ret!=15) { PrintError(info->vm_info, info, "Could not read instruction\n"); return -1; } if (v3_decode(info, (addr_t)instr, &dec_instr) == -1) { PrintError(info->vm_info, info, "Could not decode instruction\n"); return -1; } if (dec_instr.op_type == V3_OP_MOVCR2) { PrintDebug(info->vm_info, info, "MOVCR82 (mode=%s)\n", v3_cpu_mode_to_str(info->cpu_mode)); if ((info->cpu_mode == LONG) || (info->cpu_mode == LONG_32_COMPAT)) { uint64_t *dst_reg = (uint64_t *)(dec_instr.dst_operand.operand); *dst_reg = (info->ctrl_regs.apic_tpr >> 4) & 0xf; V3_Print(info->vm_info, info, "Read of CR8 (apic_tpr) returns 0x%llx\n",*dst_reg); } else { // probably should raise exception } } else { PrintError(info->vm_info, info, "Unhandled opcode in handle_cr8_read\n"); return -1; } info->rip += dec_instr.instr_length; return 0; } int v3_handle_efer_read(struct guest_info * core, uint_t msr, struct v3_msr * dst, void * priv_data) { PrintDebug(core->vm_info, core, "EFER Read HI=%x LO=%x\n", core->shdw_pg_state.guest_efer.hi, core->shdw_pg_state.guest_efer.lo); dst->value = core->shdw_pg_state.guest_efer.value; return 0; } int v3_handle_efer_write(struct guest_info * core, uint_t msr, struct v3_msr src, void * priv_data) { struct v3_msr * vm_efer = &(core->shdw_pg_state.guest_efer); struct efer_64 * hw_efer = (struct efer_64 *)&(core->ctrl_regs.efer); struct efer_64 old_hw_efer = *((struct efer_64 *)&core->ctrl_regs.efer); PrintDebug(core->vm_info, core, "EFER Write HI=%x LO=%x\n", src.hi, src.lo); // Set EFER value seen by guest if it reads EFER vm_efer->value = src.value; // Set EFER value seen by hardware while the guest is running *(uint64_t *)hw_efer = src.value; // We have gotten here either because we are using // shadow paging, or we are using nested paging on SVM // In the latter case, we don't need to do anything // like the following if (core->shdw_pg_mode == SHADOW_PAGING) { // Catch unsupported features if ((old_hw_efer.lme == 1) && (hw_efer->lme == 0)) { PrintError(core->vm_info, core, "Disabling long mode once it has been enabled is not supported\n"); return -1; } // Set LME and LMA bits seen by hardware if (old_hw_efer.lme == 0) { // Long mode was not previously enabled, so the lme bit cannot // be set yet. It will be set later when the guest sets CR0.PG // to enable paging. hw_efer->lme = 0; } else { // Long mode was previously enabled. Ensure LMA bit is set. // VMX does not automatically set LMA, and this should not affect SVM. hw_efer->lma = 1; } } PrintDebug(core->vm_info, core, "RIP=%p\n", (void *)core->rip); PrintDebug(core->vm_info, core, "New EFER value HW(hi=%p), VM(hi=%p)\n", (void *)*(uint64_t *)hw_efer, (void *)vm_efer->value); return 0; } int v3_handle_vm_cr_read(struct guest_info * core, uint_t msr, struct v3_msr * dst, void * priv_data) { /* tell the guest that the BIOS disabled SVM, that way it doesn't get * confused by the fact that CPUID reports SVM as available but it still * cannot be used */ dst->value = SVM_VM_CR_MSR_lock | SVM_VM_CR_MSR_svmdis; PrintDebug(core->vm_info, core, "VM_CR Read HI=%x LO=%x\n", dst->hi, dst->lo); return 0; } int v3_handle_vm_cr_write(struct guest_info * core, uint_t msr, struct v3_msr src, void * priv_data) { PrintDebug(core->vm_info, core, "VM_CR Write\n"); PrintDebug(core->vm_info, core, "VM_CR Write Values: HI=%x LO=%x\n", src.hi, src.lo); /* writes to LOCK and SVMDIS are silently ignored (according to the spec), * other writes indicate the guest wants to use some feature we haven't * implemented */ if (src.value & ~(SVM_VM_CR_MSR_lock | SVM_VM_CR_MSR_svmdis)) { PrintDebug(core->vm_info, core, "VM_CR write sets unsupported bits: HI=%x LO=%x\n", src.hi, src.lo); return -1; } return 0; }