/* * This file is part of the Palacios Virtual Machine Monitor developed * by the V3VEE Project with funding from the United States National * Science Foundation and the Department of Energy. * * The V3VEE Project is a joint project between Northwestern University * and the University of New Mexico. You can find out more at * http://www.v3vee.org * * Copyright (c) 2008, Jack Lange * Copyright (c) 2008, The V3VEE Project * All rights reserved. * * Author: Jack Lange * * This is free software. You are permitted to use, * redistribute, and modify it as specified in the file "V3VEE_LICENSE". */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "vmm_config_class.h" // This is used to access the configuration file index table struct file_hdr { uint32_t index; uint32_t size; uint64_t offset; }; struct file_idx_table { uint64_t num_files; struct file_hdr hdrs[0]; }; static int setup_memory_map(struct v3_vm_info * vm, v3_cfg_tree_t * cfg); static int setup_devices(struct v3_vm_info * vm, v3_cfg_tree_t * cfg); char * v3_cfg_val(v3_cfg_tree_t * tree, char * tag) { char * attrib = (char *)v3_xml_attr(tree, tag); v3_cfg_tree_t * child_entry = v3_xml_child(tree, tag); char * val = NULL; if ((child_entry != NULL) && (attrib != NULL)) { PrintError("Duplicate Configuration parameters present for %s\n", tag); return NULL; } if (attrib == NULL) { val = v3_xml_txt(child_entry); if ( val[0] == 0 ) val = NULL; } else { val = attrib; } return val; } v3_cfg_tree_t * v3_cfg_subtree(v3_cfg_tree_t * tree, char * tag) { return v3_xml_child(tree, tag); } v3_cfg_tree_t * v3_cfg_next_branch(v3_cfg_tree_t * tree) { return v3_xml_next(tree); } struct v3_cfg_file * v3_cfg_get_file(struct v3_vm_info * vm, char * tag) { struct v3_cfg_file * file = NULL; file = (struct v3_cfg_file *)v3_htable_search(vm->cfg_data->file_table, (addr_t)tag); return file; } static uint_t file_hash_fn(addr_t key) { char * name = (char *)key; return v3_hash_buffer((uchar_t *)name, strlen(name)); } static int file_eq_fn(addr_t key1, addr_t key2) { char * name1 = (char *)key1; char * name2 = (char *)key2; return (strcmp(name1, name2) == 0); } static struct v3_config * parse_config(void * cfg_blob) { struct v3_config * cfg = NULL; int offset = 0; uint_t xml_len = 0; struct file_idx_table * files = NULL; v3_cfg_tree_t * file_tree = NULL; V3_Print("cfg data at %p\n", cfg_blob); if (memcmp(cfg_blob, "v3vee\0\0\0", 8) != 0) { PrintError("Invalid Configuration Header\n"); return NULL; } offset += 8; cfg = (struct v3_config *)V3_Malloc(sizeof(struct v3_config)); memset(cfg, 0, sizeof(struct v3_config)); cfg->blob = cfg_blob; INIT_LIST_HEAD(&(cfg->file_list)); cfg->file_table = v3_create_htable(0, file_hash_fn, file_eq_fn); xml_len = *(uint32_t *)(cfg_blob + offset); offset += 4; cfg->cfg = (v3_cfg_tree_t *)v3_xml_parse((uint8_t *)(cfg_blob + offset)); offset += xml_len; offset += 8; files = (struct file_idx_table *)(cfg_blob + offset); V3_Print("Number of files in cfg: %d\n", (uint32_t)(files->num_files)); file_tree = v3_cfg_subtree(v3_cfg_subtree(cfg->cfg, "files"), "file"); while (file_tree) { char * id = v3_cfg_val(file_tree, "id"); char * index = v3_cfg_val(file_tree, "index"); int idx = atoi(index); struct file_hdr * hdr = &(files->hdrs[idx]); struct v3_cfg_file * file = NULL; file = (struct v3_cfg_file *)V3_Malloc(sizeof(struct v3_cfg_file)); if (!file) { PrintError("Could not allocate file structure\n"); return NULL; } V3_Print("File index=%d id=%s\n", idx, id); strncpy(file->tag, id, 256); file->size = hdr->size; file->data = cfg_blob + hdr->offset; V3_Print("Storing file data offset = %d, size=%d\n", (uint32_t)hdr->offset, hdr->size); V3_Print("file data at %p\n", file->data); list_add( &(file->file_node), &(cfg->file_list)); V3_Print("Keying file to name\n"); v3_htable_insert(cfg->file_table, (addr_t)(file->tag), (addr_t)(file)); V3_Print("Iterating to next file\n"); file_tree = v3_cfg_next_branch(file_tree); } V3_Print("Configuration parsed successfully\n"); return cfg; } static inline uint32_t get_alignment(char * align_str) { // default is 4KB alignment uint32_t alignment = PAGE_SIZE_4KB; if (align_str != NULL) { if (strcasecmp(align_str, "2MB") == 0) { alignment = PAGE_SIZE_2MB; } else if (strcasecmp(align_str, "4MB") == 0) { alignment = PAGE_SIZE_4MB; } } #ifndef CONFIG_ALIGNED_PG_ALLOC if (alignment != PAGE_SIZE_4KB) { PrintError("Aligned page allocations are not supported in this host (requested alignment=%d)\n", alignment); PrintError("Ignoring alignment request\n"); } #endif return alignment; } static int pre_config_vm(struct v3_vm_info * vm, v3_cfg_tree_t * vm_cfg) { char * memory_str = v3_cfg_val(vm_cfg, "memory"); char * schedule_hz_str = v3_cfg_val(vm_cfg, "schedule_hz"); char * vm_class = v3_cfg_val(vm_cfg, "class"); char * align_str = v3_cfg_val(v3_cfg_subtree(vm_cfg, "memory"), "alignment"); uint32_t sched_hz = 100; // set the schedule frequency to 100 HZ if (!memory_str) { PrintError("Memory is a required configuration parameter\n"); return -1; } PrintDebug("Memory=%s\n", memory_str); if (align_str) { PrintDebug("Alignment=%s\n", align_str); } else { PrintDebug("Alignment defaulted to 4KB.\n"); } // Amount of ram the Guest will have, always in MB vm->mem_size = (addr_t)atoi(memory_str) * 1024 * 1024; vm->mem_align = get_alignment(align_str); PrintDebug("Alignment for %lu bytes of memory computed as 0x%x\n", vm->mem_size, vm->mem_align); if (strcasecmp(vm_class, "PC") == 0) { vm->vm_class = V3_PC_VM; } else { PrintError("Invalid VM class\n"); return -1; } #ifdef CONFIG_TELEMETRY { char * telemetry = v3_cfg_val(vm_cfg, "telemetry"); // This should go first, because other subsystems will depend on the guest_info flag if ((telemetry) && (strcasecmp(telemetry, "enable") == 0)) { vm->enable_telemetry = 1; } else { vm->enable_telemetry = 0; } } #endif if (v3_init_vm(vm) == -1) { PrintError("Failed to initialize VM\n"); return -1; } if (schedule_hz_str) { sched_hz = atoi(schedule_hz_str); } PrintDebug("CPU_KHZ = %d, schedule_freq=%p\n", V3_CPU_KHZ(), (void *)(addr_t)sched_hz); vm->yield_cycle_period = (V3_CPU_KHZ() * 1000) / sched_hz; return 0; } static int determine_paging_mode(struct guest_info *info, v3_cfg_tree_t * core_cfg) { extern v3_cpu_arch_t v3_cpu_types[]; v3_cfg_tree_t * vm_tree = info->vm_info->cfg_data->cfg; v3_cfg_tree_t * pg_tree = v3_cfg_subtree(vm_tree, "paging"); char * pg_mode = v3_cfg_val(pg_tree, "mode"); char * page_size = v3_cfg_val(pg_tree, "page_size"); PrintDebug("Paging mode specified as %s\n", pg_mode); if (pg_mode) { if ((strcasecmp(pg_mode, "nested") == 0)) { if (v3_cpu_types[info->cpu_id] == V3_SVM_REV3_CPU) { info->shdw_pg_mode = NESTED_PAGING; } else { PrintError("Nested paging not supported on this hardware. Defaulting to shadow paging\n"); info->shdw_pg_mode = SHADOW_PAGING; } } else if ((strcasecmp(pg_mode, "shadow") == 0)) { info->shdw_pg_mode = SHADOW_PAGING; } else { PrintError("Invalid paging mode (%s) specified in configuration. Defaulting to shadow paging\n", pg_mode); info->shdw_pg_mode = SHADOW_PAGING; } } else { PrintDebug("No paging type specified in configuration. Defaulting to shadow paging\n"); info->shdw_pg_mode = SHADOW_PAGING; } if (info->shdw_pg_mode == NESTED_PAGING) { PrintDebug("Guest Paging Mode: NESTED_PAGING\n"); if (strcasecmp(page_size, "4kb") == 0) { /* TODO: this may not be an ideal place for this */ info->vm_info->paging_size = PAGING_4KB; } else if (strcasecmp(page_size, "2mb") == 0) { info->vm_info->paging_size = PAGING_2MB; } else { PrintError("Invalid VM paging size: '%s'\n", page_size); return -1; } PrintDebug("VM page size=%s\n", page_size); } else if (info->shdw_pg_mode == SHADOW_PAGING) { PrintDebug("Guest Paging Mode: SHADOW_PAGING\n"); } else { PrintError("Guest paging mode incorrectly set.\n"); return -1; } if (v3_cfg_val(pg_tree, "large_pages") != NULL) { if (strcasecmp(v3_cfg_val(pg_tree, "large_pages"), "true") == 0) { info->use_large_pages = 1; PrintDebug("Use of large pages in memory virtualization enabled.\n"); } } return 0; } static int pre_config_core(struct guest_info * info, v3_cfg_tree_t * core_cfg) { if (determine_paging_mode(info, core_cfg)) return -1; v3_init_core(info); if (info->vm_info->vm_class == V3_PC_VM) { if (pre_config_pc_core(info, core_cfg) == -1) { PrintError("PC Post configuration failure\n"); return -1; } } else { PrintError("Invalid VM Class\n"); return -1; } return 0; } static int post_config_vm(struct v3_vm_info * vm, v3_cfg_tree_t * cfg) { vm->run_state = VM_STOPPED; // Configure the memory map for the guest if (setup_memory_map(vm, cfg) == -1) { PrintError("Setting up guest memory map failed...\n"); return -1; } //v3_hook_io_port(info, 1234, &IO_Read, NULL, info); if (setup_devices(vm, cfg) == -1) { PrintError("Failed to setup devices\n"); return -1; } // v3_print_io_map(info); v3_print_msr_map(vm); if (vm->vm_class == V3_PC_VM) { if (post_config_pc(vm, cfg) == -1) { PrintError("PC Post configuration failure\n"); return -1; } } else { PrintError("Invalid VM Class\n"); return -1; } return 0; } static int post_config_core(struct guest_info * info, v3_cfg_tree_t * cfg) { info->core_run_state = CORE_STOPPED; if (info->vm_info->vm_class == V3_PC_VM) { if (post_config_pc_core(info, cfg) == -1) { PrintError("PC Post configuration failure\n"); return -1; } } else { PrintError("Invalid VM Class\n"); return -1; } return 0; } static struct v3_vm_info * allocate_guest(int num_cores) { int guest_state_size = sizeof(struct v3_vm_info) + (sizeof(struct guest_info) * num_cores); struct v3_vm_info * vm = V3_Malloc(guest_state_size); memset(vm, 0, guest_state_size); vm->num_cores = num_cores; return vm; } struct v3_vm_info * v3_config_guest(void * cfg_blob) { v3_cpu_arch_t cpu_type = v3_get_cpu_type(v3_get_cpu_id()); struct v3_config * cfg_data = NULL; struct v3_vm_info * vm = NULL; int num_cores = 0; int i = 0; v3_cfg_tree_t * cores_cfg = NULL; v3_cfg_tree_t * per_core_cfg = NULL; if (cpu_type == V3_INVALID_CPU) { PrintError("Configuring guest on invalid CPU\n"); return NULL; } cfg_data = parse_config(cfg_blob); if (!cfg_data) { PrintError("Could not parse configuration\n"); return NULL; } cores_cfg = v3_cfg_subtree(cfg_data->cfg, "cores"); if (!cores_cfg) { PrintError("Could not find core configuration (new config format required)\n"); return NULL; } num_cores = atoi(v3_cfg_val(cores_cfg, "count")); if (num_cores == 0) { PrintError("No cores specified in configuration\n"); return NULL; } V3_Print("Configuring %d cores\n", num_cores); vm = allocate_guest(num_cores); if (!vm) { PrintError("Could not allocate %d core guest\n", vm->num_cores); return NULL; } vm->cfg_data = cfg_data; V3_Print("Preconfiguration\n"); if (pre_config_vm(vm, vm->cfg_data->cfg) == -1) { PrintError("Error in preconfiguration\n"); return NULL; } V3_Print("Per core configuration\n"); per_core_cfg = v3_cfg_subtree(cores_cfg, "core"); // per core configuration for (i = 0; i < vm->num_cores; i++) { struct guest_info * info = &(vm->cores[i]); info->cpu_id = i; info->vm_info = vm; info->core_cfg_data = per_core_cfg; if (pre_config_core(info, per_core_cfg) == -1) { PrintError("Error in core %d preconfiguration\n", i); return NULL; } per_core_cfg = v3_cfg_next_branch(per_core_cfg); } V3_Print("Post Configuration\n"); if (post_config_vm(vm, vm->cfg_data->cfg) == -1) { PrintError("Error in postconfiguration\n"); return NULL; } per_core_cfg = v3_cfg_subtree(cores_cfg, "core"); // per core configuration for (i = 0; i < vm->num_cores; i++) { struct guest_info * info = &(vm->cores[i]); post_config_core(info, per_core_cfg); per_core_cfg = v3_cfg_next_branch(per_core_cfg); } V3_Print("Configuration successfull\n"); return vm; } static int setup_memory_map(struct v3_vm_info * vm, v3_cfg_tree_t * cfg) { v3_cfg_tree_t * mem_region = v3_cfg_subtree(v3_cfg_subtree(cfg, "memmap"), "region"); while (mem_region) { addr_t start_addr = atox(v3_cfg_val(mem_region, "start")); addr_t end_addr = atox(v3_cfg_val(mem_region, "end")); addr_t host_addr = atox(v3_cfg_val(mem_region, "host_addr")); if (v3_add_shadow_mem(vm, V3_MEM_CORE_ANY, start_addr, end_addr, host_addr) == -1) { PrintError("Could not map memory region: %p-%p => %p\n", (void *)start_addr, (void *)end_addr, (void *)host_addr); return -1; } mem_region = v3_cfg_next_branch(mem_region); } return 0; } static int setup_devices(struct v3_vm_info * vm, v3_cfg_tree_t * cfg) { v3_cfg_tree_t * device = v3_cfg_subtree(v3_cfg_subtree(cfg, "devices"), "device"); while (device) { char * dev_class = v3_cfg_val(device, "class"); V3_Print("configuring device %s\n", dev_class); if (v3_create_device(vm, dev_class, device) == -1) { PrintError("Error creating device %s\n", dev_class); return -1; } device = v3_cfg_next_branch(device); } v3_print_dev_mgr(vm); return 0; }