/* * This file is part of the Palacios Virtual Machine Monitor developed * by the V3VEE Project with funding from the United States National * Science Foundation and the Department of Energy. * * The V3VEE Project is a joint project between Northwestern University * and the University of New Mexico. You can find out more at * http://www.v3vee.org * * Copyright (c) 2011, Madhav Suresh * Copyright (c) 2011, The V3VEE Project * All rights reserved. * * Author: Madhav Suresh * Arefin Huq * Peter Dinda (store interface changes) * * * This is free software. You are permitted to use, * redistribute, and modify it as specified in the file "V3VEE_LICENSE". */ #include #include #include #include #include #include #include #include #include #include #ifdef V3_CONFIG_LIVE_MIGRATION #include #include #include #endif #ifndef V3_CONFIG_DEBUG_CHECKPOINT #undef PrintDebug #define PrintDebug(fmt, args...) #endif static struct hashtable * store_table = NULL; struct v3_chkpt; typedef enum {SAVE, LOAD} chkpt_mode_t; struct chkpt_interface { char name[128]; // Opening a checkpoint should return a pointer to the internal representation // of the checkpoint in the store. This will be passed back // as "store_data". Return NULL if the context cannot be opened void * (*open_chkpt)(char * url, chkpt_mode_t mode); // Closing the checkpoint should return -1 on failure, 0 on success int (*close_chkpt)(void * store_data); // Opening a context on the checkpoint with a given name should return // a pointer to an internal representation of the context. This pointer // is then passed back as "ctx". // We will open only a single context at a time. void * (*open_ctx)(void * store_data, char *name); // Closing the context should return -1 on failure, 0 on success int (*close_ctx)(void * store_data, void * ctx); // Save and load include a tagged data buffer. These are // "all or nothing" writes and reads. // return -1 on failure, and 0 on success // int (*save)(void * store_data, void * ctx, char * tag, uint64_t len, void * buf); int (*load)(void * store_data, void * ctx, char * tag, uint64_t len, void * buf); }; struct v3_chkpt { struct v3_vm_info * vm; struct v3_chkpt_ctx *current_ctx; struct chkpt_interface * interface; void * store_data; }; static uint_t store_hash_fn(addr_t key) { char * name = (char *)key; return v3_hash_buffer((uint8_t *)name, strlen(name)); } static int store_eq_fn(addr_t key1, addr_t key2) { char * name1 = (char *)key1; char * name2 = (char *)key2; return (strcmp(name1, name2) == 0); } #include "vmm_chkpt_stores.h" int V3_init_checkpoint() { extern struct chkpt_interface * __start__v3_chkpt_stores[]; extern struct chkpt_interface * __stop__v3_chkpt_stores[]; struct chkpt_interface ** tmp_store = __start__v3_chkpt_stores; int i = 0; store_table = v3_create_htable(0, store_hash_fn, store_eq_fn); while (tmp_store != __stop__v3_chkpt_stores) { V3_Print(VM_NONE, VCORE_NONE, "Registering Checkpoint Backing Store (%s)\n", (*tmp_store)->name); if (v3_htable_search(store_table, (addr_t)((*tmp_store)->name))) { PrintError(VM_NONE, VCORE_NONE, "Multiple instances of Checkpoint backing Store (%s)\n", (*tmp_store)->name); return -1; } if (v3_htable_insert(store_table, (addr_t)((*tmp_store)->name), (addr_t)(*tmp_store)) == 0) { PrintError(VM_NONE, VCORE_NONE, "Could not register Checkpoint backing store (%s)\n", (*tmp_store)->name); return -1; } tmp_store = &(__start__v3_chkpt_stores[++i]); } return 0; } int V3_deinit_checkpoint() { v3_free_htable(store_table, 0, 0); return 0; } static char svm_chkpt_header[] = "v3vee palacios checkpoint version: x.x, SVM x.x"; static char vmx_chkpt_header[] = "v3vee palacios checkpoint version: x.x, VMX x.x"; static int chkpt_close(struct v3_chkpt * chkpt) { if (chkpt) { int rc; rc = chkpt->interface->close_chkpt(chkpt->store_data); V3_Free(chkpt); if (rc!=0) { PrintError(VM_NONE, VCORE_NONE, "Internal store failed to close valid checkpoint\n"); return -1; } else { return 0; } } else { PrintError(VM_NONE, VCORE_NONE, "Attempt to close null checkpoint\n"); return -1; } } static struct v3_chkpt * chkpt_open(struct v3_vm_info * vm, char * store, char * url, chkpt_mode_t mode) { struct chkpt_interface * iface = NULL; struct v3_chkpt * chkpt = NULL; void * store_data = NULL; iface = (void *)v3_htable_search(store_table, (addr_t)store); if (iface == NULL) { V3_Print(vm, VCORE_NONE, "Error: Could not locate Checkpoint interface for store (%s)\n", store); return NULL; } store_data = iface->open_chkpt(url, mode); if (store_data == NULL) { PrintError(vm, VCORE_NONE, "Could not open url (%s) for backing store (%s)\n", url, store); return NULL; } chkpt = V3_Malloc(sizeof(struct v3_chkpt)); if (!chkpt) { PrintError(vm, VCORE_NONE, "Could not allocate checkpoint state, closing checkpoint\n"); iface->close_chkpt(store_data); return NULL; } memset(chkpt,0,sizeof(struct v3_chkpt)); chkpt->interface = iface; chkpt->vm = vm; chkpt->store_data = store_data; chkpt->current_ctx = NULL; return chkpt; } struct v3_chkpt_ctx * v3_chkpt_open_ctx(struct v3_chkpt * chkpt, char * name) { struct v3_chkpt_ctx * ctx; if (chkpt->current_ctx) { PrintError(VM_NONE, VCORE_NONE, "Attempt to open context %s before old context has been closed\n", name); return NULL; } ctx = V3_Malloc(sizeof(struct v3_chkpt_ctx)); if (!ctx) { PrintError(VM_NONE, VCORE_NONE, "Unable to allocate context\n"); return 0; } memset(ctx, 0, sizeof(struct v3_chkpt_ctx)); ctx->chkpt = chkpt; ctx->store_ctx = chkpt->interface->open_ctx(chkpt->store_data, name); if (!(ctx->store_ctx)) { PrintError(VM_NONE, VCORE_NONE, "Underlying store failed to open context %s\n",name); V3_Free(ctx); return NULL; } chkpt->current_ctx = ctx; return ctx; } int v3_chkpt_close_ctx(struct v3_chkpt_ctx * ctx) { struct v3_chkpt * chkpt = ctx->chkpt; int ret = 0; if (chkpt->current_ctx != ctx) { PrintError(VM_NONE, VCORE_NONE, "Attempt to close a context that is not the current context on the store\n"); return -1; } ret = chkpt->interface->close_ctx(chkpt->store_data, ctx->store_ctx); if (ret) { PrintError(VM_NONE, VCORE_NONE, "Failed to close context on store, closing device-independent context anyway - bad\n"); ret = -1; } chkpt->current_ctx=NULL; V3_Free(ctx); return ret; } int v3_chkpt_save(struct v3_chkpt_ctx * ctx, char * tag, uint64_t len, void * buf) { struct v3_chkpt * chkpt; int rc; if (!ctx) { PrintError(VM_NONE, VCORE_NONE, "Attempt to save tag %s on null context\n",tag); return -1; } chkpt = ctx->chkpt; if (chkpt->current_ctx != ctx) { PrintError(VM_NONE, VCORE_NONE, "Attempt to save on context that is not the current context for the store\n"); return -1; } rc = chkpt->interface->save(chkpt->store_data, ctx->store_ctx, tag , len, buf); if (rc) { PrintError(VM_NONE, VCORE_NONE, "Underlying store failed to save tag %s on valid context\n",tag); return -1; } else { return 0; } } int v3_chkpt_load(struct v3_chkpt_ctx * ctx, char * tag, uint64_t len, void * buf) { struct v3_chkpt * chkpt; int rc; if (!ctx) { PrintError(VM_NONE, VCORE_NONE, "Attempt to load tag %s from null context\n",tag); return -1; } chkpt = ctx->chkpt; if (chkpt->current_ctx != ctx) { PrintError(VM_NONE, VCORE_NONE, "Attempt to load from context that is not the current context for the store\n"); return -1; } rc = chkpt->interface->load(chkpt->store_data, ctx->store_ctx, tag, len, buf); if (rc) { PrintError(VM_NONE, VCORE_NONE, "Underlying store failed to load tag %s from valid context\n",tag); return -1; } else { return 0; } } static int load_memory(struct v3_vm_info * vm, struct v3_chkpt * chkpt) { void * guest_mem_base = NULL; void * ctx = NULL; uint64_t ret = 0; uint64_t saved_mem_block_size; uint32_t saved_num_base_regions; char buf[128]; int i; extern uint64_t v3_mem_block_size; ctx = v3_chkpt_open_ctx(chkpt, "memory_img"); if (!ctx) { PrintError(vm, VCORE_NONE, "Unable to open context for memory load\n"); return -1; } if (V3_CHKPT_LOAD(ctx, "region_size",saved_mem_block_size)) { PrintError(vm, VCORE_NONE, "Unable to load memory region size\n"); return -1; } if (V3_CHKPT_LOAD(ctx, "num_regions",saved_num_base_regions)) { PrintError(vm, VCORE_NONE, "Unable to load number of regions\n"); return -1; } if (saved_mem_block_size != v3_mem_block_size) { PrintError(vm, VCORE_NONE, "Unable to load as memory block size differs\n"); return -1; } // support will eventually be added for this if (saved_num_base_regions != vm->mem_map.num_base_regions) { PrintError(vm, VCORE_NONE, "Unable to laod as number of base regions differs\n"); return -1; } // support will eventually be added for this for (i=0;imem_map.num_base_regions;i++) { guest_mem_base = V3_VAddr((void *)vm->mem_map.base_regions[i].host_addr); sprintf(buf,"memory_img%d",i); if (v3_chkpt_load(ctx, buf, v3_mem_block_size, guest_mem_base)) { PrintError(vm, VCORE_NONE, "Unable to load all of memory (region %d) (requested=%llu bytes, result=%llu bytes\n",i,(uint64_t)(vm->mem_size),ret); v3_chkpt_close_ctx(ctx); return -1; } } v3_chkpt_close_ctx(ctx); return 0; } static int save_memory(struct v3_vm_info * vm, struct v3_chkpt * chkpt) { void * guest_mem_base = NULL; void * ctx = NULL; char buf[128]; // region name uint64_t ret = 0; extern uint64_t v3_mem_block_size; int i; ctx = v3_chkpt_open_ctx(chkpt, "memory_img"); if (!ctx) { PrintError(vm, VCORE_NONE, "Unable to open context to save memory\n"); return -1; } if (V3_CHKPT_SAVE(ctx, "region_size",v3_mem_block_size)) { PrintError(vm, VCORE_NONE, "Unable to save memory region size\n"); return -1; } if (V3_CHKPT_SAVE(ctx, "num_regions",vm->mem_map.num_base_regions)) { PrintError(vm, VCORE_NONE, "Unable to save number of regions\n"); return -1; } for (i=0;imem_map.num_base_regions;i++) { guest_mem_base = V3_VAddr((void *)vm->mem_map.base_regions[i].host_addr); sprintf(buf,"memory_img%d",i); if (v3_chkpt_save(ctx, buf, v3_mem_block_size, guest_mem_base)) { PrintError(vm, VCORE_NONE, "Unable to save all of memory (region %d) (requested=%llu, received=%llu)\n",i,(uint64_t)(vm->mem_size),ret); v3_chkpt_close_ctx(ctx); return -1; } } v3_chkpt_close_ctx(ctx); return 0; } #ifdef V3_CONFIG_LIVE_MIGRATION struct mem_migration_state { struct v3_vm_info *vm; struct v3_bitmap modified_pages; }; static int shadow_paging_callback(struct guest_info *core, struct v3_shdw_pg_event *event, void *priv_data) { struct mem_migration_state *m = (struct mem_migration_state *)priv_data; if (event->event_type==SHADOW_PAGEFAULT && event->event_order==SHADOW_PREIMPL && event->error_code.write) { // Note, assumes VTLB behavior where we will see the write even if preceded by a read addr_t gpa; if (!v3_gva_to_gpa(core,event->gva,&gpa)) { // write to this page v3_bitmap_set(&(m->modified_pages),gpa>>12); } else { // no worries, this isn't physical memory } } else { // we don't care about other events } return 0; } /* static int nested_paging_callback(struct guest_info *core, struct v3_nested_pg_event *event, void *priv_data) { struct mem_migration_state *m = (struct mem_migration_state *)priv_data; if (event->event_type==NESTED_PAGEFAULT && event->event_order==NESTED_PREIMPL && event->error_code.write) { // Assumes we will see a write after reads if (event->gpavm_info->mem_size) { v3_bitmap_set(&(m->modified_pages),(event->gpa)>>12); } else { // no worries, this isn't physical memory } } else { // we don't care about other events } return 0; } */ static struct mem_migration_state *start_page_tracking(struct v3_vm_info *vm) { struct mem_migration_state *m; int i; m = (struct mem_migration_state *)V3_Malloc(sizeof(struct mem_migration_state)); if (!m) { PrintError(vm, VCORE_NONE, "Cannot allocate\n"); return NULL; } m->vm=vm; if (v3_bitmap_init(&(m->modified_pages),vm->mem_size >> 12) == -1) { PrintError(vm, VCORE_NONE, "Failed to initialize modified_pages bit vector"); V3_Free(m); } // We assume that the migrator has already verified that all cores are // using the identical model (shadow or nested) // This must not change over the execution of the migration if (vm->cores[0].shdw_pg_mode==SHADOW_PAGING) { v3_register_shadow_paging_event_callback(vm,shadow_paging_callback,m); for (i=0;inum_cores;i++) { v3_invalidate_shadow_pts(&(vm->cores[i])); } } else if (vm->cores[0].shdw_pg_mode==NESTED_PAGING) { //v3_register_nested_paging_event_callback(vm,nested_paging_callback,m); for (i=0;inum_cores;i++) { //v3_invalidate_nested_addr_range(&(vm->cores[i]),0,vm->mem_size-1); } } else { PrintError(vm, VCORE_NONE, "Unsupported paging mode\n"); v3_bitmap_deinit(&(m->modified_pages)); V3_Free(m); return 0; } // and now we should get callbacks as writes happen return m; } static void stop_page_tracking(struct mem_migration_state *m) { if (m->vm->cores[0].shdw_pg_mode==SHADOW_PAGING) { v3_unregister_shadow_paging_event_callback(m->vm,shadow_paging_callback,m); } else { //v3_unregister_nested_paging_event_callback(m->vm,nested_paging_callback,m); } v3_bitmap_deinit(&(m->modified_pages)); V3_Free(m); } // // Returns // negative: error // zero: done with this round static int save_inc_memory(struct v3_vm_info * vm, struct v3_bitmap * mod_pgs_to_send, struct v3_chkpt * chkpt) { int page_size_bytes = 1 << 12; // assuming 4k pages right now void * ctx = NULL; int i = 0; int bitmap_num_bytes = (mod_pgs_to_send->num_bits / 8) + ((mod_pgs_to_send->num_bits % 8) > 0); PrintDebug(vm, VCORE_NONE, "Saving incremental memory.\n"); ctx = v3_chkpt_open_ctx(chkpt,"memory_bitmap_bits"); if (!ctx) { PrintError(vm, VCORE_NONE, "Cannot open context for dirty memory bitmap\n"); return -1; } if (v3_chkpt_save(ctx, "memory_bitmap_bits", bitmap_num_bytes, mod_pgs_to_send->bits)) { PrintError(vm, VCORE_NONE, "Unable to write all of the dirty memory bitmap\n"); v3_chkpt_close_ctx(ctx); return -1; } v3_chkpt_close_ctx(ctx); PrintDebug(vm, VCORE_NONE, "Sent bitmap bits.\n"); // Dirty memory pages are sent in bitmap order for (i = 0; i < mod_pgs_to_send->num_bits; i++) { if (v3_bitmap_check(mod_pgs_to_send, i)) { struct v3_mem_region *region = v3_get_base_region(vm,page_size_bytes * i); if (!region) { PrintError(vm, VCORE_NONE, "Failed to find base region for page %d\n",i); return -1; } // PrintDebug(vm, VCORE_NONE, "Sending memory page %d.\n",i); ctx = v3_chkpt_open_ctx(chkpt, "memory_page"); if (!ctx) { PrintError(vm, VCORE_NONE, "Unable to open context to send memory page\n"); return -1; } if (v3_chkpt_save(ctx, "memory_page", page_size_bytes, (void*)(region->host_addr + page_size_bytes * i - region->guest_start))) { PrintError(vm, VCORE_NONE, "Unable to send a memory page\n"); v3_chkpt_close_ctx(ctx); return -1; } v3_chkpt_close_ctx(ctx); } } return 0; } // // returns: // negative: error // zero: ok, but not done // positive: ok, and also done static int load_inc_memory(struct v3_vm_info * vm, struct v3_bitmap * mod_pgs, struct v3_chkpt * chkpt) { int page_size_bytes = 1 << 12; // assuming 4k pages right now void * ctx = NULL; int i = 0; bool empty_bitmap = true; int bitmap_num_bytes = (mod_pgs->num_bits / 8) + ((mod_pgs->num_bits % 8) > 0); ctx = v3_chkpt_open_ctx(chkpt, "memory_bitmap_bits"); if (!ctx) { PrintError(vm, VCORE_NONE, "Cannot open context to receive memory bitmap\n"); return -1; } if (v3_chkpt_load(ctx, "memory_bitmap_bits", bitmap_num_bytes, mod_pgs->bits)) { PrintError(vm, VCORE_NONE, "Did not receive all of memory bitmap\n"); v3_chkpt_close_ctx(ctx); return -1; } v3_chkpt_close_ctx(ctx); // Receive also follows bitmap order for (i = 0; i < mod_pgs->num_bits; i ++) { if (v3_bitmap_check(mod_pgs, i)) { struct v3_mem_region *region = v3_get_base_region(vm,page_size_bytes * i); if (!region) { PrintError(vm, VCORE_NONE, "Failed to find base region for page %d\n",i); return -1; } //PrintDebug(vm, VCORE_NONE, "Loading page %d\n", i); empty_bitmap = false; ctx = v3_chkpt_open_ctx(chkpt, "memory_page"); if (!ctx) { PrintError(vm, VCORE_NONE, "Cannot open context to receive memory page\n"); return -1; } if (v3_chkpt_load(ctx, "memory_page", page_size_bytes, (void*)(region->host_addr + page_size_bytes * i - region->guest_start))) { PrintError(vm, VCORE_NONE, "Did not receive all of memory page\n"); v3_chkpt_close_ctx(ctx); return -1; } v3_chkpt_close_ctx(ctx); } } if (empty_bitmap) { // signal end of receiving pages PrintDebug(vm, VCORE_NONE, "Finished receiving pages.\n"); return 1; } else { // need to run again return 0; } } #endif int save_header(struct v3_vm_info * vm, struct v3_chkpt * chkpt) { extern v3_cpu_arch_t v3_mach_type; void * ctx = NULL; ctx = v3_chkpt_open_ctx(chkpt, "header"); if (!ctx) { PrintError(vm, VCORE_NONE, "Cannot open context to save header\n"); return -1; } switch (v3_mach_type) { case V3_SVM_CPU: case V3_SVM_REV3_CPU: { if (v3_chkpt_save(ctx, "header", strlen(svm_chkpt_header), svm_chkpt_header)) { PrintError(vm, VCORE_NONE, "Could not save all of SVM header\n"); v3_chkpt_close_ctx(ctx); return -1; } break; } case V3_VMX_CPU: case V3_VMX_EPT_CPU: case V3_VMX_EPT_UG_CPU: { if (v3_chkpt_save(ctx, "header", strlen(vmx_chkpt_header), vmx_chkpt_header)) { PrintError(vm, VCORE_NONE, "Could not save all of VMX header\n"); v3_chkpt_close_ctx(ctx); return -1; } break; } default: PrintError(vm, VCORE_NONE, "checkpoint not supported on this architecture\n"); v3_chkpt_close_ctx(ctx); return -1; } v3_chkpt_close_ctx(ctx); return 0; } static int load_header(struct v3_vm_info * vm, struct v3_chkpt * chkpt) { extern v3_cpu_arch_t v3_mach_type; void * ctx = NULL; ctx = v3_chkpt_open_ctx(chkpt, "header"); if (!ctx) { PrintError(vm, VCORE_NONE, "Cannot open context to load header\n"); return -1; } switch (v3_mach_type) { case V3_SVM_CPU: case V3_SVM_REV3_CPU: { char header[strlen(svm_chkpt_header) + 1]; if (v3_chkpt_load(ctx, "header", strlen(svm_chkpt_header), header)) { PrintError(vm, VCORE_NONE, "Could not load all of SVM header\n"); v3_chkpt_close_ctx(ctx); return -1; } header[strlen(svm_chkpt_header)] = 0; break; } case V3_VMX_CPU: case V3_VMX_EPT_CPU: case V3_VMX_EPT_UG_CPU: { char header[strlen(vmx_chkpt_header) + 1]; if (v3_chkpt_load(ctx, "header", strlen(vmx_chkpt_header), header)) { PrintError(vm, VCORE_NONE, "Could not load all of VMX header\n"); v3_chkpt_close_ctx(ctx); return -1; } header[strlen(vmx_chkpt_header)] = 0; break; } default: PrintError(vm, VCORE_NONE, "checkpoint not supported on this architecture\n"); v3_chkpt_close_ctx(ctx); return -1; } v3_chkpt_close_ctx(ctx); return 0; } static int load_core(struct guest_info * info, struct v3_chkpt * chkpt, v3_chkpt_options_t opts) { extern v3_cpu_arch_t v3_mach_type; void * ctx = NULL; char key_name[16]; v3_reg_t tempreg; PrintDebug(info->vm_info, info, "Loading core\n"); memset(key_name, 0, 16); snprintf(key_name, 16, "guest_info%d", info->vcpu_id); ctx = v3_chkpt_open_ctx(chkpt, key_name); if (!ctx) { PrintError(info->vm_info, info, "Could not open context to load core\n"); goto loadfailout; } // Run state is needed to determine when AP cores need // to be immediately run after resume V3_CHKPT_LOAD(ctx,"run_state",info->core_run_state,loadfailout); V3_CHKPT_LOAD(ctx,"cpu_mode",info->cpu_mode,loadfailout); V3_CHKPT_LOAD(ctx,"mem_mode",info->mem_mode,loadfailout); V3_CHKPT_LOAD(ctx,"CPL",info->cpl,loadfailout); if (info->cpl != info->segments.ss.dpl) { V3_Print(info->vm_info,info,"Strange, CPL=%d but ss.dpl=%d on core save\n",info->cpl,info->segments.ss.dpl); } V3_CHKPT_LOAD(ctx, "RIP", info->rip, loadfailout); // GPRs V3_CHKPT_LOAD(ctx,"RDI",info->vm_regs.rdi, loadfailout); V3_CHKPT_LOAD(ctx,"RSI",info->vm_regs.rsi, loadfailout); V3_CHKPT_LOAD(ctx,"RBP",info->vm_regs.rbp, loadfailout); V3_CHKPT_LOAD(ctx,"RSP",info->vm_regs.rsp, loadfailout); V3_CHKPT_LOAD(ctx,"RBX",info->vm_regs.rbx, loadfailout); V3_CHKPT_LOAD(ctx,"RDX",info->vm_regs.rdx, loadfailout); V3_CHKPT_LOAD(ctx,"RCX",info->vm_regs.rcx, loadfailout); V3_CHKPT_LOAD(ctx,"RAX",info->vm_regs.rax, loadfailout); V3_CHKPT_LOAD(ctx,"R8",info->vm_regs.r8, loadfailout); V3_CHKPT_LOAD(ctx,"R9",info->vm_regs.r9, loadfailout); V3_CHKPT_LOAD(ctx,"R10",info->vm_regs.r10, loadfailout); V3_CHKPT_LOAD(ctx,"R11",info->vm_regs.r11, loadfailout); V3_CHKPT_LOAD(ctx,"R12",info->vm_regs.r12, loadfailout); V3_CHKPT_LOAD(ctx,"R13",info->vm_regs.r13, loadfailout); V3_CHKPT_LOAD(ctx,"R14",info->vm_regs.r14, loadfailout); V3_CHKPT_LOAD(ctx,"R15",info->vm_regs.r15, loadfailout); // Control registers V3_CHKPT_LOAD(ctx, "CR0", info->ctrl_regs.cr0, loadfailout); // there is no CR1 V3_CHKPT_LOAD(ctx, "CR2", info->ctrl_regs.cr2, loadfailout); V3_CHKPT_LOAD(ctx, "CR3", info->ctrl_regs.cr3, loadfailout); V3_CHKPT_LOAD(ctx, "CR4", info->ctrl_regs.cr4, loadfailout); // There are no CR5,6,7 // CR8 is derived from apic_tpr tempreg = (info->ctrl_regs.apic_tpr >> 4) & 0xf; V3_CHKPT_LOAD(ctx, "CR8", tempreg, loadfailout); V3_CHKPT_LOAD(ctx, "APIC_TPR", info->ctrl_regs.apic_tpr, loadfailout); V3_CHKPT_LOAD(ctx, "RFLAGS", info->ctrl_regs.rflags, loadfailout); V3_CHKPT_LOAD(ctx, "EFER", info->ctrl_regs.efer, loadfailout); // Debug registers V3_CHKPT_LOAD(ctx, "DR0", info->dbg_regs.dr0, loadfailout); V3_CHKPT_LOAD(ctx, "DR1", info->dbg_regs.dr1, loadfailout); V3_CHKPT_LOAD(ctx, "DR2", info->dbg_regs.dr2, loadfailout); V3_CHKPT_LOAD(ctx, "DR3", info->dbg_regs.dr3, loadfailout); // there is no DR4 or DR5 V3_CHKPT_LOAD(ctx, "DR6", info->dbg_regs.dr6, loadfailout); V3_CHKPT_LOAD(ctx, "DR7", info->dbg_regs.dr7, loadfailout); // Segment registers V3_CHKPT_LOAD(ctx, "CS", info->segments.cs, loadfailout); V3_CHKPT_LOAD(ctx, "DS", info->segments.ds, loadfailout); V3_CHKPT_LOAD(ctx, "ES", info->segments.es, loadfailout); V3_CHKPT_LOAD(ctx, "FS", info->segments.fs, loadfailout); V3_CHKPT_LOAD(ctx, "GS", info->segments.gs, loadfailout); V3_CHKPT_LOAD(ctx, "SS", info->segments.ss, loadfailout); V3_CHKPT_LOAD(ctx, "LDTR", info->segments.ldtr, loadfailout); V3_CHKPT_LOAD(ctx, "GDTR", info->segments.gdtr, loadfailout); V3_CHKPT_LOAD(ctx, "IDTR", info->segments.idtr, loadfailout); V3_CHKPT_LOAD(ctx, "TR", info->segments.tr, loadfailout); if (info->cpl != info->segments.ss.dpl) { V3_Print(info->vm_info,info,"Strange, CPL=%d but ss.dpl=%d on core load\n",info->cpl,info->segments.ss.dpl); } // several MSRs... V3_CHKPT_LOAD(ctx, "STAR", info->msrs.star, loadfailout); V3_CHKPT_LOAD(ctx, "LSTAR", info->msrs.lstar, loadfailout); V3_CHKPT_LOAD(ctx, "SFMASK", info->msrs.sfmask, loadfailout); V3_CHKPT_LOAD(ctx, "KERN_GS_BASE", info->msrs.kern_gs_base, loadfailout); // Some components of guest state captured in the shadow pager V3_CHKPT_LOAD(ctx, "GUEST_CR3", info->shdw_pg_state.guest_cr3, loadfailout); V3_CHKPT_LOAD(ctx, "GUEST_CR0", info->shdw_pg_state.guest_cr0, loadfailout); V3_CHKPT_LOAD(ctx, "GUEST_EFER", info->shdw_pg_state.guest_efer, loadfailout); // floating point if (v3_load_fp_state(ctx,info)) { goto loadfailout; } v3_chkpt_close_ctx(ctx); ctx=0; PrintDebug(info->vm_info, info, "Finished reading guest_info information\n"); info->cpu_mode = v3_get_vm_cpu_mode(info); info->mem_mode = v3_get_vm_mem_mode(info); if (info->shdw_pg_mode == SHADOW_PAGING) { if (v3_get_vm_mem_mode(info) == VIRTUAL_MEM) { if (v3_activate_shadow_pt(info) == -1) { PrintError(info->vm_info, info, "Failed to activate shadow page tables\n"); goto loadfailout; } } else { if (v3_activate_passthrough_pt(info) == -1) { PrintError(info->vm_info, info, "Failed to activate passthrough page tables\n"); goto loadfailout; } } } if (opts & V3_CHKPT_OPT_SKIP_ARCHDEP) { goto donearch; } switch (v3_mach_type) { case V3_SVM_CPU: case V3_SVM_REV3_CPU: { char key_name[16]; snprintf(key_name, 16, "vmcb_data%d", info->vcpu_id); ctx = v3_chkpt_open_ctx(chkpt, key_name); if (!ctx) { PrintError(info->vm_info, info, "Could not open context to load SVM core\n"); goto loadfailout; } if (v3_svm_load_core(info, ctx) < 0 ) { PrintError(info->vm_info, info, "Failed to patch core %d\n", info->vcpu_id); goto loadfailout; } v3_chkpt_close_ctx(ctx); ctx=0; break; } case V3_VMX_CPU: case V3_VMX_EPT_CPU: case V3_VMX_EPT_UG_CPU: { char key_name[16]; snprintf(key_name, 16, "vmcs_data%d", info->vcpu_id); ctx = v3_chkpt_open_ctx(chkpt, key_name); if (!ctx) { PrintError(info->vm_info, info, "Could not open context to load VMX core\n"); goto loadfailout; } if (v3_vmx_load_core(info, ctx) < 0) { PrintError(info->vm_info, info, "VMX checkpoint failed\n"); goto loadfailout; } v3_chkpt_close_ctx(ctx); ctx=0; break; } default: PrintError(info->vm_info, info, "Invalid CPU Type (%d)\n", v3_mach_type); goto loadfailout; } donearch: PrintDebug(info->vm_info, info, "Load of core succeeded\n"); v3_print_guest_state(info); return 0; loadfailout: PrintError(info->vm_info, info, "Failed to load core\n"); if (ctx) { v3_chkpt_close_ctx(ctx);} return -1; } // GEM5 - Hypercall for initiating transfer to gem5 (checkpoint) static int save_core(struct guest_info * info, struct v3_chkpt * chkpt, v3_chkpt_options_t opts) { extern v3_cpu_arch_t v3_mach_type; void * ctx = NULL; char key_name[16]; v3_reg_t tempreg; PrintDebug(info->vm_info, info, "Saving core\n"); v3_print_guest_state(info); memset(key_name, 0, 16); snprintf(key_name, 16, "guest_info%d", info->vcpu_id); ctx = v3_chkpt_open_ctx(chkpt, key_name); if (!ctx) { PrintError(info->vm_info, info, "Unable to open context to save core\n"); goto savefailout; } V3_CHKPT_SAVE(ctx,"run_state",info->core_run_state,savefailout); V3_CHKPT_SAVE(ctx,"cpu_mode",info->cpu_mode,savefailout); V3_CHKPT_SAVE(ctx,"mem_mode",info->mem_mode,savefailout); V3_CHKPT_SAVE(ctx,"CPL",info->cpl,savefailout); V3_CHKPT_SAVE(ctx, "RIP", info->rip, savefailout); // GPRs V3_CHKPT_SAVE(ctx,"RDI",info->vm_regs.rdi, savefailout); V3_CHKPT_SAVE(ctx,"RSI",info->vm_regs.rsi, savefailout); V3_CHKPT_SAVE(ctx,"RBP",info->vm_regs.rbp, savefailout); V3_CHKPT_SAVE(ctx,"RSP",info->vm_regs.rsp, savefailout); V3_CHKPT_SAVE(ctx,"RBX",info->vm_regs.rbx, savefailout); V3_CHKPT_SAVE(ctx,"RDX",info->vm_regs.rdx, savefailout); V3_CHKPT_SAVE(ctx,"RCX",info->vm_regs.rcx, savefailout); V3_CHKPT_SAVE(ctx,"RAX",info->vm_regs.rax, savefailout); V3_CHKPT_SAVE(ctx,"R8",info->vm_regs.r8, savefailout); V3_CHKPT_SAVE(ctx,"R9",info->vm_regs.r9, savefailout); V3_CHKPT_SAVE(ctx,"R10",info->vm_regs.r10, savefailout); V3_CHKPT_SAVE(ctx,"R11",info->vm_regs.r11, savefailout); V3_CHKPT_SAVE(ctx,"R12",info->vm_regs.r12, savefailout); V3_CHKPT_SAVE(ctx,"R13",info->vm_regs.r13, savefailout); V3_CHKPT_SAVE(ctx,"R14",info->vm_regs.r14, savefailout); V3_CHKPT_SAVE(ctx,"R15",info->vm_regs.r15, savefailout); // Control registers V3_CHKPT_SAVE(ctx, "CR0", info->ctrl_regs.cr0, savefailout); // there is no CR1 V3_CHKPT_SAVE(ctx, "CR2", info->ctrl_regs.cr2, savefailout); V3_CHKPT_SAVE(ctx, "CR3", info->ctrl_regs.cr3, savefailout); V3_CHKPT_SAVE(ctx, "CR4", info->ctrl_regs.cr4, savefailout); // There are no CR5,6,7 // CR8 is derived from apic_tpr tempreg = (info->ctrl_regs.apic_tpr >> 4) & 0xf; V3_CHKPT_SAVE(ctx, "CR8", tempreg, savefailout); V3_CHKPT_SAVE(ctx, "APIC_TPR", info->ctrl_regs.apic_tpr, savefailout); V3_CHKPT_SAVE(ctx, "RFLAGS", info->ctrl_regs.rflags, savefailout); V3_CHKPT_SAVE(ctx, "EFER", info->ctrl_regs.efer, savefailout); // Debug registers V3_CHKPT_SAVE(ctx, "DR0", info->dbg_regs.dr0, savefailout); V3_CHKPT_SAVE(ctx, "DR1", info->dbg_regs.dr1, savefailout); V3_CHKPT_SAVE(ctx, "DR2", info->dbg_regs.dr2, savefailout); V3_CHKPT_SAVE(ctx, "DR3", info->dbg_regs.dr3, savefailout); // there is no DR4 or DR5 V3_CHKPT_SAVE(ctx, "DR6", info->dbg_regs.dr6, savefailout); V3_CHKPT_SAVE(ctx, "DR7", info->dbg_regs.dr7, savefailout); // Segment registers V3_CHKPT_SAVE(ctx, "CS", info->segments.cs, savefailout); V3_CHKPT_SAVE(ctx, "DS", info->segments.ds, savefailout); V3_CHKPT_SAVE(ctx, "ES", info->segments.es, savefailout); V3_CHKPT_SAVE(ctx, "FS", info->segments.fs, savefailout); V3_CHKPT_SAVE(ctx, "GS", info->segments.gs, savefailout); V3_CHKPT_SAVE(ctx, "SS", info->segments.ss, savefailout); V3_CHKPT_SAVE(ctx, "LDTR", info->segments.ldtr, savefailout); V3_CHKPT_SAVE(ctx, "GDTR", info->segments.gdtr, savefailout); V3_CHKPT_SAVE(ctx, "IDTR", info->segments.idtr, savefailout); V3_CHKPT_SAVE(ctx, "TR", info->segments.tr, savefailout); // several MSRs... V3_CHKPT_SAVE(ctx, "STAR", info->msrs.star, savefailout); V3_CHKPT_SAVE(ctx, "LSTAR", info->msrs.lstar, savefailout); V3_CHKPT_SAVE(ctx, "SFMASK", info->msrs.sfmask, savefailout); V3_CHKPT_SAVE(ctx, "KERN_GS_BASE", info->msrs.kern_gs_base, savefailout); // Some components of guest state captured in the shadow pager V3_CHKPT_SAVE(ctx, "GUEST_CR3", info->shdw_pg_state.guest_cr3, savefailout); V3_CHKPT_SAVE(ctx, "GUEST_CR0", info->shdw_pg_state.guest_cr0, savefailout); V3_CHKPT_SAVE(ctx, "GUEST_EFER", info->shdw_pg_state.guest_efer, savefailout); // floating point if (v3_save_fp_state(ctx,info)) { goto savefailout; } v3_chkpt_close_ctx(ctx); ctx=0; if (opts & V3_CHKPT_OPT_SKIP_ARCHDEP) { goto donearch; } //Architechture specific code switch (v3_mach_type) { case V3_SVM_CPU: case V3_SVM_REV3_CPU: { char key_name[16]; snprintf(key_name, 16, "vmcb_data%d", info->vcpu_id); ctx = v3_chkpt_open_ctx(chkpt, key_name); if (!ctx) { PrintError(info->vm_info, info, "Could not open context to store SVM core\n"); goto savefailout; } if (v3_svm_save_core(info, ctx) < 0) { PrintError(info->vm_info, info, "VMCB Unable to be written\n"); goto savefailout; } v3_chkpt_close_ctx(ctx); ctx=0;; break; } case V3_VMX_CPU: case V3_VMX_EPT_CPU: case V3_VMX_EPT_UG_CPU: { char key_name[16]; snprintf(key_name, 16, "vmcs_data%d", info->vcpu_id); ctx = v3_chkpt_open_ctx(chkpt, key_name); if (!ctx) { PrintError(info->vm_info, info, "Could not open context to store VMX core\n"); goto savefailout; } if (v3_vmx_save_core(info, ctx) == -1) { PrintError(info->vm_info, info, "VMX checkpoint failed\n"); goto savefailout; } v3_chkpt_close_ctx(ctx); ctx=0; break; } default: PrintError(info->vm_info, info, "Invalid CPU Type (%d)\n", v3_mach_type); goto savefailout; } donearch: return 0; savefailout: PrintError(info->vm_info, info, "Failed to save core\n"); if (ctx) { v3_chkpt_close_ctx(ctx); } return -1; } // // GEM5 - Madhav has debug code here for printing instrucions // int v3_chkpt_save_vm(struct v3_vm_info * vm, char * store, char * url, v3_chkpt_options_t opts) { struct v3_chkpt * chkpt = NULL; int ret = 0;; int i = 0; chkpt = chkpt_open(vm, store, url, SAVE); if (chkpt == NULL) { PrintError(vm, VCORE_NONE, "Error creating checkpoint store for url %s\n",url); return -1; } /* If this guest is running we need to block it while the checkpoint occurs */ if (vm->run_state == VM_RUNNING) { while (v3_raise_barrier(vm, NULL) == -1); } if (!(opts & V3_CHKPT_OPT_SKIP_MEM)) { if ((ret = save_memory(vm, chkpt)) == -1) { PrintError(vm, VCORE_NONE, "Unable to save memory\n"); goto out; } } if (!(opts & V3_CHKPT_OPT_SKIP_DEVS)) { if ((ret = v3_save_vm_devices(vm, chkpt)) == -1) { PrintError(vm, VCORE_NONE, "Unable to save devices\n"); goto out; } } if ((ret = save_header(vm, chkpt)) == -1) { PrintError(vm, VCORE_NONE, "Unable to save header\n"); goto out; } if (!(opts & V3_CHKPT_OPT_SKIP_CORES)) { for (i = 0; i < vm->num_cores; i++){ if ((ret = save_core(&(vm->cores[i]), chkpt, opts)) == -1) { PrintError(vm, VCORE_NONE, "chkpt of core %d failed\n", i); goto out; } } } out: /* Resume the guest if it was running */ if (vm->run_state == VM_RUNNING) { v3_lower_barrier(vm); } chkpt_close(chkpt); return ret; } int v3_chkpt_load_vm(struct v3_vm_info * vm, char * store, char * url, v3_chkpt_options_t opts) { struct v3_chkpt * chkpt = NULL; int i = 0; int ret = 0; chkpt = chkpt_open(vm, store, url, LOAD); if (chkpt == NULL) { PrintError(vm, VCORE_NONE, "Error creating checkpoint store\n"); return -1; } /* If this guest is running we need to block it while the checkpoint occurs */ if (vm->run_state == VM_RUNNING) { while (v3_raise_barrier(vm, NULL) == -1); } if (!(opts & V3_CHKPT_OPT_SKIP_MEM)) { if ((ret = load_memory(vm, chkpt)) == -1) { PrintError(vm, VCORE_NONE, "Unable to load memory\n"); goto out; } } if (!(opts & V3_CHKPT_OPT_SKIP_DEVS)) { if ((ret = v3_load_vm_devices(vm, chkpt)) == -1) { PrintError(vm, VCORE_NONE, "Unable to load devies\n"); goto out; } } if ((ret = load_header(vm, chkpt)) == -1) { PrintError(vm, VCORE_NONE, "Unable to load header\n"); goto out; } //per core cloning if (!(opts & V3_CHKPT_OPT_SKIP_CORES)) { for (i = 0; i < vm->num_cores; i++) { if ((ret = load_core(&(vm->cores[i]), chkpt, opts)) == -1) { PrintError(vm, VCORE_NONE, "Error loading core state (core=%d)\n", i); goto out; } } } out: /* Resume the guest if it was running and we didn't just trash the state*/ if (vm->run_state == VM_RUNNING) { if (ret == -1) { vm->run_state = VM_STOPPED; } /* We check the run state of the VM after every barrier So this will immediately halt the VM */ v3_lower_barrier(vm); } chkpt_close(chkpt); return ret; } #ifdef V3_CONFIG_LIVE_MIGRATION #define MOD_THRESHOLD 200 // pages below which we declare victory #define ITER_THRESHOLD 32 // iters below which we declare victory int v3_chkpt_send_vm(struct v3_vm_info * vm, char * store, char * url, v3_chkpt_options_t opts) { struct v3_chkpt * chkpt = NULL; int ret = 0;; int iter = 0; bool last_modpage_iteration=false; struct v3_bitmap modified_pages_to_send; uint64_t start_time=0; uint64_t stop_time; int num_mod_pages=0; struct mem_migration_state *mm_state; int i; // Cores must all be in the same mode // or we must be skipping mmeory if (!(opts & V3_CHKPT_OPT_SKIP_MEM)) { v3_paging_mode_t mode = vm->cores[0].shdw_pg_mode; for (i=1;inum_cores;i++) { if (vm->cores[i].shdw_pg_mode != mode) { PrintError(vm, VCORE_NONE, "Cores having different paging modes (nested and shadow) are not supported\n"); return -1; } } } chkpt = chkpt_open(vm, store, url, SAVE); if (chkpt == NULL) { PrintError(vm, VCORE_NONE, "Error creating checkpoint store\n"); chkpt_close(chkpt); return -1; } if (opts & V3_CHKPT_OPT_SKIP_MEM) { goto memdone; } // In a send, the memory is copied incrementally first, // followed by the remainder of the state if (v3_bitmap_init(&modified_pages_to_send, vm->mem_size>>12 // number of pages in main region ) == -1) { PrintError(vm, VCORE_NONE, "Could not intialize bitmap.\n"); return -1; } // 0. Initialize bitmap to all 1s for (i=0; i < modified_pages_to_send.num_bits; i++) { v3_bitmap_set(&modified_pages_to_send,i); } iter = 0; while (!last_modpage_iteration) { PrintDebug(vm, VCORE_NONE, "Modified memory page iteration %d\n",i++); start_time = v3_get_host_time(&(vm->cores[0].time_state)); // We will pause the VM for a short while // so that we can collect the set of changed pages if (v3_pause_vm(vm) == -1) { PrintError(vm, VCORE_NONE, "Could not pause VM\n"); ret = -1; goto out; } if (iter==0) { // special case, we already have the pages to send (all of them) // they are already in modified_pages_to_send } else { // normally, we are in the middle of a round // We need to copy from the current tracking bitmap // to our send bitmap v3_bitmap_copy(&modified_pages_to_send,&(mm_state->modified_pages)); // and now we need to remove our tracking stop_page_tracking(mm_state); } // are we done? (note that we are still paused) num_mod_pages = v3_bitmap_count(&modified_pages_to_send); if (num_mod_pagesITER_THRESHOLD) { // we are done, so we will not restart page tracking // the vm is paused, and so we should be able // to just send the data PrintDebug(vm, VCORE_NONE, "Last modified memory page iteration.\n"); last_modpage_iteration = true; } else { // we are not done, so we will restart page tracking // to prepare for a second round of pages // we will resume the VM as this happens if (!(mm_state=start_page_tracking(vm))) { PrintError(vm, VCORE_NONE, "Error enabling page tracking.\n"); ret = -1; goto out; } if (v3_continue_vm(vm) == -1) { PrintError(vm, VCORE_NONE, "Error resuming the VM\n"); stop_page_tracking(mm_state); ret = -1; goto out; } stop_time = v3_get_host_time(&(vm->cores[0].time_state)); PrintDebug(vm, VCORE_NONE, "num_mod_pages=%d\ndowntime=%llu\n",num_mod_pages,stop_time-start_time); } // At this point, we are either paused and about to copy // the last chunk, or we are running, and will copy the last // round in parallel with current execution if (num_mod_pages>0) { if (save_inc_memory(vm, &modified_pages_to_send, chkpt) == -1) { PrintError(vm, VCORE_NONE, "Error sending incremental memory.\n"); ret = -1; goto out; } } // we don't want to copy an empty bitmap here iter++; } if (v3_bitmap_reset(&modified_pages_to_send) == -1) { PrintError(vm, VCORE_NONE, "Error reseting bitmap.\n"); ret = -1; goto out; } // send bitmap of 0s to signal end of modpages if (save_inc_memory(vm, &modified_pages_to_send, chkpt) == -1) { PrintError(vm, VCORE_NONE, "Error sending incremental memory.\n"); ret = -1; goto out; } memdone: // save the non-memory state if (!(opts & V3_CHKPT_OPT_SKIP_DEVS)) { if ((ret = v3_save_vm_devices(vm, chkpt)) == -1) { PrintError(vm, VCORE_NONE, "Unable to save devices\n"); goto out; } } if ((ret = save_header(vm, chkpt)) == -1) { PrintError(vm, VCORE_NONE, "Unable to save header\n"); goto out; } if (!(opts & V3_CHKPT_OPT_SKIP_CORES)) { for (i = 0; i < vm->num_cores; i++){ if ((ret = save_core(&(vm->cores[i]), chkpt, opts)) == -1) { PrintError(vm, VCORE_NONE, "chkpt of core %d failed\n", i); goto out; } } } if (!(opts & V3_CHKPT_OPT_SKIP_MEM)) { stop_time = v3_get_host_time(&(vm->cores[0].time_state)); PrintDebug(vm, VCORE_NONE, "num_mod_pages=%d\ndowntime=%llu\n",num_mod_pages,stop_time-start_time); PrintDebug(vm, VCORE_NONE, "Done sending VM!\n"); out: v3_bitmap_deinit(&modified_pages_to_send); } chkpt_close(chkpt); return ret; } int v3_chkpt_receive_vm(struct v3_vm_info * vm, char * store, char * url, v3_chkpt_options_t opts) { struct v3_chkpt * chkpt = NULL; int i = 0; int ret = 0; struct v3_bitmap mod_pgs; // Currently will work only for shadow paging for (i=0;inum_cores;i++) { if (vm->cores[i].shdw_pg_mode!=SHADOW_PAGING && !(opts & V3_CHKPT_OPT_SKIP_MEM)) { PrintError(vm, VCORE_NONE, "Cannot currently handle nested paging\n"); return -1; } } chkpt = chkpt_open(vm, store, url, LOAD); if (chkpt == NULL) { PrintError(vm, VCORE_NONE, "Error creating checkpoint store\n"); chkpt_close(chkpt); return -1; } if (opts & V3_CHKPT_OPT_SKIP_MEM) { goto memdone; } if (v3_bitmap_init(&mod_pgs,vm->mem_size>>12) == -1) { chkpt_close(chkpt); PrintError(vm, VCORE_NONE, "Could not intialize bitmap.\n"); return -1; } /* If this guest is running we need to block it while the checkpoint occurs */ if (vm->run_state == VM_RUNNING) { while (v3_raise_barrier(vm, NULL) == -1); } i = 0; while(true) { // 1. Receive copy of bitmap // 2. Receive pages PrintDebug(vm, VCORE_NONE, "Memory page iteration %d\n",i++); int retval = load_inc_memory(vm, &mod_pgs, chkpt); if (retval == 1) { // end of receiving memory pages break; } else if (retval == -1) { PrintError(vm, VCORE_NONE, "Error receiving incremental memory.\n"); ret = -1; goto out; } } memdone: if (!(opts & V3_CHKPT_OPT_SKIP_DEVS)) { if ((ret = v3_load_vm_devices(vm, chkpt)) == -1) { PrintError(vm, VCORE_NONE, "Unable to load devices\n"); ret = -1; goto out; } } if ((ret = load_header(vm, chkpt)) == -1) { PrintError(vm, VCORE_NONE, "Unable to load header\n"); ret = -1; goto out; } //per core cloning if (!(opts & V3_CHKPT_OPT_SKIP_CORES)) { for (i = 0; i < vm->num_cores; i++) { if ((ret = load_core(&(vm->cores[i]), chkpt, opts)) == -1) { PrintError(vm, VCORE_NONE, "Error loading core state (core=%d)\n", i); goto out; } } } out: if (ret==-1) { PrintError(vm, VCORE_NONE, "Unable to receive VM\n"); } else { PrintDebug(vm, VCORE_NONE, "Done receving the VM\n"); } /* Resume the guest if it was running and we didn't just trash the state*/ if (vm->run_state == VM_RUNNING) { if (ret == -1) { PrintError(vm, VCORE_NONE, "VM was previously running. It is now borked. Pausing it. \n"); vm->run_state = VM_STOPPED; } /* We check the run state of the VM after every barrier So this will immediately halt the VM */ v3_lower_barrier(vm); } if (!(opts & V3_CHKPT_OPT_SKIP_MEM)) { v3_bitmap_deinit(&mod_pgs); } chkpt_close(chkpt); return ret; } #endif