/* * This file is part of the Palacios Virtual Machine Monitor developed * by the V3VEE Project with funding from the United States National * Science Foundation and the Department of Energy. * * The V3VEE Project is a joint project between Northwestern University * and the University of New Mexico. You can find out more at * http://www.v3vee.org * * Copyright (c) 2008, Jack Lange * Copyright (c) 2008, The V3VEE Project * All rights reserved. * * Author: Jack Lange * * This is free software. You are permitted to use, * redistribute, and modify it as specified in the file "V3VEE_LICENSE". */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef V3_CONFIG_CHECKPOINT #include #endif #include #include #include #include #ifdef V3_CONFIG_MEM_TRACK #include #endif #ifdef V3_CONFIG_TM_FUNC #include #endif #ifndef V3_CONFIG_DEBUG_SVM #undef PrintDebug #define PrintDebug(fmt, args...) #endif uint32_t v3_last_exit; // This is a global pointer to the host's VMCB static addr_t host_vmcbs[V3_CONFIG_MAX_CPUS] = { [0 ... V3_CONFIG_MAX_CPUS - 1] = 0}; extern void v3_stgi(); extern void v3_clgi(); //extern int v3_svm_launch(vmcb_t * vmcb, struct v3_gprs * vm_regs, uint64_t * fs, uint64_t * gs); extern int v3_svm_launch(vmcb_t * vmcb, struct v3_gprs * vm_regs, vmcb_t * host_vmcb); static vmcb_t * Allocate_VMCB() { vmcb_t * vmcb_page = NULL; addr_t vmcb_pa = (addr_t)V3_AllocPages(1); // need not be shadow safe, not exposed to guest if ((void *)vmcb_pa == NULL) { PrintError(VM_NONE, VCORE_NONE, "Error allocating VMCB\n"); return NULL; } vmcb_page = (vmcb_t *)V3_VAddr((void *)vmcb_pa); memset(vmcb_page, 0, 4096); return vmcb_page; } static int v3_svm_handle_efer_write(struct guest_info * core, uint_t msr, struct v3_msr src, void * priv_data) { int status; // Call arch-independent handler if ((status = v3_handle_efer_write(core, msr, src, priv_data)) != 0) { return status; } // SVM-specific code { // Ensure that hardware visible EFER.SVME bit is set (SVM Enable) struct efer_64 * hw_efer = (struct efer_64 *)&(core->ctrl_regs.efer); hw_efer->svme = 1; } return 0; } static void Init_VMCB_BIOS(vmcb_t * vmcb, struct guest_info * core) { vmcb_ctrl_t * ctrl_area = GET_VMCB_CTRL_AREA(vmcb); vmcb_saved_state_t * guest_state = GET_VMCB_SAVE_STATE_AREA(vmcb); uint_t i; // ctrl_area->svm_instrs.VMRUN = 1; ctrl_area->svm_instrs.VMMCALL = 1; ctrl_area->svm_instrs.VMLOAD = 1; ctrl_area->svm_instrs.VMSAVE = 1; ctrl_area->svm_instrs.STGI = 1; ctrl_area->svm_instrs.CLGI = 1; ctrl_area->svm_instrs.SKINIT = 1; ctrl_area->svm_instrs.ICEBP = 1; ctrl_area->svm_instrs.WBINVD = 1; ctrl_area->svm_instrs.MONITOR = 1; ctrl_area->svm_instrs.MWAIT_always = 1; ctrl_area->svm_instrs.MWAIT_if_armed = 1; ctrl_area->instrs.INVLPGA = 1; ctrl_area->instrs.CPUID = 1; ctrl_area->instrs.HLT = 1; /* Set at VMM launch as needed */ ctrl_area->instrs.RDTSC = 0; ctrl_area->svm_instrs.RDTSCP = 0; // guest_state->cr0 = 0x00000001; // PE /* ctrl_area->exceptions.de = 1; ctrl_area->exceptions.df = 1; ctrl_area->exceptions.ts = 1; ctrl_area->exceptions.ss = 1; ctrl_area->exceptions.ac = 1; ctrl_area->exceptions.mc = 1; ctrl_area->exceptions.gp = 1; ctrl_area->exceptions.ud = 1; ctrl_area->exceptions.np = 1; ctrl_area->exceptions.of = 1; ctrl_area->exceptions.nmi = 1; */ #ifdef V3_CONFIG_TM_FUNC v3_tm_set_excp_intercepts(ctrl_area); #endif ctrl_area->instrs.NMI = 1; ctrl_area->instrs.SMI = 0; // allow SMIs to run in guest ctrl_area->instrs.INIT = 1; // ctrl_area->instrs.PAUSE = 1; ctrl_area->instrs.shutdown_evts = 1; /* DEBUG FOR RETURN CODE */ ctrl_area->exit_code = 1; /* Setup Guest Machine state */ core->vm_regs.rsp = 0x00; core->rip = 0xfff0; core->vm_regs.rdx = 0x00000f00; core->cpl = 0; core->ctrl_regs.rflags = 0x00000002; // The reserved bit is always 1 core->ctrl_regs.cr0 = 0x60010010; // Set the WP flag so the memory hooks work in real-mode core->ctrl_regs.efer |= EFER_MSR_svm_enable; core->segments.cs.selector = 0xf000; core->segments.cs.limit = 0xffff; core->segments.cs.base = 0x0000000f0000LL; // (raw attributes = 0xf3) core->segments.cs.type = 0x3; core->segments.cs.system = 0x1; core->segments.cs.dpl = 0x3; core->segments.cs.present = 1; struct v3_segment * segregs [] = {&(core->segments.ss), &(core->segments.ds), &(core->segments.es), &(core->segments.fs), &(core->segments.gs), NULL}; for ( i = 0; segregs[i] != NULL; i++) { struct v3_segment * seg = segregs[i]; seg->selector = 0x0000; // seg->base = seg->selector << 4; seg->base = 0x00000000; seg->limit = ~0u; // (raw attributes = 0xf3) seg->type = 0x3; seg->system = 0x1; seg->dpl = 0x3; seg->present = 1; } core->segments.gdtr.limit = 0x0000ffff; core->segments.gdtr.base = 0x0000000000000000LL; core->segments.idtr.limit = 0x0000ffff; core->segments.idtr.base = 0x0000000000000000LL; core->segments.ldtr.selector = 0x0000; core->segments.ldtr.limit = 0x0000ffff; core->segments.ldtr.base = 0x0000000000000000LL; core->segments.tr.selector = 0x0000; core->segments.tr.limit = 0x0000ffff; core->segments.tr.base = 0x0000000000000000LL; core->dbg_regs.dr6 = 0x00000000ffff0ff0LL; core->dbg_regs.dr7 = 0x0000000000000400LL; ctrl_area->IOPM_BASE_PA = (addr_t)V3_PAddr(core->vm_info->io_map.arch_data); ctrl_area->instrs.IOIO_PROT = 1; ctrl_area->MSRPM_BASE_PA = (addr_t)V3_PAddr(core->vm_info->msr_map.arch_data); ctrl_area->instrs.MSR_PROT = 1; PrintDebug(core->vm_info, core, "Exiting on interrupts\n"); ctrl_area->guest_ctrl.V_INTR_MASKING = 1; ctrl_area->instrs.INTR = 1; // The above also assures the TPR changes (CR8) are only virtual // However, we need to see TPR writes since they will // affect the virtual apic // we reflect out cr8 to ctrl_regs->apic_tpr ctrl_area->cr_reads.cr8 = 1; ctrl_area->cr_writes.cr8 = 1; // We will do all TPR comparisons in the virtual apic // We also do not want the V_TPR to be able to mask the PIC ctrl_area->guest_ctrl.V_IGN_TPR = 1; v3_hook_msr(core->vm_info, EFER_MSR, &v3_handle_efer_read, &v3_svm_handle_efer_write, core); if (core->shdw_pg_mode == SHADOW_PAGING) { PrintDebug(core->vm_info, core, "Creating initial shadow page table\n"); /* JRL: This is a performance killer, and a simplistic solution */ /* We need to fix this */ ctrl_area->TLB_CONTROL = 1; ctrl_area->guest_ASID = 1; if (v3_init_passthrough_pts(core) == -1) { PrintError(core->vm_info, core, "Could not initialize passthrough page tables\n"); return ; } core->shdw_pg_state.guest_cr0 = 0x0000000000000010LL; PrintDebug(core->vm_info, core, "Created\n"); core->ctrl_regs.cr0 |= 0x80000000; v3_activate_passthrough_pt(core); ctrl_area->cr_reads.cr0 = 1; ctrl_area->cr_writes.cr0 = 1; //intercept cr4 read so shadow pager can use PAE independently of guest ctrl_area->cr_reads.cr4 = 1; ctrl_area->cr_writes.cr4 = 1; ctrl_area->cr_reads.cr3 = 1; ctrl_area->cr_writes.cr3 = 1; ctrl_area->instrs.INVLPG = 1; ctrl_area->exceptions.pf = 1; guest_state->g_pat = 0x7040600070406ULL; } else if (core->shdw_pg_mode == NESTED_PAGING) { // Flush the TLB on entries/exits ctrl_area->TLB_CONTROL = 1; ctrl_area->guest_ASID = 1; // Enable Nested Paging ctrl_area->NP_ENABLE = 1; PrintDebug(core->vm_info, core, "NP_Enable at 0x%p\n", (void *)&(ctrl_area->NP_ENABLE)); // Set the Nested Page Table pointer if (v3_init_passthrough_pts(core) == -1) { PrintError(core->vm_info, core, "Could not initialize Nested page tables\n"); return ; } ctrl_area->N_CR3 = core->direct_map_pt; guest_state->g_pat = 0x7040600070406ULL; } /* tell the guest that we don't support SVM */ v3_hook_msr(core->vm_info, SVM_VM_CR_MSR, &v3_handle_vm_cr_read, &v3_handle_vm_cr_write, core); { #define INT_PENDING_AMD_MSR 0xc0010055 v3_hook_msr(core->vm_info, IA32_STAR_MSR, NULL, NULL, NULL); v3_hook_msr(core->vm_info, IA32_LSTAR_MSR, NULL, NULL, NULL); v3_hook_msr(core->vm_info, IA32_FMASK_MSR, NULL, NULL, NULL); v3_hook_msr(core->vm_info, IA32_KERN_GS_BASE_MSR, NULL, NULL, NULL); v3_hook_msr(core->vm_info, IA32_CSTAR_MSR, NULL, NULL, NULL); v3_hook_msr(core->vm_info, SYSENTER_CS_MSR, NULL, NULL, NULL); v3_hook_msr(core->vm_info, SYSENTER_ESP_MSR, NULL, NULL, NULL); v3_hook_msr(core->vm_info, SYSENTER_EIP_MSR, NULL, NULL, NULL); v3_hook_msr(core->vm_info, FS_BASE_MSR, NULL, NULL, NULL); v3_hook_msr(core->vm_info, GS_BASE_MSR, NULL, NULL, NULL); // Passthrough read operations are ok. v3_hook_msr(core->vm_info, INT_PENDING_AMD_MSR, NULL, v3_msr_unhandled_write, NULL); } } int v3_init_svm_vmcb(struct guest_info * core, v3_vm_class_t vm_class) { PrintDebug(core->vm_info, core, "Allocating VMCB\n"); core->vmm_data = (void *)Allocate_VMCB(); if (core->vmm_data == NULL) { PrintError(core->vm_info, core, "Could not allocate VMCB, Exiting...\n"); return -1; } if (vm_class == V3_PC_VM) { PrintDebug(core->vm_info, core, "Initializing VMCB (addr=%p)\n", (void *)core->vmm_data); Init_VMCB_BIOS((vmcb_t*)(core->vmm_data), core); } else { PrintError(core->vm_info, core, "Invalid VM class\n"); return -1; } core->core_run_state = CORE_STOPPED; return 0; } int v3_deinit_svm_vmcb(struct guest_info * core) { V3_FreePages(V3_PAddr(core->vmm_data), 1); return 0; } #ifdef V3_CONFIG_CHECKPOINT int v3_svm_save_core(struct guest_info * core, void * ctx){ vmcb_saved_state_t * guest_area = GET_VMCB_SAVE_STATE_AREA(core->vmm_data); // Special case saves of data we need immediate access to // in some cases V3_CHKPT_SAVE(ctx, "CPL", core->cpl, failout); V3_CHKPT_SAVE(ctx,"STAR", guest_area->star, failout); V3_CHKPT_SAVE(ctx,"CSTAR", guest_area->cstar, failout); V3_CHKPT_SAVE(ctx,"LSTAR", guest_area->lstar, failout); V3_CHKPT_SAVE(ctx,"SFMASK", guest_area->sfmask, failout); V3_CHKPT_SAVE(ctx,"KERNELGSBASE", guest_area->KernelGsBase, failout); V3_CHKPT_SAVE(ctx,"SYSENTER_CS", guest_area->sysenter_cs, failout); V3_CHKPT_SAVE(ctx,"SYSENTER_ESP", guest_area->sysenter_esp, failout); V3_CHKPT_SAVE(ctx,"SYSENTER_EIP", guest_area->sysenter_eip, failout); // and then we save the whole enchilada if (v3_chkpt_save(ctx, "VMCB_DATA", PAGE_SIZE, core->vmm_data)) { PrintError(core->vm_info, core, "Could not save SVM vmcb\n"); goto failout; } return 0; failout: PrintError(core->vm_info, core, "Failed to save SVM state for core\n"); return -1; } int v3_svm_load_core(struct guest_info * core, void * ctx){ vmcb_saved_state_t * guest_area = GET_VMCB_SAVE_STATE_AREA(core->vmm_data); // Reload what we special cased, which we will overwrite in a minute V3_CHKPT_LOAD(ctx, "CPL", core->cpl, failout); V3_CHKPT_LOAD(ctx,"STAR", guest_area->star, failout); V3_CHKPT_LOAD(ctx,"CSTAR", guest_area->cstar, failout); V3_CHKPT_LOAD(ctx,"LSTAR", guest_area->lstar, failout); V3_CHKPT_LOAD(ctx,"SFMASK", guest_area->sfmask, failout); V3_CHKPT_LOAD(ctx,"KERNELGSBASE", guest_area->KernelGsBase, failout); V3_CHKPT_LOAD(ctx,"SYSENTER_CS", guest_area->sysenter_cs, failout); V3_CHKPT_LOAD(ctx,"SYSENTER_ESP", guest_area->sysenter_esp, failout); V3_CHKPT_LOAD(ctx,"SYSENTER_EIP", guest_area->sysenter_eip, failout); // and then we load the whole enchilada if (v3_chkpt_load(ctx, "VMCB_DATA", PAGE_SIZE, core->vmm_data)) { PrintError(core->vm_info, core, "Could not load SVM vmcb\n"); goto failout; } return 0; failout: PrintError(core->vm_info, core, "Failed to save SVM state for core\n"); return -1; } #endif static int update_irq_exit_state(struct guest_info * info) { vmcb_ctrl_t * guest_ctrl = GET_VMCB_CTRL_AREA((vmcb_t*)(info->vmm_data)); // Fix for QEMU bug using EVENTINJ as an internal cache guest_ctrl->EVENTINJ.valid = 0; if ((info->intr_core_state.irq_pending == 1) && (guest_ctrl->guest_ctrl.V_IRQ == 0)) { #ifdef V3_CONFIG_DEBUG_INTERRUPTS PrintDebug(info->vm_info, info, "INTAK cycle completed for irq %d\n", info->intr_core_state.irq_vector); #endif info->intr_core_state.irq_started = 1; info->intr_core_state.irq_pending = 0; v3_injecting_intr(info, info->intr_core_state.irq_vector, V3_EXTERNAL_IRQ); } if ((info->intr_core_state.irq_started == 1) && (guest_ctrl->exit_int_info.valid == 0)) { #ifdef V3_CONFIG_DEBUG_INTERRUPTS PrintDebug(info->vm_info, info, "Interrupt %d taken by guest\n", info->intr_core_state.irq_vector); #endif // Interrupt was taken fully vectored info->intr_core_state.irq_started = 0; } else if ((info->intr_core_state.irq_started == 1) && (guest_ctrl->exit_int_info.valid == 1)) { #ifdef V3_CONFIG_DEBUG_INTERRUPTS PrintDebug(info->vm_info, info, "EXIT INT INFO is set (vec=%d)\n", guest_ctrl->exit_int_info.vector); #endif } return 0; } static int update_irq_entry_state(struct guest_info * info) { vmcb_ctrl_t * guest_ctrl = GET_VMCB_CTRL_AREA((vmcb_t*)(info->vmm_data)); if (info->intr_core_state.irq_pending == 0) { guest_ctrl->guest_ctrl.V_IRQ = 0; guest_ctrl->guest_ctrl.V_INTR_VECTOR = 0; } if (v3_excp_pending(info)) { uint_t excp = v3_get_excp_number(info); guest_ctrl->EVENTINJ.type = SVM_INJECTION_EXCEPTION; if (info->excp_state.excp_error_code_valid) { guest_ctrl->EVENTINJ.error_code = info->excp_state.excp_error_code; guest_ctrl->EVENTINJ.ev = 1; #ifdef V3_CONFIG_DEBUG_INTERRUPTS PrintDebug(info->vm_info, info, "Injecting exception %d with error code %x\n", excp, guest_ctrl->EVENTINJ.error_code); #endif } guest_ctrl->EVENTINJ.vector = excp; guest_ctrl->EVENTINJ.valid = 1; #ifdef V3_CONFIG_DEBUG_INTERRUPTS PrintDebug(info->vm_info, info, "<%d> Injecting Exception %d (CR2=%p) (EIP=%p)\n", (int)info->num_exits, guest_ctrl->EVENTINJ.vector, (void *)(addr_t)info->ctrl_regs.cr2, (void *)(addr_t)info->rip); #endif v3_injecting_excp(info, excp); } else if (info->intr_core_state.irq_started == 1) { #ifdef V3_CONFIG_DEBUG_INTERRUPTS PrintDebug(info->vm_info, info, "IRQ pending from previous injection\n"); #endif guest_ctrl->guest_ctrl.V_IRQ = 1; guest_ctrl->guest_ctrl.V_INTR_VECTOR = info->intr_core_state.irq_vector; // We ignore the virtual TPR on this injection // TPR/PPR tests have already been done in the APIC. guest_ctrl->guest_ctrl.V_IGN_TPR = 1; guest_ctrl->guest_ctrl.V_INTR_PRIO = info->intr_core_state.irq_vector >> 4 ; // 0xf; } else { switch (v3_intr_pending(info)) { case V3_EXTERNAL_IRQ: { int irq = v3_get_intr(info); if (irq<0) { break; } guest_ctrl->guest_ctrl.V_IRQ = 1; guest_ctrl->guest_ctrl.V_INTR_VECTOR = irq; // We ignore the virtual TPR on this injection // TPR/PPR tests have already been done in the APIC. guest_ctrl->guest_ctrl.V_IGN_TPR = 1; guest_ctrl->guest_ctrl.V_INTR_PRIO = info->intr_core_state.irq_vector >> 4 ; // 0xf; #ifdef V3_CONFIG_DEBUG_INTERRUPTS PrintDebug(info->vm_info, info, "Injecting Interrupt %d (EIP=%p)\n", guest_ctrl->guest_ctrl.V_INTR_VECTOR, (void *)(addr_t)info->rip); #endif info->intr_core_state.irq_pending = 1; info->intr_core_state.irq_vector = irq; break; } case V3_NMI: guest_ctrl->EVENTINJ.type = SVM_INJECTION_NMI; break; case V3_SOFTWARE_INTR: guest_ctrl->EVENTINJ.type = SVM_INJECTION_SOFT_INTR; #ifdef V3_CONFIG_DEBUG_INTERRUPTS PrintDebug(info->vm_info, info, "Injecting software interrupt -- type: %d, vector: %d\n", SVM_INJECTION_SOFT_INTR, info->intr_core_state.swintr_vector); #endif guest_ctrl->EVENTINJ.vector = info->intr_core_state.swintr_vector; guest_ctrl->EVENTINJ.valid = 1; /* reset swintr state */ info->intr_core_state.swintr_posted = 0; info->intr_core_state.swintr_vector = 0; break; case V3_VIRTUAL_IRQ: guest_ctrl->EVENTINJ.type = SVM_INJECTION_IRQ; break; case V3_INVALID_INTR: default: break; } } return 0; } int v3_svm_config_tsc_virtualization(struct guest_info * info) { vmcb_ctrl_t * ctrl_area = GET_VMCB_CTRL_AREA((vmcb_t*)(info->vmm_data)); if (info->time_state.flags & VM_TIME_TRAP_RDTSC) { ctrl_area->instrs.RDTSC = 1; ctrl_area->svm_instrs.RDTSCP = 1; } else { ctrl_area->instrs.RDTSC = 0; ctrl_area->svm_instrs.RDTSCP = 0; if (info->time_state.flags & VM_TIME_TSC_PASSTHROUGH) { ctrl_area->TSC_OFFSET = 0; } else { ctrl_area->TSC_OFFSET = v3_tsc_host_offset(&info->time_state); } } return 0; } /* * CAUTION and DANGER!!! * * The VMCB CANNOT(!!) be accessed outside of the clgi/stgi calls inside this function * When exectuing a symbiotic call, the VMCB WILL be overwritten, so any dependencies * on its contents will cause things to break. The contents at the time of the exit WILL * change before the exit handler is executed. */ int v3_svm_enter(struct guest_info * info) { vmcb_ctrl_t * guest_ctrl = GET_VMCB_CTRL_AREA((vmcb_t*)(info->vmm_data)); vmcb_saved_state_t * guest_state = GET_VMCB_SAVE_STATE_AREA((vmcb_t*)(info->vmm_data)); addr_t exit_code = 0, exit_info1 = 0, exit_info2 = 0; uint64_t guest_cycles = 0; // Conditionally yield the CPU if the timeslice has expired v3_schedule(info); #ifdef V3_CONFIG_MEM_TRACK v3_mem_track_entry(info); #endif // Update timer devices after being in the VM before doing // IRQ updates, so that any interrupts they raise get seen // immediately. v3_advance_time(info, NULL); v3_update_timers(info); // disable global interrupts for vm state transition v3_clgi(); // Synchronize the guest state to the VMCB guest_state->cr0 = info->ctrl_regs.cr0; guest_state->cr2 = info->ctrl_regs.cr2; guest_state->cr3 = info->ctrl_regs.cr3; guest_state->cr4 = info->ctrl_regs.cr4; guest_state->dr6 = info->dbg_regs.dr6; guest_state->dr7 = info->dbg_regs.dr7; // CR8 is now updated by read/writes and it contains the APIC TPR // the V_TPR should be just the class part of that. // This update is here just for completeness. We currently // are ignoring V_TPR on all injections and doing the priority logivc // in the APIC. // guest_ctrl->guest_ctrl.V_TPR = ((info->ctrl_regs.apic_tpr) >> 4) & 0xf; //guest_ctrl->guest_ctrl.V_TPR = info->ctrl_regs.cr8 & 0xff; // guest_state->rflags = info->ctrl_regs.rflags; guest_state->efer = info->ctrl_regs.efer; /* Synchronize MSRs */ guest_state->star = info->msrs.star; guest_state->lstar = info->msrs.lstar; guest_state->sfmask = info->msrs.sfmask; guest_state->KernelGsBase = info->msrs.kern_gs_base; guest_state->cpl = info->cpl; v3_set_vmcb_segments((vmcb_t*)(info->vmm_data), &(info->segments)); guest_state->rax = info->vm_regs.rax; guest_state->rip = info->rip; guest_state->rsp = info->vm_regs.rsp; V3_FP_ENTRY_RESTORE(info); #ifdef V3_CONFIG_SYMCALL if (info->sym_core_state.symcall_state.sym_call_active == 0) { update_irq_entry_state(info); } #else update_irq_entry_state(info); #endif #ifdef V3_CONFIG_TM_FUNC v3_tm_check_intr_state(info, guest_ctrl, guest_state); #endif /* ** */ /* PrintDebug(info->vm_info, info, "SVM Entry to CS=%p rip=%p...\n", (void *)(addr_t)info->segments.cs.base, (void *)(addr_t)info->rip); */ #ifdef V3_CONFIG_SYMCALL if (info->sym_core_state.symcall_state.sym_call_active == 1) { if (guest_ctrl->guest_ctrl.V_IRQ == 1) { V3_Print(info->vm_info, info, "!!! Injecting Interrupt during Sym call !!!\n"); } } #endif v3_svm_config_tsc_virtualization(info); //V3_Print(info->vm_info, info, "Calling v3_svm_launch\n"); { uint64_t entry_tsc = 0; uint64_t exit_tsc = 0; #ifdef V3_CONFIG_PWRSTAT_TELEMETRY v3_pwrstat_telemetry_enter(info); #endif #ifdef V3_CONFIG_PMU_TELEMETRY v3_pmu_telemetry_enter(info); #endif rdtscll(entry_tsc); v3_svm_launch((vmcb_t *)V3_PAddr(info->vmm_data), &(info->vm_regs), (vmcb_t *)host_vmcbs[V3_Get_CPU()]); rdtscll(exit_tsc); #ifdef V3_CONFIG_PMU_TELEMETRY v3_pmu_telemetry_exit(info); #endif #ifdef V3_CONFIG_PWRSTAT_TELEMETRY v3_pwrstat_telemetry_exit(info); #endif guest_cycles = exit_tsc - entry_tsc; } //V3_Print(info->vm_info, info, "SVM Returned: Exit Code: %x, guest_rip=%lx\n", (uint32_t)(guest_ctrl->exit_code), (unsigned long)guest_state->rip); v3_last_exit = (uint32_t)(guest_ctrl->exit_code); v3_advance_time(info, &guest_cycles); info->num_exits++; V3_FP_EXIT_SAVE(info); // Save Guest state from VMCB info->rip = guest_state->rip; info->vm_regs.rsp = guest_state->rsp; info->vm_regs.rax = guest_state->rax; info->cpl = guest_state->cpl; info->ctrl_regs.cr0 = guest_state->cr0; info->ctrl_regs.cr2 = guest_state->cr2; info->ctrl_regs.cr3 = guest_state->cr3; info->ctrl_regs.cr4 = guest_state->cr4; info->dbg_regs.dr6 = guest_state->dr6; info->dbg_regs.dr7 = guest_state->dr7; // // We do not track this anymore // V_TPR is ignored and we do the logic in the APIC //info->ctrl_regs.cr8 = guest_ctrl->guest_ctrl.V_TPR; // info->ctrl_regs.rflags = guest_state->rflags; info->ctrl_regs.efer = guest_state->efer; /* Synchronize MSRs */ info->msrs.star = guest_state->star; info->msrs.lstar = guest_state->lstar; info->msrs.sfmask = guest_state->sfmask; info->msrs.kern_gs_base = guest_state->KernelGsBase; v3_get_vmcb_segments((vmcb_t*)(info->vmm_data), &(info->segments)); info->cpu_mode = v3_get_vm_cpu_mode(info); info->mem_mode = v3_get_vm_mem_mode(info); /* ** */ // save exit info here exit_code = guest_ctrl->exit_code; exit_info1 = guest_ctrl->exit_info1; exit_info2 = guest_ctrl->exit_info2; #ifdef V3_CONFIG_SYMCALL if (info->sym_core_state.symcall_state.sym_call_active == 0) { update_irq_exit_state(info); } #else update_irq_exit_state(info); #endif // reenable global interrupts after vm exit v3_stgi(); // Conditionally yield the CPU if the timeslice has expired v3_schedule(info); // This update timers is for time-dependent handlers // if we're slaved to host time v3_advance_time(info, NULL); v3_update_timers(info); { int ret = v3_handle_svm_exit(info, exit_code, exit_info1, exit_info2); if (ret != 0) { PrintError(info->vm_info, info, "Error in SVM exit handler (ret=%d)\n", ret); PrintError(info->vm_info, info, " last Exit was %d (exit code=0x%llx)\n", v3_last_exit, (uint64_t) exit_code); return -1; } } if (info->timeouts.timeout_active) { /* Check to see if any timeouts have expired */ v3_handle_timeouts(info, guest_cycles); } #ifdef V3_CONFIG_MEM_TRACK v3_mem_track_exit(info); #endif return 0; } int v3_start_svm_guest(struct guest_info * info) { // vmcb_saved_state_t * guest_state = GET_VMCB_SAVE_STATE_AREA((vmcb_t*)(info->vmm_data)); // vmcb_ctrl_t * guest_ctrl = GET_VMCB_CTRL_AREA((vmcb_t*)(info->vmm_data)); PrintDebug(info->vm_info, info, "Starting SVM core %u (on logical core %u)\n", info->vcpu_id, info->pcpu_id); #ifdef V3_CONFIG_HVM if (v3_setup_hvm_hrt_core_for_boot(info)) { PrintError(info->vm_info, info, "Failed to setup HRT core...\n"); return -1; } #endif while (1) { if (info->core_run_state == CORE_STOPPED) { if (info->vcpu_id == 0) { info->core_run_state = CORE_RUNNING; } else { PrintDebug(info->vm_info, info, "SVM core %u (on %u): Waiting for core initialization\n", info->vcpu_id, info->pcpu_id); V3_NO_WORK(info); while (info->core_run_state == CORE_STOPPED) { if (info->vm_info->run_state == VM_STOPPED) { // The VM was stopped before this core was initialized. return 0; } V3_STILL_NO_WORK(info); //PrintDebug(info->vm_info, info, "SVM core %u: still waiting for INIT\n", info->vcpu_id); } V3_HAVE_WORK_AGAIN(info); PrintDebug(info->vm_info, info, "SVM core %u(on %u) initialized\n", info->vcpu_id, info->pcpu_id); // We'll be paranoid about race conditions here v3_wait_at_barrier(info); } PrintDebug(info->vm_info, info, "SVM core %u(on %u): I am starting at CS=0x%x (base=0x%p, limit=0x%x), RIP=0x%p\n", info->vcpu_id, info->pcpu_id, info->segments.cs.selector, (void *)(info->segments.cs.base), info->segments.cs.limit, (void *)(info->rip)); PrintDebug(info->vm_info, info, "SVM core %u: Launching SVM VM (vmcb=%p) (on cpu %u)\n", info->vcpu_id, (void *)info->vmm_data, info->pcpu_id); //PrintDebugVMCB((vmcb_t*)(info->vmm_data)); v3_start_time(info); } if (info->vm_info->run_state == VM_STOPPED) { info->core_run_state = CORE_STOPPED; break; } #ifdef V3_CONFIG_PMU_TELEMETRY v3_pmu_telemetry_start(info); #endif #ifdef V3_CONFIG_PWRSTAT_TELEMETRY v3_pwrstat_telemetry_start(info); #endif if (v3_svm_enter(info) == -1) { vmcb_ctrl_t * guest_ctrl = GET_VMCB_CTRL_AREA((vmcb_t*)(info->vmm_data)); addr_t host_addr; addr_t linear_addr = 0; info->vm_info->run_state = VM_ERROR; V3_Print(info->vm_info, info, "SVM core %u: SVM ERROR!!\n", info->vcpu_id); v3_print_guest_state(info); V3_Print(info->vm_info, info, "SVM core %u: SVM Exit Code: %p\n", info->vcpu_id, (void *)(addr_t)guest_ctrl->exit_code); V3_Print(info->vm_info, info, "SVM core %u: exit_info1 low = 0x%.8x\n", info->vcpu_id, *(uint_t*)&(guest_ctrl->exit_info1)); V3_Print(info->vm_info, info, "SVM core %u: exit_info1 high = 0x%.8x\n", info->vcpu_id, *(uint_t *)(((uchar_t *)&(guest_ctrl->exit_info1)) + 4)); V3_Print(info->vm_info, info, "SVM core %u: exit_info2 low = 0x%.8x\n", info->vcpu_id, *(uint_t*)&(guest_ctrl->exit_info2)); V3_Print(info->vm_info, info, "SVM core %u: exit_info2 high = 0x%.8x\n", info->vcpu_id, *(uint_t *)(((uchar_t *)&(guest_ctrl->exit_info2)) + 4)); linear_addr = get_addr_linear(info, info->rip, &(info->segments.cs)); if (info->mem_mode == PHYSICAL_MEM) { v3_gpa_to_hva(info, linear_addr, &host_addr); } else if (info->mem_mode == VIRTUAL_MEM) { v3_gva_to_hva(info, linear_addr, &host_addr); } V3_Print(info->vm_info, info, "SVM core %u: Host Address of rip = 0x%p\n", info->vcpu_id, (void *)host_addr); V3_Print(info->vm_info, info, "SVM core %u: Instr (15 bytes) at %p:\n", info->vcpu_id, (void *)host_addr); v3_dump_mem((uint8_t *)host_addr, 15); v3_print_stack(info); break; } v3_wait_at_barrier(info); if (info->vm_info->run_state == VM_STOPPED) { info->core_run_state = CORE_STOPPED; break; } /* if ((info->num_exits % 50000) == 0) { V3_Print(info->vm_info, info, "SVM Exit number %d\n", (uint32_t)info->num_exits); v3_print_guest_state(info); } */ } #ifdef V3_CONFIG_PMU_TELEMETRY v3_pmu_telemetry_end(info); #endif #ifdef V3_CONFIG_PWRSTAT_TELEMETRY v3_pwrstat_telemetry_end(info); #endif // Need to take down the other cores on error... return 0; } int v3_reset_svm_vm_core(struct guest_info * core, addr_t rip) { // init vmcb_bios // Write the RIP, CS, and descriptor // assume the rest is already good to go // // vector VV -> rip at 0 // CS = VV00 // This means we start executing at linear address VV000 // // So the selector needs to be VV00 // and the base needs to be VV000 // core->rip = 0; core->segments.cs.selector = rip << 8; core->segments.cs.limit = 0xffff; core->segments.cs.base = rip << 12; return 0; } /* Checks machine SVM capability */ /* Implemented from: AMD Arch Manual 3, sect 15.4 */ int v3_is_svm_capable() { uint_t vm_cr_low = 0, vm_cr_high = 0; uint32_t eax = 0, ebx = 0, ecx = 0, edx = 0; v3_cpuid(CPUID_EXT_FEATURE_IDS, &eax, &ebx, &ecx, &edx); PrintDebug(VM_NONE, VCORE_NONE, "CPUID_EXT_FEATURE_IDS_ecx=0x%x\n", ecx); if ((ecx & CPUID_EXT_FEATURE_IDS_ecx_svm_avail) == 0) { V3_Print(VM_NONE, VCORE_NONE, "SVM Not Available\n"); return 0; } else { v3_get_msr(SVM_VM_CR_MSR, &vm_cr_high, &vm_cr_low); PrintDebug(VM_NONE, VCORE_NONE, "SVM_VM_CR_MSR = 0x%x 0x%x\n", vm_cr_high, vm_cr_low); if ((vm_cr_low & SVM_VM_CR_MSR_svmdis) == 1) { V3_Print(VM_NONE, VCORE_NONE, "SVM is available but is disabled.\n"); v3_cpuid(CPUID_SVM_REV_AND_FEATURE_IDS, &eax, &ebx, &ecx, &edx); PrintDebug(VM_NONE, VCORE_NONE, "CPUID_SVM_REV_AND_FEATURE_IDS_edx=0x%x\n", edx); if ((edx & CPUID_SVM_REV_AND_FEATURE_IDS_edx_svml) == 0) { V3_Print(VM_NONE, VCORE_NONE, "SVM BIOS Disabled, not unlockable\n"); } else { V3_Print(VM_NONE, VCORE_NONE, "SVM is locked with a key\n"); } return 0; } else { V3_Print(VM_NONE, VCORE_NONE, "SVM is available and enabled.\n"); v3_cpuid(CPUID_SVM_REV_AND_FEATURE_IDS, &eax, &ebx, &ecx, &edx); PrintDebug(VM_NONE, VCORE_NONE, "CPUID_SVM_REV_AND_FEATURE_IDS_eax=0x%x\n", eax); PrintDebug(VM_NONE, VCORE_NONE, "CPUID_SVM_REV_AND_FEATURE_IDS_ebx=0x%x\n", ebx); PrintDebug(VM_NONE, VCORE_NONE, "CPUID_SVM_REV_AND_FEATURE_IDS_ecx=0x%x\n", ecx); PrintDebug(VM_NONE, VCORE_NONE, "CPUID_SVM_REV_AND_FEATURE_IDS_edx=0x%x\n", edx); return 1; } } } static int has_svm_nested_paging() { uint32_t eax = 0, ebx = 0, ecx = 0, edx = 0; v3_cpuid(CPUID_SVM_REV_AND_FEATURE_IDS, &eax, &ebx, &ecx, &edx); //PrintDebug(VM_NONE, VCORE_NONE, "CPUID_EXT_FEATURE_IDS_edx=0x%x\n", edx); if ((edx & CPUID_SVM_REV_AND_FEATURE_IDS_edx_np) == 0) { V3_Print(VM_NONE, VCORE_NONE, "SVM Nested Paging not supported\n"); return 0; } else { V3_Print(VM_NONE, VCORE_NONE, "SVM Nested Paging supported\n"); return 1; } } void v3_init_svm_cpu(int cpu_id) { reg_ex_t msr; extern v3_cpu_arch_t v3_cpu_types[]; // Enable SVM on the CPU v3_get_msr(EFER_MSR, &(msr.e_reg.high), &(msr.e_reg.low)); msr.e_reg.low |= EFER_MSR_svm_enable; v3_set_msr(EFER_MSR, 0, msr.e_reg.low); V3_Print(VM_NONE, VCORE_NONE, "SVM Enabled\n"); // Setup the host state save area host_vmcbs[cpu_id] = (addr_t)V3_AllocPages(4); // need not be shadow-safe, not exposed to guest if (!host_vmcbs[cpu_id]) { PrintError(VM_NONE, VCORE_NONE, "Failed to allocate VMCB\n"); return; } /* 64-BIT-ISSUE */ // msr.e_reg.high = 0; //msr.e_reg.low = (uint_t)host_vmcb; msr.r_reg = host_vmcbs[cpu_id]; PrintDebug(VM_NONE, VCORE_NONE, "Host State being saved at %p\n", (void *)host_vmcbs[cpu_id]); v3_set_msr(SVM_VM_HSAVE_PA_MSR, msr.e_reg.high, msr.e_reg.low); if (has_svm_nested_paging() == 1) { v3_cpu_types[cpu_id] = V3_SVM_REV3_CPU; } else { v3_cpu_types[cpu_id] = V3_SVM_CPU; } } void v3_deinit_svm_cpu(int cpu_id) { reg_ex_t msr; extern v3_cpu_arch_t v3_cpu_types[]; // reset SVM_VM_HSAVE_PA_MSR // Does setting it to NULL disable?? msr.r_reg = 0; v3_set_msr(SVM_VM_HSAVE_PA_MSR, msr.e_reg.high, msr.e_reg.low); // Disable SVM? v3_get_msr(EFER_MSR, &(msr.e_reg.high), &(msr.e_reg.low)); msr.e_reg.low &= ~EFER_MSR_svm_enable; v3_set_msr(EFER_MSR, 0, msr.e_reg.low); v3_cpu_types[cpu_id] = V3_INVALID_CPU; V3_FreePages((void *)host_vmcbs[cpu_id], 4); V3_Print(VM_NONE, VCORE_NONE, "Host CPU %d host area freed, and SVM disabled\n", cpu_id); return; } #if 0 /* * Test VMSAVE/VMLOAD Latency */ #define vmsave ".byte 0x0F,0x01,0xDB ; " #define vmload ".byte 0x0F,0x01,0xDA ; " { uint32_t start_lo, start_hi; uint32_t end_lo, end_hi; uint64_t start, end; __asm__ __volatile__ ( "rdtsc ; " "movl %%eax, %%esi ; " "movl %%edx, %%edi ; " "movq %%rcx, %%rax ; " vmsave "rdtsc ; " : "=D"(start_hi), "=S"(start_lo), "=a"(end_lo),"=d"(end_hi) : "c"(host_vmcb[cpu_id]), "0"(0), "1"(0), "2"(0), "3"(0) ); start = start_hi; start <<= 32; start += start_lo; end = end_hi; end <<= 32; end += end_lo; PrintDebug(core->vm_info, core, "VMSave Cycle Latency: %d\n", (uint32_t)(end - start)); __asm__ __volatile__ ( "rdtsc ; " "movl %%eax, %%esi ; " "movl %%edx, %%edi ; " "movq %%rcx, %%rax ; " vmload "rdtsc ; " : "=D"(start_hi), "=S"(start_lo), "=a"(end_lo),"=d"(end_hi) : "c"(host_vmcb[cpu_id]), "0"(0), "1"(0), "2"(0), "3"(0) ); start = start_hi; start <<= 32; start += start_lo; end = end_hi; end <<= 32; end += end_lo; PrintDebug(core->vm_info, core, "VMLoad Cycle Latency: %d\n", (uint32_t)(end - start)); } /* End Latency Test */ #endif #if 0 void Init_VMCB_pe(vmcb_t *vmcb, struct guest_info vm_info) { vmcb_ctrl_t * ctrl_area = GET_VMCB_CTRL_AREA(vmcb); vmcb_saved_state_t * guest_state = GET_VMCB_SAVE_STATE_AREA(vmcb); uint_t i = 0; guest_state->rsp = vm_info.vm_regs.rsp; guest_state->rip = vm_info.rip; /* I pretty much just gutted this from TVMM */ /* Note: That means its probably wrong */ // set the segment registers to mirror ours guest_state->cs.selector = 1<<3; guest_state->cs.attrib.fields.type = 0xa; // Code segment+read guest_state->cs.attrib.fields.S = 1; guest_state->cs.attrib.fields.P = 1; guest_state->cs.attrib.fields.db = 1; guest_state->cs.attrib.fields.G = 1; guest_state->cs.limit = 0xfffff; guest_state->cs.base = 0; struct vmcb_selector *segregs [] = {&(guest_state->ss), &(guest_state->ds), &(guest_state->es), &(guest_state->fs), &(guest_state->gs), NULL}; for ( i = 0; segregs[i] != NULL; i++) { struct vmcb_selector * seg = segregs[i]; seg->selector = 2<<3; seg->attrib.fields.type = 0x2; // Data Segment+read/write seg->attrib.fields.S = 1; seg->attrib.fields.P = 1; seg->attrib.fields.db = 1; seg->attrib.fields.G = 1; seg->limit = 0xfffff; seg->base = 0; } { /* JRL THIS HAS TO GO */ // guest_state->tr.selector = GetTR_Selector(); guest_state->tr.attrib.fields.type = 0x9; guest_state->tr.attrib.fields.P = 1; // guest_state->tr.limit = GetTR_Limit(); //guest_state->tr.base = GetTR_Base();// - 0x2000; /* ** */ } /* ** */ guest_state->efer |= EFER_MSR_svm_enable; guest_state->rflags = 0x00000002; // The reserved bit is always 1 ctrl_area->svm_instrs.VMRUN = 1; guest_state->cr0 = 0x00000001; // PE ctrl_area->guest_ASID = 1; // guest_state->cpl = 0; // Setup exits ctrl_area->cr_writes.cr4 = 1; ctrl_area->exceptions.de = 1; ctrl_area->exceptions.df = 1; ctrl_area->exceptions.pf = 1; ctrl_area->exceptions.ts = 1; ctrl_area->exceptions.ss = 1; ctrl_area->exceptions.ac = 1; ctrl_area->exceptions.mc = 1; ctrl_area->exceptions.gp = 1; ctrl_area->exceptions.ud = 1; ctrl_area->exceptions.np = 1; ctrl_area->exceptions.of = 1; ctrl_area->exceptions.nmi = 1; ctrl_area->instrs.IOIO_PROT = 1; ctrl_area->IOPM_BASE_PA = (uint_t)V3_AllocPages(3); // need not be shadow-safe, not exposed to guest if (!ctrl_area->IOPM_BASE_PA) { PrintError(core->vm_info, core, "Cannot allocate IO bitmap\n"); return; } { reg_ex_t tmp_reg; tmp_reg.r_reg = ctrl_area->IOPM_BASE_PA; memset((void*)(tmp_reg.e_reg.low), 0xffffffff, PAGE_SIZE * 2); } ctrl_area->instrs.INTR = 1; { char gdt_buf[6]; char idt_buf[6]; memset(gdt_buf, 0, 6); memset(idt_buf, 0, 6); uint_t gdt_base, idt_base; ushort_t gdt_limit, idt_limit; GetGDTR(gdt_buf); gdt_base = *(ulong_t*)((uchar_t*)gdt_buf + 2) & 0xffffffff; gdt_limit = *(ushort_t*)(gdt_buf) & 0xffff; PrintDebug(core->vm_info, core, "GDT: base: %x, limit: %x\n", gdt_base, gdt_limit); GetIDTR(idt_buf); idt_base = *(ulong_t*)(idt_buf + 2) & 0xffffffff; idt_limit = *(ushort_t*)(idt_buf) & 0xffff; PrintDebug(core->vm_info, core, "IDT: base: %x, limit: %x\n",idt_base, idt_limit); // gdt_base -= 0x2000; //idt_base -= 0x2000; guest_state->gdtr.base = gdt_base; guest_state->gdtr.limit = gdt_limit; guest_state->idtr.base = idt_base; guest_state->idtr.limit = idt_limit; } // also determine if CPU supports nested paging /* if (vm_info.page_tables) { // if (0) { // Flush the TLB on entries/exits ctrl_area->TLB_CONTROL = 1; // Enable Nested Paging ctrl_area->NP_ENABLE = 1; PrintDebug(core->vm_info, core, "NP_Enable at 0x%x\n", &(ctrl_area->NP_ENABLE)); // Set the Nested Page Table pointer ctrl_area->N_CR3 |= ((addr_t)vm_info.page_tables & 0xfffff000); // ctrl_area->N_CR3 = Get_CR3(); // guest_state->cr3 |= (Get_CR3() & 0xfffff000); guest_state->g_pat = 0x7040600070406ULL; PrintDebug(core->vm_info, core, "Set Nested CR3: lo: 0x%x hi: 0x%x\n", (uint_t)*(&(ctrl_area->N_CR3)), (uint_t)*((unsigned char *)&(ctrl_area->N_CR3) + 4)); PrintDebug(core->vm_info, core, "Set Guest CR3: lo: 0x%x hi: 0x%x\n", (uint_t)*(&(guest_state->cr3)), (uint_t)*((unsigned char *)&(guest_state->cr3) + 4)); // Enable Paging // guest_state->cr0 |= 0x80000000; } */ } #endif