#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //test decoder //#include extern int parse(); #define SPEAKER_PORT 0x61 static inline void VM_Out_Byte(ushort_t port, uchar_t value) { __asm__ __volatile__ ( "outb %b0, %w1" : : "a" (value), "Nd" (port) ); } /* * Read a byte from an I/O port. */ static inline uchar_t VM_In_Byte(ushort_t port) { uchar_t value; __asm__ __volatile__ ( "inb %w1, %b0" : "=a" (value) : "Nd" (port) ); return value; } int IO_Read(ushort_t port, void * dst, uint_t length, void * priv_data) { if (length != 1) { return 0; } *(uchar_t*)dst = VM_In_Byte(port); return 1; } int IO_Write(ushort_t port, void * src, uint_t length, void * priv_data) { if (length != 1) { return 0; } VM_Out_Byte(port, *(uchar_t *)src); return 1; } int IO_Read_to_Serial(ushort_t port, void * dst, uint_t length, void * priv_data) { PrintBoth("Input from Guest on port %d (0x%x) Length=%d\n", port, port, length); return 0; } char * bochs_debug_buf = NULL; int bochs_debug_offset = 0; char * bochs_info_buf = NULL; int bochs_info_offset = 0; int IO_BOCHS_debug(ushort_t port, void * src, uint_t length, void * priv_data) { if (!bochs_debug_buf) { bochs_debug_buf = (char*)Malloc(1024); } bochs_debug_buf[bochs_debug_offset++] = *(char*)src; if ((*(char*)src == 0xa) || (bochs_debug_offset == 1023)) { SerialPrint("BOCHSDEBUG>%s", bochs_debug_buf); memset(bochs_debug_buf, 0, 1024); bochs_debug_offset = 0; } return length; } int IO_BOCHS_info(ushort_t port, void * src, uint_t length, void * priv_data) { if (!bochs_info_buf) { bochs_info_buf = (char*)Malloc(1024); } bochs_info_buf[bochs_info_offset++] = *(char*)src; if ((*(char*)src == 0xa) || (bochs_info_offset == 1023)) { SerialPrint("BOCHSINFO>%s", bochs_info_buf); memset(bochs_info_buf, 0, 1024); bochs_info_offset = 0; } return length; } int IO_Write_to_Serial(ushort_t port, void * src, uint_t length, void * priv_data) { SerialPrint("Output from Guest on port %d (0x%x) Length=%d\n", port, port, length); switch (length) { case 1: SerialPrint(">0x%.2x\n", *(char*)src); break; case 2: SerialPrint(">0x%.4x\n", *(ushort_t*)src); break; case 4: SerialPrint(">0x%.8x\n", *(uint_t*)src); break; default: break; } // SerialMemDump(src, length); return length; } void BuzzVM() { int x; int j; unsigned char init; #if 0 __asm__ __volatile__ ( "popf" ); #endif PrintBoth("Starting To Buzz\n"); init=VM_In_Byte(SPEAKER_PORT); while (1) { VM_Out_Byte(SPEAKER_PORT, init|0x2); for (j=0;j<1000000;j++) { x+=j; } VM_Out_Byte(SPEAKER_PORT, init); for (j=0;j<1000000;j++) { x+=j; } } } int passthrough_mem_read(addr_t guest_addr, void * dst, uint_t length, void * priv_data) { memcpy(dst, (void*)guest_addr, length); return length; } int passthrough_mem_write(addr_t guest_addr, void * src, uint_t length, void * priv_data) { memcpy((void*)guest_addr, src, length); return length; } /* We need a configuration mechanism, so we can wrap this completely inside the VMM code, * with no pollution into the HOST OS */ int RunVMM(struct Boot_Info * bootInfo) { struct vmm_os_hooks os_hooks; struct vmm_ctrl_ops vmm_ops; struct guest_info vm_info; addr_t rsp; addr_t rip; memset(&os_hooks, 0, sizeof(struct vmm_os_hooks)); memset(&vmm_ops, 0, sizeof(struct vmm_ctrl_ops)); memset(&vm_info, 0, sizeof(struct guest_info)); os_hooks.print_debug = &SerialPrint; os_hooks.print_info = &Print; os_hooks.print_trace = &SerialPrint; os_hooks.allocate_pages = &Allocate_VMM_Pages; os_hooks.free_page = &Free_VMM_Page; os_hooks.malloc = &VMM_Malloc; os_hooks.free = &VMM_Free; os_hooks.vaddr_to_paddr = &Identity; os_hooks.paddr_to_vaddr = &Identity; os_hooks.hook_interrupt = &hook_irq_stub; os_hooks.hook_interrupt_new = &geekos_hook_interrupt_new; os_hooks.ack_irq = &ack_irq; os_hooks.get_cpu_khz = &get_cpu_khz; Init_VMM(&os_hooks, &vmm_ops); //test decoder PrintBoth("testing decoder\n"); parse(); PrintBoth("testing decoder done\n"); /* MOVE THIS TO AN INIT GUEST ROUTINE */ v3_init_time(&(vm_info.time_state)); init_shadow_map(&(vm_info.mem_map)); if ((vmm_ops).has_nested_paging()) { vm_info.shdw_pg_mode = NESTED_PAGING; } else { init_shadow_page_state(&(vm_info.shdw_pg_state)); vm_info.shdw_pg_mode = SHADOW_PAGING; } vm_info.cpu_mode = REAL; vm_info.mem_mode = PHYSICAL_MEM; //init_irq_map(&(vm_info.irq_map)); init_vmm_io_map(&(vm_info.io_map)); init_interrupt_state(&vm_info); dev_mgr_init(&(vm_info.dev_mgr)); /* ** */ if (0) { // add_shared_mem_range(&(vm_info.mem_layout), 0, 0x800000, 0x10000); // add_shared_mem_range(&(vm_info.mem_layout), 0, 0x1000000, 0); rip = (ulong_t)(void*)&BuzzVM; // rip -= 0x10000; // rip = (addr_t)(void*)&exit_test; // rip -= 0x2000; vm_info.rip = rip; rsp = (addr_t)Alloc_Page(); vm_info.vm_regs.rsp = (rsp +4092 );// - 0x2000; } else if (0) { //add_shared_mem_range(&(vm_info.mem_layout), 0x0, 0x1000, 0x100000); // add_shared_mem_range(&(vm_info.mem_layout), 0x0, 0x100000, 0x0); /* shadow_region_t *ent = Malloc(sizeof(shadow_region_t));; init_shadow_region_physical(ent,0,0x100000,GUEST_REGION_PHYSICAL_MEMORY, 0x100000, HOST_REGION_PHYSICAL_MEMORY); add_shadow_region(&(vm_info.mem_map),ent); */ add_shadow_region_passthrough(&vm_info, 0x0, 0x100000, 0x100000); hook_io_port(&(vm_info.io_map), 0x61, &IO_Read, &IO_Write, NULL); hook_io_port(&(vm_info.io_map), 0x05, &IO_Read, &IO_Write_to_Serial, NULL); /* vm_info.cr0 = 0; vm_info.cs.base=0xf000; vm_info.cs.limit=0xffff; */ //vm_info.rip = 0xfff0; vm_info.rip = 0; vm_info.vm_regs.rsp = 0x0; } else { int i; void * region_start; extern char _binary_vm_kernel_start; PrintBoth(" Guest Load Addr: 0x%x\n", &_binary_vm_kernel_start); struct guest_mem_layout * layout = (struct guest_mem_layout *)&_binary_vm_kernel_start; // SerialPrint("Guest Mem Dump at 0x%x\n", 0x100000); //SerialMemDump((unsigned char *)(0x100000), 261 * 1024); if (layout->magic != MAGIC_CODE) { PrintBoth("Layout Magic Mismatch (0x%x)\n", layout->magic); return -1; } PrintBoth("%d layout regions\n", layout->num_regions); region_start = (void *)&(layout->regions[layout->num_regions]); PrintBoth("region start = 0x%x\n", region_start); for (i = 0; i < layout->num_regions; i++) { struct layout_region * reg = &(layout->regions[i]); uint_t num_pages = (reg->length / PAGE_SIZE) + ((reg->length % PAGE_SIZE) ? 1 : 0); void * guest_mem = Allocate_VMM_Pages(num_pages); PrintBoth("Layout Region %d bytes\n", reg->length); memcpy(guest_mem, region_start, reg->length); SerialMemDump((unsigned char *)(guest_mem), 16); add_shadow_region_passthrough(&vm_info, reg->final_addr, reg->final_addr + (num_pages * PAGE_SIZE), (addr_t)guest_mem); PrintBoth("Adding Shadow Region (0x%x-0x%x) -> 0x%x\n", reg->final_addr, reg->final_addr + (num_pages * PAGE_SIZE), guest_mem); region_start += reg->length; } // add_shadow_region_passthrough(&vm_info, 0x0, 0xa0000, (addr_t)Allocate_VMM_Pages(160)); add_shadow_region_passthrough(&vm_info, 0xa0000, 0xc0000, 0xa0000); //hook_guest_mem(&vm_info, 0xa0000, 0xc0000, passthrough_mem_read, passthrough_mem_write, NULL); // TEMP //add_shadow_region_passthrough(&vm_info, 0xc0000, 0xc8000, 0xc0000); if (1) { add_shadow_region_passthrough(&vm_info, 0xc7000, 0xc8000, (addr_t)Allocate_VMM_Pages(1)); if (add_shadow_region_passthrough(&vm_info, 0xc8000, 0xf0000, (addr_t)Allocate_VMM_Pages(40)) == -1) { PrintBoth("Error adding shadow region\n"); } } else { add_shadow_region_passthrough(&vm_info, 0xc0000, 0xc8000, 0xc0000); add_shadow_region_passthrough(&vm_info, 0xc8000, 0xf0000, 0xc8000); } //add_shadow_region_passthrough(&vm_info, 0x100000, 0x2000000, (addr_t)Allocate_VMM_Pages(8192)); add_shadow_region_passthrough(&vm_info, 0x100000, 0x1000000, (addr_t)Allocate_VMM_Pages(4096)); // test - give linux accesss to PCI space - PAD add_shadow_region_passthrough(&vm_info, 0xc0000000,0xffffffff,0xc0000000); print_shadow_map(&(vm_info.mem_map)); hook_io_port(&(vm_info.io_map), 0x61, &IO_Read, &IO_Write, NULL); //hook_io_port(&(vm_info.io_map), 0x05, &IO_Read, &IO_Write_to_Serial, NULL); hook_io_port(&(vm_info.io_map), 0x400, &IO_Read, &IO_Write_to_Serial, NULL); hook_io_port(&(vm_info.io_map), 0x401, &IO_Read, &IO_Write_to_Serial, NULL); hook_io_port(&(vm_info.io_map), 0x402, &IO_Read, &IO_BOCHS_info, NULL); hook_io_port(&(vm_info.io_map), 0x403, &IO_Read, &IO_BOCHS_debug, NULL); { struct vm_device * nvram = create_nvram(); //struct vm_device * timer = create_timer(); struct vm_device * pic = create_pic(); struct vm_device * keyboard = create_keyboard(); struct vm_device * pit = create_pit(); //struct vm_device * serial = create_serial(); #define GENERIC 1 #if GENERIC generic_port_range_type range[] = { #if 1 {0x00, 0x07, GENERIC_PRINT_AND_IGNORE}, // DMA 1 channels 0,1,2,3 (address, counter) {0xc0, 0xc7, GENERIC_PRINT_AND_IGNORE}, // DMA 2 channels 4,5,6,7 (address, counter) {0x87, 0x87, GENERIC_PRINT_AND_IGNORE}, // DMA 1 channel 0 page register {0x83, 0x83, GENERIC_PRINT_AND_IGNORE}, // DMA 1 channel 1 page register {0x81, 0x81, GENERIC_PRINT_AND_IGNORE}, // DMA 1 channel 2 page register {0x82, 0x82, GENERIC_PRINT_AND_IGNORE}, // DMA 1 channel 3 page register {0x8f, 0x8f, GENERIC_PRINT_AND_IGNORE}, // DMA 2 channel 4 page register {0x8b, 0x8b, GENERIC_PRINT_AND_IGNORE}, // DMA 2 channel 5 page register {0x89, 0x89, GENERIC_PRINT_AND_IGNORE}, // DMA 2 channel 6 page register {0x8a, 0x8a, GENERIC_PRINT_AND_IGNORE}, // DMA 2 channel 7 page register {0x08, 0x0f, GENERIC_PRINT_AND_IGNORE}, // DMA 1 misc registers (csr, req, smask,mode,clearff,reset,enable,mmask) {0xd0, 0xde, GENERIC_PRINT_AND_IGNORE}, // DMA 2 misc registers #endif {0x3f8, 0x3f8+7, GENERIC_PRINT_AND_IGNORE}, // COM 1 {0x2f8, 0x2f8+7, GENERIC_PRINT_AND_IGNORE}, // COM 2 {0x3e8, 0x3e8+7, GENERIC_PRINT_AND_IGNORE}, // COM 3 {0x2e8, 0x2e8+7, GENERIC_PRINT_AND_IGNORE}, // COM 4 #if 0 {0x170, 0x178, GENERIC_PRINT_AND_PASSTHROUGH}, // IDE 1 {0x376, 0x377, GENERIC_PRINT_AND_PASSTHROUGH}, // IDE 1 {0x1f0, 0x1f8, GENERIC_PRINT_AND_PASSTHROUGH}, // IDE 0 {0x3f6, 0x3f7, GENERIC_PRINT_AND_PASSTHROUGH}, // IDE 0 #endif #if 0 {0x3f0, 0x3f2, GENERIC_PRINT_AND_IGNORE}, // Primary floppy controller (base,statusa/statusb,DOR) {0x3f4, 0x3f5, GENERIC_PRINT_AND_IGNORE}, // Primary floppy controller (mainstat/datarate,data) {0x3f7, 0x3f7, GENERIC_PRINT_AND_IGNORE}, // Primary floppy controller (DIR) {0x370, 0x372, GENERIC_PRINT_AND_IGNORE}, // Secondary floppy controller (base,statusa/statusb,DOR) {0x374, 0x375, GENERIC_PRINT_AND_IGNORE}, // Secondary floppy controller (mainstat/datarate,data) {0x377, 0x377, GENERIC_PRINT_AND_IGNORE}, // Secondary floppy controller (DIR) #endif // {0x378, 0x400, GENERIC_PRINT_AND_IGNORE} {0,0,0}, // sentinal - must be last }; struct vm_device * generic = create_generic(range, NULL, NULL); #endif attach_device(&(vm_info), nvram); //attach_device(&(vm_info), timer); attach_device(&(vm_info), pic); attach_device(&(vm_info), pit); attach_device(&(vm_info), keyboard); // attach_device(&(vm_info), serial); #if GENERIC // Important that this be attached last! attach_device(&(vm_info), generic); #endif PrintDebugDevMgr(&(vm_info.dev_mgr)); } // give keyboard interrupts to vm // no longer needed since we have a keyboard device //hook_irq(&vm_info, 1); #if 1 // give floppy controller to vm hook_irq_for_guest_injection(&vm_info, 6); #endif #if 1 //primary ide hook_irq_for_guest_injection(&vm_info, 14); // secondary ide hook_irq_for_guest_injection(&vm_info, 15); #endif vm_info.rip = 0xfff0; vm_info.vm_regs.rsp = 0x0; } PrintBoth("Initializing Guest (eip=0x%.8x) (esp=0x%.8x)\n", (uint_t)vm_info.rip,(uint_t)vm_info.vm_regs.rsp); (vmm_ops).init_guest(&vm_info); PrintBoth("Starting Guest\n"); //Clear_Screen(); (vmm_ops).start_guest(&vm_info); return 0; }