/* * This file is part of the Palacios Virtual Machine Monitor developed * by the V3VEE Project with funding from the United States National * Science Foundation and the Department of Energy. * * The V3VEE Project is a joint project between Northwestern University * and the University of New Mexico. You can find out more at * http://www.v3vee.org * * Copyright (c) 2009, Lei Xia * Copyright (c) 2009, Yuan Tang * Copyright (c) 2009, Jack Lange * Copyright (c) 2009, Peter Dinda * Copyright (c) 2009, The V3VEE Project * All rights reserved. * * Author: Lei Xia * Yuan Tang * Jack Lange * Peter Dinda struct raw_ethernet_pkt { int size; int type; // vm or link type: INTERFACE|EDGE char data[ETHERNET_PACKET_LEN]; }; //static char *vnet_version = "0.9"; static int vnet_server = 0; static bool use_tcp = false; static uint_t vnet_udp_port = 22; #define MAX_LINKS 1 #define MAX_ROUTES 1 #define MAX_DEVICES 16 static struct topology g_links[MAX_LINKS]; static int g_num_links; //The current number of links static int g_first_link; static int g_last_link; static struct routing g_routes[MAX_ROUTES]; static int g_num_routes; //The current number of routes static int g_first_route; static int g_last_route; static struct device_list g_devices[MAX_DEVICES]; static int g_num_devices; static int g_first_device; static int g_last_device; static SOCK g_udp_sockfd; static struct gen_queue * g_inpkt_q;//packet receiving queue static void print_packet(char *pkt, int size) { int i; PrintDebug("Vnet: print_data_packet: size: %d\n", size); for (i = 0; i < size; i ++) PrintDebug("%x ", pkt[i]); PrintDebug("\n"); } #if 0 static void print_packet_addr(char *pkt) { int i; PrintDebug("Vnet: print_packet_destination_addr: "); for (i = 8; i < 14; i ++) PrintDebug("%x ", pkt[i]); PrintDebug("\n"); PrintDebug("Vnet: print_packet_source_addr: "); for (i = 14; i < 20; i ++) PrintDebug("%x ", pkt[i]); PrintDebug("\n"); } static void print_device_addr(char *ethaddr) { int i; PrintDebug("Vnet: print_device_addr: "); for (i = 0; i < 6; i ++) PrintDebug("%x ", ethaddr[i]); PrintDebug("\n"); } #endif //network connection functions #if 0 static int CreateAndSetupTcpSocket(const int bufsize, const bool nodelay, const bool nonblocking) { int mysocket; // create socket for connections if ((mysocket = V3_Create_TCP_Socket()) < 0) { return -1; } return mysocket; } static int BindSocketwPort(const int mysocket, const int myport) { if (V3_Bind_Socket(mysocket, myport) < 0) { return -1; } return 0; } static int ListenSocket(const int mysocket, const int maxc) { return V3_Listen_Socket(mysocket, maxc); } static int ConnectToHost(const int mysocket, const int hostip, const int port) { return V3_Connect_To_IP(mysocket, hostip, port); } static void close(int mysocket) { V3_Close_Socket(mysocket); } static int raw_ethernet_pkt_sendUdp(struct raw_ethernet_pkt *pt, int sock_fd, int ip, short port) { int size; PrintDebug("Vnet: sending by UDP socket %d ip: %x, port: %d\n", sock_fd, ip, port); if ((size = V3_SendTo_IP(sock_fd, ip, port, pt->data, pt->size)) != pt->size) { PrintError("Vnet: sending by UDP Exception, %x\n", size); return -1; } return 0; } #endif static void raw_ethernet_packet_init(struct raw_ethernet_pkt *pt, const char *data, const size_t size) { pt->size = size; memcpy(pt->data, data, size); } #define in_range(c, lo, up) ((char)c >= lo && (char)c <= up) //#define islower(c) in_range(c, 'a', 'z') #define HASH_KEY_SIZE 16 #define MIN_CACHE_SIZE 100 /* Hash key format: * 0-5: src_eth_addr * 6-11: dest_eth_addr * 12: src type * 13-16: src index */ typedef char * route_hashkey_t; struct route_cache_entry // This is the hash value, Format: 0: num_matched_routes, 1...n: matches[] -- TY { int num_matched_routes; int *matches; }; static struct hashtable *g_route_cache; //Header of the route cache static uint_t hash_from_key_fn(addr_t hashkey) { uint_t hash = 0; uint_t temp = 0; int i; char *key =(char *)hashkey; for (i = 0; i < HASH_KEY_SIZE; i++) { hash = (hash << 4) + *(key + i) + i; if ((temp = (hash & 0xF0000000))) { hash ^= (temp >> 24); } hash &= ~temp; } PrintDebug("Hash Value: %lu\n", (unsigned long)hash); return hash; } static int hash_key_equal(addr_t left, addr_t right) { int i; char *key1, *key2; key1 = (char *)left; key2 = (char *)right; for(i = 0; i < HASH_KEY_SIZE; i++) { if (key1[i] != key2[i]) { PrintDebug("HASHes not equal\n"); return -1; } } return 0; } static int init_route_cache() { g_route_cache = v3_create_htable(MIN_CACHE_SIZE, &hash_from_key_fn, &hash_key_equal); if (g_route_cache == NULL){ PrintError("Vnet: Route Cache Initiate Failurely\n"); return -1; } return 0; } static void make_hash_key(route_hashkey_t hashkey, char src_addr[6], char dest_addr[6], char src_type, int src_index) { int j; for(j = 0; j < 6; j++) { hashkey[j] = src_addr[j]; hashkey[j + 6] = dest_addr[j] + 1; } hashkey[12] = src_type; *(int *)(hashkey + 12) = src_index; } static int add_route_to_cache(route_hashkey_t hashkey, int num_matched_r, int *matches) { struct route_cache_entry *new_entry = (struct route_cache_entry *)V3_Malloc(sizeof(struct route_cache_entry)); if (new_entry == NULL){ PrintError("Vnet: Malloc fails\n"); return -1; } new_entry->num_matched_routes = num_matched_r; int i; new_entry->matches = (int *)V3_Malloc(num_matched_r*sizeof(int)); // TODO: Here need to consider where to release the memory when clear cache; if (new_entry->matches == NULL){ PrintError("Vnet: Malloc fails\n"); return -1; } for(i = 0; i < num_matched_r; i++) { new_entry->matches[i] = matches[i]; } //here, when v3_htable_insert return 0, it means insert fails if (v3_htable_insert(g_route_cache, (addr_t)hashkey, (addr_t)new_entry) == 0){ PrintError("Vnet: Insert new route entry to cache failed\n"); V3_Free(new_entry->matches); V3_Free(new_entry); } return 0; } static int clear_hash_cache() { v3_free_htable(g_route_cache, 1, 1); g_route_cache = v3_create_htable(MIN_CACHE_SIZE, hash_from_key_fn, hash_key_equal); if (g_route_cache == NULL){ PrintError("Vnet: Route Cache Create Failurely\n"); return -1; } return 0; } static int look_into_cache(route_hashkey_t hashkey, int *matches) { int n_matches = -1; int i; struct route_cache_entry *found; found = (struct route_cache_entry *)v3_htable_search(g_route_cache, (addr_t)hashkey); if (found != NULL) { n_matches = found->num_matched_routes; for (i = 0; i < n_matches; i++) matches[i] = found->matches[i]; } return n_matches; } static inline char vnet_toupper(char c) { if (islower(c)) c -= 'a'-'A'; return c; } static inline char hexnybbletonybble(const char hexnybble) { char x = vnet_toupper(hexnybble); if ((x >= '0') && (x <= '9')) { return x - '0'; } else { return 10 + (x - 'A'); } } static inline void hexbytetobyte(const char hexbyte[2], char *byte) { *byte = ((hexnybbletonybble(hexbyte[0]) << 4) + (hexnybbletonybble(hexbyte[1]) & 0xf)); } static inline char nybbletohexnybble(const char nybble) { return (nybble >= 10) ? (nybble - 10 + 'A') : (nybble + '0'); } static inline void bytetohexbyte(const char byte, char hexbyte[2]) { hexbyte[0] = nybbletohexnybble((byte >> 4) & 0xf); hexbyte[1] = nybbletohexnybble(byte & 0xf); } static inline void string_to_mac(const char * str, char mac[6]) { int k; for(k = 0; k < 6; k++) { hexbytetobyte(&(str[(2 * k) + k]), mac + k); } } static inline void mac_to_string(char address[6], char * buf) { int i; for (i = 0; i < 6; i++) { bytetohexbyte(address[i], &(buf[3 * i])); buf[(3 * i) + 2] = ':'; } buf[17] = 0; } /* static void ip_to_string(ulong_t addr, char * buf) { uint32_t addr_st; char * tmp_str; addr_st = v3_htonl(addr); tmp_str = v3_inet_ntoa(addr_st); memcpy(buf, tmp_str, strlen(tmp_str)); } */ int find_link_by_fd(SOCK sock) { int i; FOREACH_LINK(i, g_links, g_first_link) { if (g_links[i].link_sock == sock) { return i; } } return -1; } int vnet_add_link_entry(unsigned long dest, int type, int data_port, SOCK fd) { int i; for(i = 0; i < MAX_LINKS; i++) { if (g_links[i].use == 0) { g_links[i].dest = dest; g_links[i].type = type; g_links[i].link_sock = fd; g_links[i].remote_port = data_port; g_links[i].use = 1; if (g_first_link == -1) g_first_link = i; g_links[i].prev = g_last_link; g_links[i].next = -1; if (g_last_link != -1) { g_links[g_last_link].next = i; } g_last_link = i; g_num_links++; return i; } } return -1; } int add_sock(struct sock_list *socks, int len, int *first_sock, int *last_sock, SOCK fd) { int i; for (i = 0; i < len; i++) { if (socks[i].sock == -1) { socks[i].sock = fd; if (*first_sock == -1) *first_sock = i; socks[i].prev = *last_sock; socks[i].next = -1; if (*last_sock != -1) socks[*last_sock].next = i; *last_sock = i; return i; } } return -1; } int vnet_add_route_entry(char src_mac[6], char dest_mac[6], int src_mac_qual, int dest_mac_qual, int dest, int type, int src, int src_type) { int i; for(i = 0; i < MAX_ROUTES; i++) { if (g_routes[i].use == 0) { if ((src_mac_qual != ANY_TYPE) && (src_mac_qual != NONE_TYPE)) { memcpy(g_routes[i].src_mac, src_mac, 6); } else { memset(g_routes[i].src_mac, 0, 6); } if ((dest_mac_qual != ANY_TYPE) && (dest_mac_qual != NONE_TYPE)) { memcpy(g_routes[i].dest_mac, dest_mac, 6); } else { memset(g_routes[i].dest_mac, 0, 6); } g_routes[i].src_mac_qual = src_mac_qual; g_routes[i].dest_mac_qual = dest_mac_qual; g_routes[i].dest = dest; g_routes[i].type = type; g_routes[i].src = src; g_routes[i].src_type = src_type; g_routes[i].use = 1; if (g_first_route == -1) g_first_route = i; g_routes[i].prev = g_last_route; g_routes[i].next = -1; if (g_last_route != -1) { g_routes[g_last_route].next = i; } g_last_route = i; g_num_routes++; return i; } } clear_hash_cache(); return -1; } static int find_link_entry(unsigned long dest, int type) { int i; FOREACH_LINK(i, g_links, g_first_link) { if ((g_links[i].dest == dest) && ((type == -1) || (g_links[i].type == type)) ) { return i; } } return -1; } static int delete_link_entry(int index) { int next_i; int prev_i; if (g_links[index].use == 0) { return -1; } g_links[index].dest = 0; g_links[index].type = 0; g_links[index].link_sock = -1; g_links[index].use = 0; prev_i = g_links[index].prev; next_i = g_links[index].next; if (prev_i != -1) g_links[prev_i].next = g_links[index].next; if (next_i != -1) g_links[next_i].prev = g_links[index].prev; if (g_first_link == index) g_first_link = g_links[index].next; if (g_last_link == index) g_last_link = g_links[index].prev; g_links[index].next = -1; g_links[index].prev = -1; g_num_links--; return 0; } int vnet_delete_link_entry_by_addr(unsigned long dest, int type) { int index = find_link_entry(dest, type); if (index == -1) { return -1; } return delete_link_entry(index); } static int find_route_entry(char src_mac[6], char dest_mac[6], int src_mac_qual, int dest_mac_qual, int dest, int type, int src, int src_type) { int i; char temp_src_mac[6]; char temp_dest_mac[6]; if ((src_mac_qual != ANY_TYPE) && (src_mac_qual != NONE_TYPE)) { memcpy(temp_src_mac, src_mac, 6); } else { memset(temp_src_mac, 0, 6); } if ((dest_mac_qual != ANY_TYPE) && (dest_mac_qual != NONE_TYPE)) { memcpy(temp_dest_mac, dest_mac, 6); } else { memset(temp_dest_mac, 0, 6); } FOREACH_LINK(i, g_routes, g_first_route) { if ((memcmp(temp_src_mac, g_routes[i].src_mac, 6) == 0) && (memcmp(temp_dest_mac, g_routes[i].dest_mac, 6) == 0) && (g_routes[i].src_mac_qual == src_mac_qual) && (g_routes[i].dest_mac_qual == dest_mac_qual) && ((type == -1) || ((type == g_routes[i].type) && (g_routes[i].dest == dest))) && ((src_type == -1) || ((src_type == g_routes[i].src_type) && (g_routes[i].src == src))) ) { return i; } } return -1; } static int delete_route_entry(int index) { int next_i; int prev_i; memset(g_routes[index].src_mac, 0, 6); memset(g_routes[index].dest_mac, 0, 6); g_routes[index].dest = 0; g_routes[index].src = 0; g_routes[index].src_mac_qual = 0; g_routes[index].dest_mac_qual = 0; g_routes[index].type = -1; g_routes[index].src_type = -1; g_routes[index].use = 0; prev_i = g_routes[index].prev; next_i = g_routes[index].next; if (prev_i != -1) g_routes[prev_i].next = g_routes[index].next; if (next_i != -1) g_routes[next_i].prev = g_routes[index].prev; if (g_first_route == index) g_first_route = g_routes[index].next; if (g_last_route == index) g_last_route = g_routes[index].prev; g_routes[index].next = -1; g_routes[index].prev = -1; g_num_routes--; clear_hash_cache(); return 0; } int vnet_delete_route_entry_by_addr(char src_mac[6], char dest_mac[6], int src_mac_qual, int dest_mac_qual, int dest, int type, int src, int src_type) { int index = find_route_entry(src_mac, dest_mac, src_mac_qual, dest_mac_qual, dest, type, src, src_type); if (index == -1) { return -1; } delete_route_entry(index); return 0; } int delete_sock(struct sock_list * socks, int *first_sock, int *last_sock, SOCK fd) { int i; int prev_i; int next_i; FOREACH_SOCK(i, socks, (*first_sock)) { if (socks[i].sock == fd) { V3_Close_Socket(socks[i].sock); socks[i].sock = -1; prev_i = socks[i].prev; next_i = socks[i].next; if (prev_i != -1) socks[prev_i].next = socks[i].next; if (next_i != -1) socks[next_i].prev = socks[i].prev; if (*first_sock == i) *first_sock = socks[i].next; if (*last_sock == i) *last_sock = socks[i].prev; socks[i].next = -1; socks[i].prev = -1; return 0; } } return -1; } //setup the topology of the testing network static void store_topologies(SOCK fd) { int i; int src_mac_qual = ANY_TYPE; int dest_mac_qual = ANY_TYPE; uint_t dest; #ifndef VNET_SERVER dest = (0 | 172 << 24 | 23 << 16 | 1 ); //this is in_addr.s_addr PrintDebug("VNET: store_topologies. NO VNET_SERVER, dest = %x\n", dest); #elif dest = (0 | 172 << 24 | 23 << 16 | 2 ); //this is in_addr.s_addr PrintDebug("VNET: store_topologies. VNET_SERVER, dest = %x\n", dest); #endif int type = UDP_TYPE; int src = 0; int src_type= ANY_SRC_TYPE; int data_port = 22; //store link table for(i = 0; i < MAX_LINKS; i++) { if (g_links[i].use == 0) { g_links[i].dest = (int)dest; g_links[i].type = type; g_links[i].link_sock = fd; g_links[i].remote_port = data_port; g_links[i].use = 1; if (g_first_link == -1) g_first_link = i; g_links[i].prev = g_last_link; g_links[i].next = -1; if (g_last_link != -1) { g_links[g_last_link].next = i; } g_last_link = i; g_num_links++; PrintDebug("VNET: store_topologies. new link: socket: %d, remote %x:[%d]\n", g_links[i].link_sock, (uint_t)g_links[i].dest, g_links[i].remote_port); } } //store route table type = EDGE_TYPE; dest =0; for(i = 0; i < MAX_ROUTES; i++) { if (g_routes[i].use == 0) { if ((src_mac_qual != ANY_TYPE) && (src_mac_qual != NONE_TYPE)) { // memcpy(g_routes[i].src_mac, src_mac, 6); } else { memset(g_routes[i].src_mac, 0, 6); } if ((dest_mac_qual != ANY_TYPE) && (dest_mac_qual != NONE_TYPE)) { // memcpy(g_routes[i].dest_mac, dest_mac, 6); } else { memset(g_routes[i].dest_mac, 0, 6); } g_routes[i].src_mac_qual = src_mac_qual; g_routes[i].dest_mac_qual = dest_mac_qual; g_routes[i].dest = (int)dest; g_routes[i].type = type; g_routes[i].src = src; g_routes[i].src_type = src_type; g_routes[i].use = 1; if (g_first_route == -1) g_first_route = i; g_routes[i].prev = g_last_route; g_routes[i].next = -1; if (g_last_route != -1) { g_routes[g_last_route].next = i; } g_last_route = i; g_num_routes++; PrintDebug("VNET: store_topologies. new route: src_mac: %s, dest_mac: %s, dest: %d\n", g_routes[i].src_mac, g_routes[i].dest_mac, dest); } } } static int match_route(char *src_mac, char *dst_mac, int src_type, int src_index, int *matches) { int values[MAX_ROUTES]; int matched_routes[MAX_ROUTES]; int num_matches = 0; int i; int max = 0; int no = 0; int exact_match = 0; FOREACH_ROUTE(i, g_routes, g_first_route) { if ((g_routes[i].src_type != ANY_SRC_TYPE) && ((g_routes[i].src_type != src_type) || ((g_routes[i].src != src_index) && (g_routes[i].src != -1)))) { PrintDebug("Vnet: MatchRoute: Source route is on and does not match\n"); continue; } if ( (g_routes[i].dest_mac_qual == ANY_TYPE) && (g_routes[i].src_mac_qual == ANY_TYPE) ) { matched_routes[num_matches] = i; values[num_matches] = 3; num_matches++; } if (memcmp((void *)&g_routes[i].src_mac, (void *)src_mac, 6) == 0) { if (g_routes[i].src_mac_qual != NOT_TYPE) { if (g_routes[i].dest_mac_qual == ANY_TYPE) { matched_routes[num_matches] = i; values[num_matches] = 6; num_matches++; }else if (memcmp((void *)&g_routes[i].dest_mac, (void *)dst_mac, 6) == 0) { if (g_routes[i].dest_mac_qual != NOT_TYPE) { matched_routes[num_matches] = i; values[num_matches] = 8; exact_match = 1; num_matches++; } } } } if (memcmp((void *)&g_routes[i].dest_mac, (void *)dst_mac, 6) == 0) { if (g_routes[i].dest_mac_qual != NOT_TYPE) { if (g_routes[i].src_mac_qual == ANY_TYPE) { matched_routes[num_matches] = i; values[num_matches] = 6; num_matches++; } else if (memcmp((void *)&g_routes[i].src_mac, (void *)src_mac, 6) == 0) { if (g_routes[i].src_mac_qual != NOT_TYPE) { if (exact_match == 0) { matched_routes[num_matches] = i; values[num_matches] = 8; num_matches++; } } } } } if ((g_routes[i].dest_mac_qual == NOT_TYPE) && (memcmp((void *)&g_routes[i].dest_mac, (void *)dst_mac, 6) != 0)) { if (g_routes[i].src_mac_qual == ANY_TYPE) { matched_routes[num_matches] = i; values[num_matches] = 5; num_matches++; } else if (memcmp((void *)&g_routes[i].src_mac, (void *)src_mac, 6) == 0) { if (g_routes[i].src_mac_qual != NOT_TYPE) { matched_routes[num_matches] = i; values[num_matches] = 7; num_matches++; } } } if ((g_routes[i].src_mac_qual == NOT_TYPE) && (memcmp((void *)&g_routes[i].src_mac, (void *)src_mac, 6) != 0)) { if (g_routes[i].dest_mac_qual == ANY_TYPE) { matched_routes[num_matches] = i; values[num_matches] = 5; num_matches++; } else if (memcmp((void *)&g_routes[i].dest_mac, (void *)dst_mac, 6) == 0) { if (g_routes[i].dest_mac_qual != NOT_TYPE) { matched_routes[num_matches] = i; values[num_matches] = 7; num_matches++; } } } }//end FOREACH_ROUTE FOREACH_ROUTE(i, g_routes, g_first_route) { if ((memcmp((void *)&g_routes[i].src_mac, (void *)src_mac, 6) == 0) && (g_routes[i].dest_mac_qual == NONE_TYPE) && ((g_routes[i].src_type == ANY_SRC_TYPE) || ((g_routes[i].src_type == src_type) && ((g_routes[i].src == src_index) || (g_routes[i].src == -1))))) { matched_routes[num_matches] = i; values[num_matches] = 4; PrintDebug("Vnet: MatchRoute: We matched a default route (%d)\n", i); num_matches++; } } //If many rules have been matched, we choose one which has the highest value rating if (num_matches == 0) { return 0; } for (i = 0; i < num_matches; i++) { if (values[i] > max) { no = 0; max = values[i]; matches[no] = matched_routes[i]; no++; } else if (values[i] == max) { matches[no] = matched_routes[i]; no++; } } return no; } static inline int if_write_pkt(struct vnet_if_device *iface, struct raw_ethernet_pkt *pkt) { return iface->input((uchar_t *)pkt->data, pkt->size); } static int handle_one_pkt(struct raw_ethernet_pkt *pkt) { int src_link_index = 0; //the value of src_link_index of udp always is 0 int i; char src_mac[6]; char dst_mac[6]; int matches[g_num_routes]; int num_matched_routes = 0; struct HEADERS headers; // get the ethernet and ip headers from the packet memcpy((void *)&headers, (void *)pkt->data, sizeof(headers)); int j; for(j = 0;j < 6; j++) { src_mac[j] = headers.ethernetsrc[j]; dst_mac[j] = headers.ethernetdest[j]; } #ifdef DEBUG char dest_str[18]; char src_str[18]; mac_to_string(src_mac, src_str); mac_to_string(dst_mac, dest_str); PrintDebug("Vnet: HandleDataOverLink. SRC(%s), DEST(%s)\n", src_str, dest_str); #endif char hash_key[HASH_KEY_SIZE]; make_hash_key(hash_key, src_mac, dst_mac, EDGE_TYPE, src_link_index); num_matched_routes = look_into_cache((route_hashkey_t)hash_key, matches); if (num_matched_routes == -1) {//no match num_matched_routes = match_route(src_mac, dst_mac, pkt->type, src_link_index, matches); if (num_matched_routes > 0) add_route_to_cache(hash_key, num_matched_routes,matches); } PrintDebug("Vnet: HandleDataOverLink: Matches=%d\n", num_matched_routes); for (i = 0; i < num_matched_routes; i++) { int route_index = -1; int link_index = -1; int dev_index = -1; route_index = matches[i]; PrintDebug("Vnet: HandleDataOverLink: Forward packet from link according to Route entry %d\n", route_index); if (g_routes[route_index].type == EDGE_TYPE) { link_index = g_routes[route_index].dest; if(g_links[link_index].type == UDP_TYPE) { int size; if ((size = V3_SendTo_IP(g_links[link_index].link_sock, g_links[link_index].dest, g_links[link_index].remote_port, pkt->data, pkt->size)) != pkt->size) { PrintError("Vnet: sending by UDP Exception, %x\n", size); return -1; } PrintDebug("Vnet: HandleDataOverLink: Serializing UDP Packet to link_sock [%d], dest [%x], remote_port [%d], size [%d]\n", g_links[link_index].link_sock, (uint_t)g_links[link_index].dest, g_links[link_index].remote_port, (int)pkt->size); }else if (g_links[link_index].type == TCP_TYPE) { } } else if (g_routes[route_index].type == INTERFACE_TYPE) { dev_index = g_routes[route_index].dest; PrintDebug("Writing Packet to device=%s\n", g_devices[dev_index].device->name); if (if_write_pkt(g_devices[dev_index].device, pkt) == -1) { PrintDebug("Can't write output packet to link\n"); return -1; } } else { PrintDebug("Vnet: Wrong Edge type\n"); } } return 0; } static int send_ethernet_pkt(char *buf, int length) { struct raw_ethernet_pkt *pt; pt = (struct raw_ethernet_pkt *)V3_Malloc(sizeof(struct raw_ethernet_pkt)); raw_ethernet_packet_init(pt, buf, length); //====here we copy sending data once PrintDebug("VNET: vm_send_pkt: transmitting packet: (size:%d)\n", (int)pt->size); print_packet((char *)buf, length); v3_enqueue(g_inpkt_q, (addr_t)pt); return 0; } int V3_Send_pkt(uchar_t *buf, int length) { PrintDebug("VNET: In V3_Send_pkt: pkt length %d\n", length); return send_ethernet_pkt((char *)buf, length); } static int add_device_to_table(struct vnet_if_device*device, int type) { int i; for (i = 0; i < MAX_DEVICES; i++) { if (g_devices[i].use == 0) { g_devices[i].type = type; g_devices[i].use = 1; if (g_first_device == -1) g_first_device = i; g_devices[i].prev = g_last_device; g_devices[i].next = -1; if (g_last_device != -1) g_devices[g_last_device].next = i; g_last_device = i; g_num_devices++; return i; } } return -1; } static int search_device(char *device_name) { int i; for (i=0; iname)) return i; } return -1; } static struct vnet_if_device* delete_device_from_table(int index) { int next_i; int prev_i; struct vnet_if_device *device = NULL; if (g_devices[index].use == 0) return NULL; g_devices[index].use = 0; prev_i = g_devices[index].prev; next_i = g_devices[index].next; if (prev_i != -1) g_devices[prev_i].next = g_devices[index].next; if (next_i != -1) g_devices[next_i].prev = g_devices[index].prev; if (g_first_device == index) g_first_device = g_devices[index].next; if (g_last_device == index) g_last_device = g_devices[index].prev; g_devices[index].next = -1; g_devices[index].prev = -1; device = g_devices[index].device; g_devices[index].device = NULL; g_num_devices--; return device; } int vnet_register_device(char *dev_name, int (*netif_input)(uchar_t * pkt, uint_t size), void *data) { struct vnet_if_device *dev; dev = (struct vnet_if_device *)V3_Malloc(sizeof(struct vnet_if_device)); if(dev == NULL){ PrintError("VNET: Malloc fails\n"); return -1; } strncpy(dev->name, dev_name, (strlen(dev_name) < 50)?strlen(dev_name):50); dev->input = netif_input; dev->data = data; if (add_device_to_table(dev, GENERAL_NIC) == -1) return -1; return 0; } int vnet_unregister_device(char *dev_name) { int i; i=search_device(dev_name); if (i == -1) return -1; struct vnet_if_device *device = delete_device_from_table(i); if (device == NULL) return -1; V3_Free(device); return 0; } int V3_Register_pkt_event(int (*netif_input)(uchar_t * pkt, uint_t size)) { return vnet_register_device("NE2000", netif_input, NULL); } int vnet_pkt_process() { struct raw_ethernet_pkt *pt; int i; PrintDebug("VNET: In vnet_check\n"); while ((pt = (struct raw_ethernet_pkt *)v3_dequeue(g_inpkt_q)) != NULL){ PrintDebug("VNET: In vnet_check: pt length %d, pt type %d\n", (int)pt->size, (int)pt->type); for (i = 0; i < (int)pt->size; i++) PrintDebug("%x ", pt->data[i]); PrintDebug("\n"); if(handle_one_pkt(pt)) { PrintDebug("VNET: vnet_check: handle one packet!\n"); } V3_Free(pt); //be careful here } return 0; } static int process_tcpdata() { return 0; } static int process_udpdata() { struct raw_ethernet_pkt *pt; unsigned long dest = 0; unsigned short remote_port = 0; SOCK link_sock = g_udp_sockfd; int length = sizeof(struct raw_ethernet_pkt) - 2*sizeof(int); //minus the "size" and "type" //run in a loop to get packets from outside network, adding them to the incoming packet queue while (1) { pt = (struct raw_ethernet_pkt *)V3_Malloc(sizeof(struct raw_ethernet_pkt)); if (pt == NULL){ PrintError("Vnet: process_udp: Malloc fails\n"); continue; } PrintDebug("Vnet: route_thread: socket: %d. ready to receive from ip %x, port [%d] or from VMs\n", link_sock, (uint_t)dest, remote_port); pt->size = V3_RecvFrom_IP( link_sock, dest, remote_port, pt->data, length); PrintDebug("Vnet: route_thread: socket: %d receive from ip %x, port [%d]\n", link_sock, (uint_t)dest, remote_port); if (pt->size <= 0){ PrintDebug("Vnet: process_udp: receiving packet from UDP fails\n"); V3_Free(pt); return -1; } PrintDebug("Vnet: process_udp: get packet\n"); print_packet(pt->data, pt->size); v3_enqueue(g_inpkt_q, (addr_t)pt); //V3_Yield(); } } static int indata_handler( ) { if (use_tcp) process_tcpdata(); else process_udpdata( ); return 0; } static int start_recv_data() { if (use_tcp){ } else { SOCK udp_data_socket; if ((udp_data_socket = V3_Create_UDP_Socket()) < 0){ PrintError("VNET: Can't setup udp socket\n"); return -1; } PrintDebug("Vnet: vnet_setup_udp: get socket: %d\n", udp_data_socket); g_udp_sockfd = udp_data_socket; store_topologies(udp_data_socket); if (V3_Bind_Socket(udp_data_socket, vnet_udp_port) < 0){ PrintError("VNET: Can't bind socket\n"); return -1; } PrintDebug("VNET: vnet_setup_udp: bind socket successful\n"); } V3_CREATE_THREAD(&indata_handler, NULL, "VNET_DATA_HANDLER"); return 0; } static void init_link_table() { int i; for (i = 0; i < MAX_LINKS; i++) { g_links[i].use = 0; g_links[i].next = -1; g_links[i].prev = -1; } g_first_link = -1; g_last_link = -1; g_num_links = 0; } static void init_device_table() { int i; for (i = 0; i < MAX_DEVICES; i++) { g_devices[i].use = 0; g_devices[i].next = -1; g_devices[i].prev = -1; } g_first_device = -1; g_last_device = -1; g_num_devices = 0; } static void init_route_table() { int i; for (i = 0; i < MAX_ROUTES; i++) { g_routes[i].use = 0; g_routes[i].next = -1; g_routes[i].prev = -1; } g_first_route = -1; g_last_route = -1; g_num_routes = 0; } static void init_tables() { init_link_table(); init_device_table(); init_route_table(); init_route_cache(); } static void init_pkt_queue() { PrintDebug("VNET Init package receiving queue\n"); g_inpkt_q = v3_create_queue(); v3_init_queue(g_inpkt_q); } void vnet_init() { vnet_server = 0; #ifdef VNET_SERVER vnet_server =1; #endif PrintDebug("VNET Init: Vnet input queue successful.\n"); init_tables(); init_pkt_queue(); start_recv_data(); }