/* * This file is part of the Palacios Virtual Machine Monitor developed * by the V3VEE Project with funding from the United States National * Science Foundation and the Department of Energy. * * The V3VEE Project is a joint project between Northwestern University * and the University of New Mexico. You can find out more at * http://www.v3vee.org * * Copyright (c) 2009, Lei Xia * Copyright (c) 2009, Chang Seok Bae * Copyright (c) 2009, Jack Lange * Copyright (c) 2009, The V3VEE Project * All rights reserved. * * Author: Lei Xia * Chang Seok Bae * Jack Lange * * This is free software. You are permitted to use, * redistribute, and modify it as specified in the file "V3VEE_LICENSE". */ #include #include #include #include #include #include #include #ifndef DEBUG_PCI #undef PrintDebug #define PrintDebug(fmt, args...) #endif #define CONFIG_ADDR_PORT 0x0cf8 #define CONFIG_DATA_PORT 0x0cfc #define PCI_BUS_COUNT 1 // This must always be a multiple of 8 #define MAX_BUS_DEVICES 32 struct pci_addr_reg { union { uint32_t val; struct { uint_t rsvd : 2; uint_t reg_num : 6; uint_t fn_num : 3; uint_t dev_num : 5; uint_t bus_num : 8; uint_t rsvd2 : 7; uint_t enable : 1; } __attribute__((packed)); } __attribute__((packed)); } __attribute__((packed)); struct pci_bus { int bus_num; // Red Black tree containing all attached devices struct rb_root devices; // Bitmap of the allocated device numbers uint8_t dev_map[MAX_BUS_DEVICES / 8]; }; struct pci_internal { // Configuration address register struct pci_addr_reg addr_reg; // Attached Busses struct pci_bus bus_list[PCI_BUS_COUNT]; }; #ifdef DEBUG_PCI static void pci_dump_state(struct pci_internal * pci_state) { struct rb_node * node = v3_rb_first(&(pci_state->bus_list[0].devices)); struct pci_device * tmp_dev = NULL; PrintDebug("===PCI: Dumping state Begin ==========\n"); do { tmp_dev = rb_entry(node, struct pci_device, dev_tree_node); PrintDebug("PCI Device Number: %d (%s):\n", tmp_dev->dev_num, tmp_dev->name); PrintDebug("irq = %d\n", tmp_dev->config_header.intr_line); PrintDebug("Vend ID: 0x%x\n", tmp_dev->config_header.vendor_id); PrintDebug("Device ID: 0x%x\n", tmp_dev->config_header.device_id); } while ((node = v3_rb_next(node))); PrintDebug("====PCI: Dumping state End==========\n"); } #endif // Scan the dev_map bitmap for the first '0' bit static int get_free_dev_num(struct pci_bus * bus) { int i, j; for (i = 0; i < sizeof(bus->dev_map); i++) { if (bus->dev_map[i] != 0xff) { // availability for (j = 0; j < 8; j++) { if (!(bus->dev_map[i] & (0x1 << j))) { return ((i * 8) + j); } } } } return -1; } static void allocate_dev_num(struct pci_bus * bus, int dev_num) { int major = (dev_num / 8); int minor = dev_num % 8; bus->dev_map[major] |= (0x1 << minor); } static inline struct pci_device * __add_device_to_bus(struct pci_bus * bus, struct pci_device * dev) { struct rb_node ** p = &(bus->devices.rb_node); struct rb_node * parent = NULL; struct pci_device * tmp_dev = NULL; while (*p) { parent = *p; tmp_dev = rb_entry(parent, struct pci_device, dev_tree_node); if (dev->dev_num < tmp_dev->dev_num) { p = &(*p)->rb_left; } else if (dev->dev_num > tmp_dev->dev_num) { p = &(*p)->rb_right; } else { return tmp_dev; } } rb_link_node(&(dev->dev_tree_node), parent, p); return NULL; } static inline struct pci_device * add_device_to_bus(struct pci_bus * bus, struct pci_device * dev) { struct pci_device * ret = NULL; if ((ret = __add_device_to_bus(bus, dev))) { return ret; } v3_rb_insert_color(&(dev->dev_tree_node), &(bus->devices)); allocate_dev_num(bus, dev->dev_num); return NULL; } static struct pci_device * get_device(struct pci_bus * bus, int dev_num) { struct rb_node * n = bus->devices.rb_node; struct pci_device * dev = NULL; while (n) { dev = rb_entry(n, struct pci_device, dev_tree_node); if (dev_num < dev->dev_num) { n = n->rb_left; } else if (dev_num > dev->dev_num) { n = n->rb_right; } else { return dev; } } return NULL; } static int addr_port_read(ushort_t port, void * dst, uint_t length, struct vm_device * dev) { struct pci_internal * pci_state = (struct pci_internal *)dev->private_data; int reg_offset = port & 0x3; uint8_t * reg_addr = ((uint8_t *)&(pci_state->addr_reg.val)) + reg_offset; PrintDebug("Reading PCI Address Port (%x): %x len=%d\n", port, pci_state->addr_reg.val, length); if (length == 4) { if (reg_offset != 0) { PrintError("Invalid Address Port Read\n"); return -1; } *(uint32_t *)dst = *(uint32_t *)reg_addr; } else if (length == 2) { if (reg_offset > 2) { PrintError("Invalid Address Port Read\n"); return -1; } *(uint16_t *)dst = *(uint16_t *)reg_addr; } else if (length == 1) { *(uint8_t *)dst = *(uint8_t *)reg_addr; } else { PrintError("Invalid read length (%d) for PCI address register\n", length); return -1; } return length; } static int addr_port_write(ushort_t port, void * src, uint_t length, struct vm_device * dev) { struct pci_internal * pci_state = (struct pci_internal *)dev->private_data; int reg_offset = port & 0x3; uint8_t * reg_addr = ((uint8_t *)&(pci_state->addr_reg.val)) + reg_offset; if (length == 4) { if (reg_offset != 0) { PrintError("Invalid Address Port Write\n"); return -1; } PrintDebug("Writing PCI 4 bytes Val=%x\n", *(uint32_t *)src); *(uint32_t *)reg_addr = *(uint32_t *)src; } else if (length == 2) { if (reg_offset > 2) { PrintError("Invalid Address Port Write\n"); return -1; } PrintDebug("Writing PCI 2 byte Val=%x\n", *(uint16_t *)src); *(uint16_t *)reg_addr = *(uint16_t *)src; } else if (length == 1) { PrintDebug("Writing PCI 1 byte Val=%x\n", *(uint8_t *)src); *(uint8_t *)reg_addr = *(uint8_t *)src; } else { PrintError("Invalid write length (%d) for PCI address register\n", length); return -1; } PrintDebug("Writing PCI Address Port(%x): %x\n", port, pci_state->addr_reg.val); return length; } static int data_port_read(ushort_t port, void * dst, uint_t length, struct vm_device * vmdev) { struct pci_internal * pci_state = (struct pci_internal *)(vmdev->private_data); struct pci_device * pci_dev = NULL; uint_t reg_num = pci_state->addr_reg.reg_num + (port & 0x3); int i; if (pci_state->addr_reg.bus_num != 0) { int i = 0; for (i = 0; i < length; i++) { *(uint8_t *)dst = 0xff; } return length; } PrintDebug("Reading PCI Data register. bus = %d, dev = %d, reg = %d (%x), cfg_reg = %x\n", pci_state->addr_reg.bus_num, pci_state->addr_reg.dev_num, reg_num, reg_num, pci_state->addr_reg.val); pci_dev = get_device(&(pci_state->bus_list[0]), pci_state->addr_reg.dev_num); if (pci_dev == NULL) { for (i = 0; i < length; i++) { *(uint8_t *)((uint8_t *)dst + i) = 0xff; } return length; } for (i = 0; i < length; i++) { *(uint8_t *)((uint8_t *)dst + i) = pci_dev->config_space[reg_num + i]; } PrintDebug("\tVal=%x, len=%d\n", *(uint32_t *)dst, length); return length; } static inline int is_cfg_reg_writable(uchar_t header_type, int reg_num) { if (header_type == 0x00) { switch (reg_num) { case 0x00: case 0x01: case 0x02: case 0x03: case 0x08: case 0x09: case 0x0a: case 0x0b: case 0x0e: case 0x3d: return 0; default: return 1; } } else { // PCI to PCI Bridge = 0x01 // CardBus Bridge = 0x02 // huh? PrintError("Invalid PCI Header type (0x%.2x)\n", header_type); return -1; } } static int bar_update(struct pci_device * pci, int bar_num) { PrintError("Bar Updates not handled (bar=%d)\n", bar_num); return -1; } static int data_port_write(ushort_t port, void * src, uint_t length, struct vm_device * vmdev) { struct pci_internal * pci_state = (struct pci_internal *)vmdev->private_data; struct pci_device * pci_dev = NULL; uint_t reg_num = pci_state->addr_reg.reg_num + (port & 0x3); int i; if (pci_state->addr_reg.bus_num != 0) { return length; } PrintDebug("Writing PCI Data register. bus = %d, dev = %d, reg = %d (%x) addr_reg = %x (val=%x, len=%d)\n", pci_state->addr_reg.bus_num, pci_state->addr_reg.dev_num, reg_num, reg_num, pci_state->addr_reg.val, *(uint32_t *)src, length); pci_dev = get_device(&(pci_state->bus_list[0]), pci_state->addr_reg.dev_num); if (pci_dev == NULL) { PrintError("Writing configuration space for non-present device (dev_num=%d)\n", pci_state->addr_reg.dev_num); return -1; } for (i = 0; i < length; i++) { uint_t cur_reg = reg_num + i; if (is_cfg_reg_writable(pci_dev->config_header.header_type, cur_reg)) { pci_dev->config_space[cur_reg] = *(uint8_t *)((uint8_t *)src + i); if ((cur_reg >= 0x10) && (cur_reg < 0x28)) { // BAR Reg int bar_reg = (cur_reg & ~0x3) - 0x10; pci_dev->bar_update_flag = 1; pci_dev->bar[bar_reg].updated = 1; PrintDebug("Updating BAR register\n"); } else if ((cur_reg >= 0x30) && (cur_reg < 0x34)) { pci_dev->ext_rom_update_flag = 1; } else if (cur_reg == 0x04) { // COMMAND update uint8_t command = *((uint8_t *)src + i); pci_dev->config_space[cur_reg] = command; if (pci_dev->cmd_update) { pci_dev->cmd_update(pci_dev, (command & 0x01), (command & 0x02)); } } else if (cur_reg == 0x0f) { // BIST update pci_dev->config_header.BIST = 0x00; } } } if (pci_dev->config_update) { pci_dev->config_update(pci_dev, reg_num, length); } // Scan for BAR updated if (pci_dev->bar_update_flag) { for (i = 0; i < 6; i++) { if (pci_dev->bar[i].updated) { int bar_offset = 0x10 + 4 * i; *(uint32_t *)(pci_dev->config_space + bar_offset) &= pci_dev->bar[i].mask; // bar_update if (bar_update(pci_dev, i) == -1) { PrintError("PCI Device %s: Bar update Error Bar=%d\n", pci_dev->name, i); return -1; } pci_dev->bar[i].updated = 0; } } pci_dev->bar_update_flag = 0; } if ((pci_dev->ext_rom_update_flag) && (pci_dev->ext_rom_update)) { pci_dev->ext_rom_update(pci_dev); pci_dev->ext_rom_update_flag = 0; } return length; } static int pci_reset_device(struct vm_device * dev) { PrintDebug("pci: reset device\n"); return 0; } static int pci_start_device(struct vm_device * dev) { PrintDebug("pci: start device\n"); return 0; } static int pci_stop_device(struct vm_device * dev) { PrintDebug("pci: stop device\n"); return 0; } static int pci_deinit_device(struct vm_device * dev) { int i = 0; for (i = 0; i < 4; i++){ v3_dev_unhook_io(dev, CONFIG_ADDR_PORT + i); v3_dev_unhook_io(dev, CONFIG_DATA_PORT + i); } return 0; } static int init_i440fx(struct vm_device * dev) { struct pci_device * pci_dev = NULL; struct v3_pci_bar bars[6]; int i; for (i = 0; i < 6; i++) { bars[i].type = PCI_BAR_NONE; } pci_dev = v3_pci_register_device(dev, PCI_STD_DEVICE, 0, "i440FX", 0, bars, NULL, NULL, NULL, NULL); if (!pci_dev) { return -1; } pci_dev->config_header.vendor_id = 0x8086; pci_dev->config_header.device_id = 0x1237; pci_dev->config_header.revision = 0x0002; pci_dev->config_header.subclass = 0x00; // SubClass: host2pci pci_dev->config_header.class = 0x06; // Class: PCI bridge pci_dev->bus_num = 0; return 0; } static void init_pci_busses(struct pci_internal * pci_state) { int i; for (i = 0; i < PCI_BUS_COUNT; i++) { pci_state->bus_list[i].bus_num = i; pci_state->bus_list[i].devices.rb_node = NULL; memset(pci_state->bus_list[i].dev_map, 0, sizeof(pci_state->bus_list[i].dev_map)); } } static int pci_init_device(struct vm_device * dev) { struct pci_internal * pci_state = (struct pci_internal *)dev->private_data;; int i = 0; PrintDebug("pci: init_device\n"); // JRL: Fix this.... // dev->vm->pci = dev; //should be in vmm_config.c pci_state->addr_reg.val = 0; init_pci_busses(pci_state); if (init_i440fx(dev) == -1) { PrintError("Could not intialize i440fx\n"); return -1; } PrintDebug("Sizeof config header=%d\n", (int)sizeof(struct pci_config_header)); for (i = 0; i < 4; i++) { v3_dev_hook_io(dev, CONFIG_ADDR_PORT + i, &addr_port_read, &addr_port_write); v3_dev_hook_io(dev, CONFIG_DATA_PORT + i, &data_port_read, &data_port_write); } return 0; } static struct vm_device_ops dev_ops = { .init = pci_init_device, .deinit = pci_deinit_device, .reset = pci_reset_device, .start = pci_start_device, .stop = pci_stop_device, }; struct vm_device * v3_create_pci() { struct pci_internal * pci_state = V3_Malloc(sizeof(struct pci_internal)); PrintDebug("PCI internal at %p\n",(void *)pci_state); struct vm_device * device = v3_create_device("PCI", &dev_ops, pci_state); return device; } static inline int init_bars(struct pci_device * pci_dev) { int i = 0; for (i = 0; i < 6; i++) { int bar_offset = 0x10 + (4 * i); if (pci_dev->bar[i].type == PCI_BAR_IO) { int j = 0; pci_dev->bar[i].mask = (~((pci_dev->bar[i].num_ports) - 1)) | 0x01; *(uint32_t *)(pci_dev->config_space + bar_offset) = pci_dev->bar[i].default_base_port & pci_dev->bar[i].mask; *(uint32_t *)(pci_dev->config_space + bar_offset) |= 0x00000001; for (j = 0; j < pci_dev->bar[i].num_ports; j++) { // hook IO if (v3_dev_hook_io(pci_dev->vm_dev, pci_dev->bar[i].default_base_port + j, pci_dev->bar[i].io_read, pci_dev->bar[i].io_write) == -1) { PrintError("Could not hook default io port %x\n", pci_dev->bar[i].default_base_port + j); return -1; } } } else if (pci_dev->bar[i].type == PCI_BAR_MEM32) { pci_dev->bar[i].mask = ~((pci_dev->bar[i].num_pages << 12) - 1); pci_dev->bar[i].mask |= 0xf; // preserve the configuration flags *(uint32_t *)(pci_dev->config_space + bar_offset) = pci_dev->bar[i].default_base_addr & pci_dev->bar[i].mask; // hook memory if (pci_dev->bar[i].mem_read) { // full hook v3_hook_full_mem(pci_dev->vm_dev->vm, pci_dev->bar[i].default_base_addr, pci_dev->bar[i].default_base_addr + (pci_dev->bar[i].num_pages * PAGE_SIZE_4KB), pci_dev->bar[i].mem_read, pci_dev->bar[i].mem_write, pci_dev->vm_dev); } else if (pci_dev->bar[i].mem_write) { // write hook PrintError("Write hooks not supported for PCI devices\n"); return -1; /* v3_hook_write_mem(pci_dev->vm_dev->vm, pci_dev->bar[i].default_base_addr, pci_dev->bar[i].default_base_addr + (pci_dev->bar[i].num_pages * PAGE_SIZE_4KB), pci_dev->bar[i].mem_write, pci_dev->vm_dev); */ } else { // set the prefetchable flag... *(uint8_t *)(pci_dev->config_space + bar_offset) |= 0x00000008; } } else if (pci_dev->bar[i].type == PCI_BAR_MEM16) { PrintError("16 Bit memory ranges not supported (reg: %d)\n", i); return -1; } else if (pci_dev->bar[i].type == PCI_BAR_NONE) { *(uint32_t *)(pci_dev->config_space + bar_offset) = 0x00000000; } else { PrintError("Invalid BAR type for bar #%d\n", i); return -1; } } return 0; } // if dev_num == -1, auto assign struct pci_device * v3_pci_register_device(struct vm_device * pci, pci_device_type_t dev_type, uint_t bus_num, const char * name, int dev_num, struct v3_pci_bar * bars, int (*config_update)(struct pci_device * pci_dev, uint_t reg_num, int length), int (*cmd_update)(struct pci_device *pci_dev, uchar_t io_enabled, uchar_t mem_enabled), int (*ext_rom_update)(struct pci_device * pci_dev), void * private_data) { struct pci_internal * pci_state = (struct pci_internal *)pci->private_data; struct pci_bus * bus = &(pci_state->bus_list[bus_num]); struct pci_device * pci_dev = NULL; int i; if (dev_num > MAX_BUS_DEVICES) { PrintError("Requested Invalid device number (%d)\n", dev_num); return NULL; } if (dev_num == -1) { if ((dev_num = get_free_dev_num(bus)) == -1) { PrintError("No more available PCI slots on bus %d\n", bus->bus_num); return NULL; } } if (get_device(bus, dev_num) != NULL) { PrintError("PCI Device already registered at slot %d on bus %d\n", dev_num, bus->bus_num); return NULL; } pci_dev = (struct pci_device *)V3_Malloc(sizeof(struct pci_device)); if (pci_dev == NULL) { return NULL; } memset(pci_dev, 0, sizeof(struct pci_device)); switch (dev_type) { case PCI_STD_DEVICE: pci_dev->config_header.header_type = 0x00; break; default: PrintError("Unhandled PCI Device Type: %d\n", dev_type); return NULL; } pci_dev->bus_num = bus_num; pci_dev->dev_num = dev_num; strncpy(pci_dev->name, name, sizeof(pci_dev->name)); pci_dev->vm_dev = pci; // register update callbacks pci_dev->config_update = config_update; pci_dev->cmd_update = cmd_update; pci_dev->ext_rom_update = ext_rom_update; pci_dev->priv_data = private_data; //copy bars for (i = 0; i < 6; i ++){ pci_dev->bar[i].type = bars[i].type; if (pci_dev->bar[i].type == PCI_BAR_IO) { pci_dev->bar[i].num_ports = bars[i].num_ports; pci_dev->bar[i].default_base_port = bars[i].default_base_port; pci_dev->bar[i].io_read = bars[i].io_read; pci_dev->bar[i].io_write = bars[i].io_write; } else { pci_dev->bar[i].num_pages = bars[i].num_pages; pci_dev->bar[i].default_base_addr = bars[i].default_base_addr; pci_dev->bar[i].mem_read = bars[i].mem_read; pci_dev->bar[i].mem_write = bars[i].mem_write; } } if (init_bars(pci_dev) == -1) { PrintError("could not initialize bar registers\n"); return NULL; } // add the device add_device_to_bus(bus, pci_dev); #ifdef DEBUG_PCI pci_dump_state(pci_state); #endif return pci_dev; }