/* * This file is part of the Palacios Virtual Machine Monitor developed * by the V3VEE Project with funding from the United States National * Science Foundation and the Department of Energy. * * The V3VEE Project is a joint project between Northwestern University * and the University of New Mexico. You can find out more at * http://www.v3vee.org * * Copyright (c) 2008, Jack Lange * Copyright (c) 2008, The V3VEE Project * All rights reserved. * * Author: Jack Lange * * This is free software. You are permitted to use, * redistribute, and modify it as specified in the file "V3VEE_LICENSE". */ #include #include #include #include #include #include #include #define QUEUE_SIZE 128 #define NUM_QUEUES 2 struct sym_config { uint32_t avail_mods; uint32_t loaded_mods; } __attribute__((packed)); struct virtio_sym_state { struct sym_config sym_cfg; struct virtio_config virtio_cfg; struct vm_device * pci_bus; struct pci_device * pci_dev; struct v3_vm_info * vm; struct v3_symmod_state * symmod_state; #define NOTIFY_QUEUE 0 #define LOADER_QUEUE 1 struct virtio_queue queue[NUM_QUEUES]; struct virtio_queue * cur_queue; int notifier_active; int io_range_size; }; struct symmod_cmd { #define CMD_INV 0 #define CMD_LOAD 1 #define CMD_LIST 2 uint32_t cmd; uint32_t num_cmds; } __attribute__((packed)); // structure of the symmod notifier ring structures struct symmod_hdr { uint32_t num_bytes; char name[32]; union { uint32_t flags; struct { #define V3_SYMMOD_INV (0x00) #define V3_SYMMOD_LNX (0x01) #define V3_SYMMOD_MOD (0x02) #define V3_SYMMOD_SEC (0x03) uint8_t type; #define V3_SYMMOD_ARCH_INV (0x00) #define V3_SYMMOD_ARCH_i386 (0x01) #define V3_SYMMOD_ARCH_x86_64 (0x02) uint8_t arch; #define V3_SYMMOD_ACT_INV (0x00) #define V3_SYMMOD_ACT_ADVERTISE (0x01) #define V3_SYMMOD_ACT_LOAD (0x02) uint8_t action; uint8_t rsvd; } __attribute__((packed)); } __attribute__((packed)); } __attribute__((packed)); static int virtio_reset(struct virtio_sym_state * virtio) { memset(virtio->queue, 0, sizeof(struct virtio_queue) * 2); virtio->cur_queue = &(virtio->queue[0]); virtio->virtio_cfg.status = 0; virtio->virtio_cfg.pci_isr = 0; virtio->queue[0].queue_size = QUEUE_SIZE; virtio->queue[1].queue_size = QUEUE_SIZE; virtio->sym_cfg.avail_mods = virtio->symmod_state->num_avail_capsules; virtio->sym_cfg.loaded_mods = virtio->symmod_state->num_loaded_capsules; return 0; } static int get_desc_count(struct virtio_queue * q, int index) { struct vring_desc * tmp_desc = &(q->desc[index]); int cnt = 1; while (tmp_desc->flags & VIRTIO_NEXT_FLAG) { tmp_desc = &(q->desc[tmp_desc->next]); cnt++; } return cnt; } static int handle_xfer_kick(struct guest_info * core, struct virtio_sym_state * sym_state) { struct virtio_queue * q = sym_state->cur_queue; PrintDebug("SYMMOD: VIRTIO SYMMOD Kick on loader queue\n"); while (q->cur_avail_idx != q->avail->index) { struct vring_desc * cmd_desc = NULL; struct symmod_cmd * cmd = NULL; uint16_t desc_idx = q->avail->ring[q->cur_avail_idx % QUEUE_SIZE]; uint16_t desc_cnt = get_desc_count(q, desc_idx); struct vring_desc * status_desc = NULL; uint8_t status = 0; uint8_t * status_ptr = NULL; int i; uint32_t xfer_len = 0; cmd_desc = &(q->desc[desc_idx]); if (v3_gpa_to_hva(core, cmd_desc->addr_gpa, (addr_t *)&cmd) == -1) { PrintError("Could not translate SYMMOD header address\n"); return -1; } desc_idx = cmd_desc->next; if (cmd->cmd == CMD_LOAD) { struct vring_desc * name_desc = NULL; struct vring_desc * buf_desc = NULL; char * name = NULL; struct v3_sym_capsule * capsule = NULL; uint32_t offset = 0; PrintDebug("Descriptor Count=%d, index=%d\n", desc_cnt, q->cur_avail_idx % QUEUE_SIZE); if (desc_cnt < 3) { PrintError("Symmod loads must include at least 3 descriptors (cnt=%d)\n", desc_cnt); return -1; } name_desc = &(q->desc[desc_idx]); if (v3_gpa_to_hva(core, name_desc->addr_gpa, (addr_t *)&name) == -1) { PrintError("Could not translate SYMMOD header address\n"); return -1; } desc_idx = name_desc->next; capsule = v3_get_sym_capsule(core->vm_info, name); for (i = 0; i < desc_cnt - 3; i++) { uint8_t tmp_status = 0; uint8_t * buf = NULL; buf_desc = &(q->desc[desc_idx]); if (v3_gpa_to_hva(core, buf_desc->addr_gpa, (addr_t *)&(buf)) == -1) { PrintError("Could not translate buffer address\n"); return -1; } memcpy(buf, capsule->start_addr + offset, buf_desc->length); PrintDebug("Copying module to virtio buffers: SRC=%p, DST=%p, len=%d\n", (void *)(capsule->start_addr + offset), (void *)buf, buf_desc->length); if (tmp_status != 0) { PrintError("Error loading module segment\n"); status = tmp_status; } offset += buf_desc->length; xfer_len += buf_desc->length; desc_idx = buf_desc->next; } } else { PrintError("Invalid SYMMOD Loader command\n"); return -1; } status_desc = &(q->desc[desc_idx]); if (v3_gpa_to_hva(core, status_desc->addr_gpa, (addr_t *)&status_ptr) == -1) { PrintError("SYMMOD Error could not translate status address\n"); return -1; } xfer_len += status_desc->length; *status_ptr = status; PrintDebug("Transferred %d bytes (xfer_len)\n", xfer_len); q->used->ring[q->used->index % QUEUE_SIZE].id = q->avail->ring[q->cur_avail_idx % QUEUE_SIZE]; q->used->ring[q->used->index % QUEUE_SIZE].length = xfer_len; // set to total inbound xfer length q->used->index++; q->cur_avail_idx++; } if (!(q->avail->flags & VIRTIO_NO_IRQ_FLAG)) { PrintDebug("Raising IRQ %d\n", sym_state->pci_dev->config_header.intr_line); v3_pci_raise_irq(sym_state->pci_bus, 0, sym_state->pci_dev); sym_state->virtio_cfg.pci_isr = 1; } return 0; } static int handle_notification_kick(struct guest_info * core, struct virtio_sym_state * sym_state) { // struct virtio_queue * q = sym_state->cur_queue; struct virtio_queue * q = &(sym_state->queue[NOTIFY_QUEUE]); struct hashtable_iter * capsule_iter = NULL; PrintDebug("SYMMOD: VIRTIO SYMMOD Kick on notification queue\n"); capsule_iter = v3_create_htable_iter(sym_state->symmod_state->capsule_table); do { uint16_t desc_idx = q->avail->ring[q->cur_avail_idx % q->queue_size]; struct vring_desc * hdr_desc = NULL; struct symmod_hdr * hdr = NULL; struct v3_sym_capsule * capsule = NULL; capsule = (struct v3_sym_capsule *)v3_htable_get_iter_value(capsule_iter); PrintDebug("SYMMOD: Advertising Capsule %s\n", capsule->name); if (capsule->type != V3_SYMMOD_LNX) { continue; } if (q->cur_avail_idx == q->avail->index) { PrintError("Notification Queue Too SMALL\n"); return -1; } hdr_desc = &(q->desc[desc_idx]); if (v3_gpa_to_hva(core, hdr_desc->addr_gpa, (addr_t *)&hdr) == -1) { PrintError("Could not translate SYMMOD header address\n"); return -1; } memset(hdr, 0, sizeof(struct symmod_hdr)); memcpy(hdr->name, capsule->name, strlen(capsule->name)); hdr->num_bytes = capsule->size; hdr->flags = capsule->flags; hdr->action = V3_SYMMOD_ACT_ADVERTISE; q->used->ring[q->used->index % QUEUE_SIZE].id = q->avail->ring[q->cur_avail_idx % QUEUE_SIZE]; q->used->ring[q->used->index % QUEUE_SIZE].length = sizeof(struct symmod_hdr) ; // set to total inbound xfer length q->used->index++; q->cur_avail_idx++; } while (v3_htable_iter_advance(capsule_iter)); if (!(q->avail->flags & VIRTIO_NO_IRQ_FLAG)) { PrintDebug("Raising IRQ %d\n", sym_state->pci_dev->config_header.intr_line); v3_pci_raise_irq(sym_state->pci_bus, 0, sym_state->pci_dev); sym_state->virtio_cfg.pci_isr = 1; } return 0; } static int virtio_io_write(struct guest_info * core, uint16_t port, void * src, uint_t length, void * private_data) { struct virtio_sym_state * sym_state = (struct virtio_sym_state *)private_data; int port_idx = port % sym_state->io_range_size; PrintDebug("SYMMOD: VIRTIO SYMMOD Write for port %d len=%d, value=%x\n", port, length, *(uint32_t *)src); PrintDebug("SYMMOD: port idx=%d\n", port_idx); switch (port_idx) { case GUEST_FEATURES_PORT: if (length != 4) { PrintError("Illegal write length for guest features\n"); return -1; } sym_state->virtio_cfg.guest_features = *(uint32_t *)src; break; case VRING_PG_NUM_PORT: if (length == 4) { addr_t pfn = *(uint32_t *)src; addr_t page_addr = (pfn << VIRTIO_PAGE_SHIFT); sym_state->cur_queue->pfn = pfn; sym_state->cur_queue->ring_desc_addr = page_addr ; sym_state->cur_queue->ring_avail_addr = page_addr + (QUEUE_SIZE * sizeof(struct vring_desc)); sym_state->cur_queue->ring_used_addr = ( sym_state->cur_queue->ring_avail_addr + \ sizeof(struct vring_avail) + \ (QUEUE_SIZE * sizeof(uint16_t))); // round up to next page boundary. sym_state->cur_queue->ring_used_addr = (sym_state->cur_queue->ring_used_addr + 0xfff) & ~0xfff; if (v3_gpa_to_hva(core, sym_state->cur_queue->ring_desc_addr, (addr_t *)&(sym_state->cur_queue->desc)) == -1) { PrintError("Could not translate ring descriptor address\n"); return -1; } if (v3_gpa_to_hva(core, sym_state->cur_queue->ring_avail_addr, (addr_t *)&(sym_state->cur_queue->avail)) == -1) { PrintError("Could not translate ring available address\n"); return -1; } if (v3_gpa_to_hva(core, sym_state->cur_queue->ring_used_addr, (addr_t *)&(sym_state->cur_queue->used)) == -1) { PrintError("Could not translate ring used address\n"); return -1; } PrintDebug("SYMMOD: RingDesc_addr=%p, Avail_addr=%p, Used_addr=%p\n", (void *)(sym_state->cur_queue->ring_desc_addr), (void *)(sym_state->cur_queue->ring_avail_addr), (void *)(sym_state->cur_queue->ring_used_addr)); PrintDebug("SYMMOD: RingDesc=%p, Avail=%p, Used=%p\n", sym_state->cur_queue->desc, sym_state->cur_queue->avail, sym_state->cur_queue->used); } else { PrintError("Illegal write length for page frame number\n"); return -1; } break; case VRING_Q_SEL_PORT: sym_state->virtio_cfg.vring_queue_selector = *(uint16_t *)src; if (sym_state->virtio_cfg.vring_queue_selector > NUM_QUEUES) { PrintError("Virtio Symbiotic device has no qeueues. Selected %d\n", sym_state->virtio_cfg.vring_queue_selector); return -1; } sym_state->cur_queue = &(sym_state->queue[sym_state->virtio_cfg.vring_queue_selector]); break; case VRING_Q_NOTIFY_PORT: { uint16_t queue_idx = *(uint16_t *)src; PrintDebug("SYMMOD: Handling Kick\n"); if (queue_idx == 0) { if (handle_notification_kick(core, sym_state) == -1) { PrintError("Could not handle Notification Kick\n"); return -1; } sym_state->notifier_active = 1; } else if (queue_idx == 1) { if (handle_xfer_kick(core, sym_state) == -1) { PrintError("Could not handle Symbiotic Notification\n"); return -1; } } else { PrintError("Kick on invalid queue (%d)\n", queue_idx); return -1; } break; } case VIRTIO_STATUS_PORT: sym_state->virtio_cfg.status = *(uint8_t *)src; if (sym_state->virtio_cfg.status == 0) { PrintDebug("SYMMOD: Resetting device\n"); virtio_reset(sym_state); } break; case VIRTIO_ISR_PORT: sym_state->virtio_cfg.pci_isr = *(uint8_t *)src; break; default: return -1; break; } return length; } static int virtio_io_read(struct guest_info * core, uint16_t port, void * dst, uint_t length, void * private_data) { struct virtio_sym_state * sym_state = (struct virtio_sym_state *)private_data; int port_idx = port % sym_state->io_range_size; /* PrintDebug("SYMMOD: VIRTIO SYMBIOTIC Read for port %d (index =%d), length=%d\n", port, port_idx, length); */ switch (port_idx) { case HOST_FEATURES_PORT: if (length != 4) { PrintError("Illegal read length for host features\n"); return -1; } *(uint32_t *)dst = sym_state->virtio_cfg.host_features; break; case VRING_PG_NUM_PORT: if (length != 4) { PrintError("Illegal read length for page frame number\n"); return -1; } *(uint32_t *)dst = sym_state->cur_queue->pfn; break; case VRING_SIZE_PORT: if (length != 2) { PrintError("Illegal read length for vring size\n"); return -1; } *(uint16_t *)dst = sym_state->cur_queue->queue_size; break; case VIRTIO_STATUS_PORT: if (length != 1) { PrintError("Illegal read length for status\n"); return -1; } *(uint8_t *)dst = sym_state->virtio_cfg.status; break; case VIRTIO_ISR_PORT: *(uint8_t *)dst = sym_state->virtio_cfg.pci_isr; sym_state->virtio_cfg.pci_isr = 0; v3_pci_lower_irq(sym_state->pci_bus, 0, sym_state->pci_dev); break; default: if ( (port_idx >= sizeof(struct virtio_config)) && (port_idx < (sizeof(struct virtio_config) + sizeof(struct sym_config))) ) { int cfg_offset = port_idx - sizeof(struct virtio_config); uint8_t * cfg_ptr = (uint8_t *)&(sym_state->sym_cfg); memcpy(dst, cfg_ptr + cfg_offset, length); V3_Print("Reading SymConfig at idx %d (val=%x)\n", cfg_offset, *(uint32_t *)cfg_ptr); } else { PrintError("Read of Unhandled Virtio Read\n"); return -1; } break; } return length; } static int virtio_load_capsule(struct v3_vm_info * vm, struct v3_sym_capsule * mod, void * priv_data) { struct virtio_sym_state * virtio = (struct virtio_sym_state *)priv_data; // struct virtio_queue * q = virtio->cur_queue; struct virtio_queue * q = &(virtio->queue[NOTIFY_QUEUE]); if (strlen(mod->name) >= 32) { PrintError("Capsule name is too long... (%d bytes) limit is 32\n", (uint32_t)strlen(mod->name)); return -1; } PrintDebug("SYMMOD: VIRTIO SYMMOD Loader: Loading Capsule (size=%d)\n", mod->size); //queue is not set yet if (q->ring_avail_addr == 0) { PrintError("Queue is not set\n"); return -1; } if (q->cur_avail_idx != q->avail->index) { uint16_t notifier_idx = q->avail->ring[q->cur_avail_idx % q->queue_size]; struct symmod_hdr * notifier = NULL; struct vring_desc * notifier_desc = NULL; PrintDebug("SYMMOD: Descriptor index=%d\n", q->cur_avail_idx % q->queue_size); notifier_desc = &(q->desc[notifier_idx]); PrintDebug("SYMMOD: Notifier Descriptor (ptr=%p) gpa=%p, len=%d, flags=%x, next=%d\n", notifier_desc, (void *)(addr_t)(notifier_desc->addr_gpa), notifier_desc->length, notifier_desc->flags, notifier_desc->next); if (v3_gpa_to_hva(&(vm->cores[0]), notifier_desc->addr_gpa, (addr_t *)&(notifier)) == -1) { PrintError("Could not translate receive buffer address\n"); return -1; } // clear the notifier memset(notifier, 0, sizeof(struct symmod_hdr)); // set the capsule name memcpy(notifier->name, mod->name, strlen(mod->name)); // set capsule length notifier->num_bytes = mod->size; notifier->flags = mod->flags; notifier->action = V3_SYMMOD_ACT_LOAD; q->used->ring[q->used->index % q->queue_size].id = q->avail->ring[q->cur_avail_idx % q->queue_size]; q->used->ring[q->used->index % q->queue_size].length = sizeof(struct symmod_hdr); q->used->index++; q->cur_avail_idx++; } if (!(q->avail->flags & VIRTIO_NO_IRQ_FLAG)) { PrintDebug("SYMMOD: Raising IRQ %d\n", virtio->pci_dev->config_header.intr_line); v3_pci_raise_irq(virtio->pci_bus, 0, virtio->pci_dev); virtio->virtio_cfg.pci_isr = 0x1; } return 0; } static int virtio_free(struct virtio_sym_state * virtio_state) { // unregister from PCI V3_Free(virtio_state); return 0; } static struct v3_device_ops dev_ops = { .free = (int (*)(void *))virtio_free, }; static struct v3_symmod_loader_ops loader_ops = { .load_capsule = virtio_load_capsule, }; static int virtio_init(struct v3_vm_info * vm, v3_cfg_tree_t * cfg) { struct vm_device * pci_bus = v3_find_dev(vm, v3_cfg_val(cfg, "bus")); struct virtio_sym_state * virtio_state = NULL; struct v3_symmod_state * symmod_state = &(vm->sym_vm_state.symmod_state); struct pci_device * pci_dev = NULL; char * dev_id = v3_cfg_val(cfg, "ID"); PrintDebug("SYMMOD: Initializing VIRTIO Symbiotic Module device\n"); if (pci_bus == NULL) { PrintError("VirtIO devices require a PCI Bus"); return -1; } virtio_state = (struct virtio_sym_state *)V3_Malloc(sizeof(struct virtio_sym_state)); memset(virtio_state, 0, sizeof(struct virtio_sym_state)); virtio_state->vm = vm; virtio_state->symmod_state = symmod_state; struct vm_device * dev = v3_add_device(vm, dev_id, &dev_ops, virtio_state); if (dev == NULL) { PrintError("Could not attach device %s\n", dev_id); V3_Free(virtio_state); return -1; } // PCI initialization { struct v3_pci_bar bars[6]; int num_ports = sizeof(struct virtio_config) + sizeof(struct sym_config); int tmp_ports = num_ports; int i; // This gets the number of ports, rounded up to a power of 2 virtio_state->io_range_size = 1; // must be a power of 2 while (tmp_ports > 0) { tmp_ports >>= 1; virtio_state->io_range_size <<= 1; } // this is to account for any low order bits being set in num_ports // if there are none, then num_ports was already a power of 2 so we shift right to reset it if ((num_ports & ((virtio_state->io_range_size >> 1) - 1)) == 0) { virtio_state->io_range_size >>= 1; } for (i = 0; i < 6; i++) { bars[i].type = PCI_BAR_NONE; } bars[0].type = PCI_BAR_IO; bars[0].default_base_port = -1; bars[0].num_ports = virtio_state->io_range_size; bars[0].io_read = virtio_io_read; bars[0].io_write = virtio_io_write; bars[0].private_data = virtio_state; pci_dev = v3_pci_register_device(pci_bus, PCI_STD_DEVICE, 0, PCI_AUTO_DEV_NUM, 0, "LNX_VIRTIO_SYMMOD", bars, NULL, NULL, NULL, virtio_state); if (!pci_dev) { PrintError("Could not register PCI Device\n"); v3_remove_device(dev); return -1; } pci_dev->config_header.vendor_id = VIRTIO_VENDOR_ID; pci_dev->config_header.subsystem_vendor_id = VIRTIO_SUBVENDOR_ID; pci_dev->config_header.device_id = VIRTIO_SYMMOD_DEV_ID; pci_dev->config_header.class = PCI_CLASS_MEMORY; pci_dev->config_header.subclass = PCI_MEM_SUBCLASS_RAM; pci_dev->config_header.subsystem_id = VIRTIO_SYMMOD_SUBDEVICE_ID; pci_dev->config_header.intr_pin = 1; pci_dev->config_header.max_latency = 1; // ?? (qemu does it...) virtio_state->pci_dev = pci_dev; virtio_state->pci_bus = pci_bus; } V3_Print("SYMMOD: %d available sym modules\n", virtio_state->sym_cfg.avail_mods); virtio_reset(virtio_state); v3_set_symmod_loader(vm, &loader_ops, virtio_state); return 0; } device_register("LNX_VIRTIO_SYMMOD", virtio_init)