/* * This file is part of the Palacios Virtual Machine Monitor developed * by the V3VEE Project with funding from the United States National * Science Foundation and the Department of Energy. * * The V3VEE Project is a joint project between Northwestern University * and the University of New Mexico. You can find out more at * http://www.v3vee.org * * Copyright (c) 2008, Jack Lange * Copyright (c) 2008, The V3VEE Project * All rights reserved. * * Authors: Jack Lange * Peter Dinda (SMP) * * This is free software. You are permitted to use, * redistribute, and modify it as specified in the file "V3VEE_LICENSE". */ #include #include #include #include #include #include #include #include #include /* The locking in this file is nasty. * There are 3 different locking approaches that are taken, depending on the APIC operation * 1. Queue locks. Actual irq insertions are done via queueing irq ops at the dest apic. * The destination apic's core is responsible for draining the queue, and actually * setting the vector table. * 2. State lock. This is a standard lock taken when internal apic state is read/written. * When an irq's destination is determined this lock is taken to examine the apic's * addressability. * 3. VM barrier lock. This is taken when actual VM core state is changed (via SIPI). */ #ifndef V3_CONFIG_DEBUG_APIC #undef PrintDebug #define PrintDebug(fmt, args...) #else static char * shorthand_str[] = { "(no shorthand)", "(self)", "(all)", "(all-but-me)", }; static char * deliverymode_str[] = { "(fixed)", "(lowest priority)", "(SMI)", "(reserved)", "(NMI)", "(INIT)", "(Start Up)", "(ExtInt)", }; #endif typedef enum { APIC_TMR_INT, APIC_THERM_INT, APIC_PERF_INT, APIC_LINT0_INT, APIC_LINT1_INT, APIC_ERR_INT } apic_irq_type_t; #define APIC_FIXED_DELIVERY 0x0 #define APIC_LOWEST_DELIVERY 0x1 #define APIC_SMI_DELIVERY 0x2 #define APIC_RES1_DELIVERY 0x3 #define APIC_NMI_DELIVERY 0x4 #define APIC_INIT_DELIVERY 0x5 #define APIC_SIPI_DELIVERY 0x6 #define APIC_EXTINT_DELIVERY 0x7 #define APIC_SHORTHAND_NONE 0x0 #define APIC_SHORTHAND_SELF 0x1 #define APIC_SHORTHAND_ALL 0x2 #define APIC_SHORTHAND_ALL_BUT_ME 0x3 #define APIC_DEST_PHYSICAL 0x0 #define APIC_DEST_LOGICAL 0x1 #define BASE_ADDR_MSR 0x0000001B #define DEFAULT_BASE_ADDR 0xfee00000 #define APIC_ID_OFFSET 0x020 #define APIC_VERSION_OFFSET 0x030 #define TPR_OFFSET 0x080 #define APR_OFFSET 0x090 #define PPR_OFFSET 0x0a0 #define EOI_OFFSET 0x0b0 #define REMOTE_READ_OFFSET 0x0c0 #define LDR_OFFSET 0x0d0 #define DFR_OFFSET 0x0e0 #define SPURIOUS_INT_VEC_OFFSET 0x0f0 #define ISR_OFFSET0 0x100 // 0x100 - 0x170 #define ISR_OFFSET1 0x110 // 0x100 - 0x170 #define ISR_OFFSET2 0x120 // 0x100 - 0x170 #define ISR_OFFSET3 0x130 // 0x100 - 0x170 #define ISR_OFFSET4 0x140 // 0x100 - 0x170 #define ISR_OFFSET5 0x150 // 0x100 - 0x170 #define ISR_OFFSET6 0x160 // 0x100 - 0x170 #define ISR_OFFSET7 0x170 // 0x100 - 0x170 #define TRIG_OFFSET0 0x180 // 0x180 - 0x1f0 #define TRIG_OFFSET1 0x190 // 0x180 - 0x1f0 #define TRIG_OFFSET2 0x1a0 // 0x180 - 0x1f0 #define TRIG_OFFSET3 0x1b0 // 0x180 - 0x1f0 #define TRIG_OFFSET4 0x1c0 // 0x180 - 0x1f0 #define TRIG_OFFSET5 0x1d0 // 0x180 - 0x1f0 #define TRIG_OFFSET6 0x1e0 // 0x180 - 0x1f0 #define TRIG_OFFSET7 0x1f0 // 0x180 - 0x1f0 #define IRR_OFFSET0 0x200 // 0x200 - 0x270 #define IRR_OFFSET1 0x210 // 0x200 - 0x270 #define IRR_OFFSET2 0x220 // 0x200 - 0x270 #define IRR_OFFSET3 0x230 // 0x200 - 0x270 #define IRR_OFFSET4 0x240 // 0x200 - 0x270 #define IRR_OFFSET5 0x250 // 0x200 - 0x270 #define IRR_OFFSET6 0x260 // 0x200 - 0x270 #define IRR_OFFSET7 0x270 // 0x200 - 0x270 #define ESR_OFFSET 0x280 #define INT_CMD_LO_OFFSET 0x300 #define INT_CMD_HI_OFFSET 0x310 #define TMR_LOC_VEC_TBL_OFFSET 0x320 #define THERM_LOC_VEC_TBL_OFFSET 0x330 #define PERF_CTR_LOC_VEC_TBL_OFFSET 0x340 #define LINT0_VEC_TBL_OFFSET 0x350 #define LINT1_VEC_TBL_OFFSET 0x360 #define ERR_VEC_TBL_OFFSET 0x370 #define TMR_INIT_CNT_OFFSET 0x380 #define TMR_CUR_CNT_OFFSET 0x390 #define TMR_DIV_CFG_OFFSET 0x3e0 #define EXT_APIC_FEATURE_OFFSET 0x400 #define EXT_APIC_CMD_OFFSET 0x410 #define SEOI_OFFSET 0x420 #define IER_OFFSET0 0x480 // 0x480 - 0x4f0 #define IER_OFFSET1 0x490 // 0x480 - 0x4f0 #define IER_OFFSET2 0x4a0 // 0x480 - 0x4f0 #define IER_OFFSET3 0x4b0 // 0x480 - 0x4f0 #define IER_OFFSET4 0x4c0 // 0x480 - 0x4f0 #define IER_OFFSET5 0x4d0 // 0x480 - 0x4f0 #define IER_OFFSET6 0x4e0 // 0x480 - 0x4f0 #define IER_OFFSET7 0x4f0 // 0x480 - 0x4f0 #define EXT_INT_LOC_VEC_TBL_OFFSET0 0x500 // 0x500 - 0x530 #define EXT_INT_LOC_VEC_TBL_OFFSET1 0x510 // 0x500 - 0x530 #define EXT_INT_LOC_VEC_TBL_OFFSET2 0x520 // 0x500 - 0x530 #define EXT_INT_LOC_VEC_TBL_OFFSET3 0x530 // 0x500 - 0x530 struct apic_msr { union { uint64_t value; struct { uint8_t rsvd; uint8_t bootstrap_cpu : 1; uint8_t rsvd2 : 2; uint8_t apic_enable : 1; uint64_t base_addr : 40; uint32_t rsvd3 : 12; } __attribute__((packed)); } __attribute__((packed)); } __attribute__((packed)); typedef enum {INIT_ST, SIPI, STARTED} ipi_state_t; struct apic_dev_state; struct apic_state { addr_t base_addr; /* MSRs */ struct apic_msr base_addr_msr; /* memory map registers */ struct lapic_id_reg lapic_id; struct apic_ver_reg apic_ver; struct ext_apic_ctrl_reg ext_apic_ctrl; struct local_vec_tbl_reg local_vec_tbl; struct tmr_vec_tbl_reg tmr_vec_tbl; struct tmr_div_cfg_reg tmr_div_cfg; struct lint_vec_tbl_reg lint0_vec_tbl; struct lint_vec_tbl_reg lint1_vec_tbl; struct perf_ctr_loc_vec_tbl_reg perf_ctr_loc_vec_tbl; struct therm_loc_vec_tbl_reg therm_loc_vec_tbl; struct err_vec_tbl_reg err_vec_tbl; struct err_status_reg err_status; struct spurious_int_reg spurious_int; struct int_cmd_reg int_cmd; struct log_dst_reg log_dst; struct dst_fmt_reg dst_fmt; struct arb_prio_reg arb_prio; struct task_prio_reg task_prio; struct proc_prio_reg proc_prio; struct ext_apic_feature_reg ext_apic_feature; struct spec_eoi_reg spec_eoi; uint32_t tmr_cur_cnt; uint32_t tmr_init_cnt; struct local_vec_tbl_reg ext_intr_vec_tbl[4]; uint32_t rem_rd_data; ipi_state_t ipi_state; uint8_t int_req_reg[32]; uint8_t int_svc_reg[32]; uint8_t int_en_reg[32]; uint8_t trig_mode_reg[32]; struct guest_info * core; void * controller_handle; struct v3_timer * timer; struct v3_queue irq_queue; uint32_t eoi; }; struct apic_dev_state { int num_apics; v3_lock_t state_lock; struct apic_state apics[0]; } __attribute__((packed)); static int apic_read(struct guest_info * core, addr_t guest_addr, void * dst, uint_t length, void * priv_data); static int apic_write(struct guest_info * core, addr_t guest_addr, void * src, uint_t length, void * priv_data); // No lcoking done static void init_apic_state(struct apic_state * apic, uint32_t id) { apic->base_addr = DEFAULT_BASE_ADDR; if (id == 0) { // boot processor, enabled apic->base_addr_msr.value = 0x0000000000000900LL; } else { // ap processor, enabled apic->base_addr_msr.value = 0x0000000000000800LL; } // same base address regardless of ap or main apic->base_addr_msr.value |= ((uint64_t)DEFAULT_BASE_ADDR); PrintDebug("apic %u: (init_apic_state): msr=0x%llx\n",id, apic->base_addr_msr.value); PrintDebug("apic %u: (init_apic_state): Sizeof Interrupt Request Register %d, should be 32\n", id, (uint_t)sizeof(apic->int_req_reg)); memset(apic->int_req_reg, 0, sizeof(apic->int_req_reg)); memset(apic->int_svc_reg, 0, sizeof(apic->int_svc_reg)); memset(apic->int_en_reg, 0xff, sizeof(apic->int_en_reg)); memset(apic->trig_mode_reg, 0, sizeof(apic->trig_mode_reg)); apic->eoi = 0x00000000; apic->rem_rd_data = 0x00000000; apic->tmr_init_cnt = 0x00000000; apic->tmr_cur_cnt = 0x00000000; apic->lapic_id.val = id; apic->ipi_state = INIT_ST; // The P6 has 6 LVT entries, so we set the value to (6-1)... apic->apic_ver.val = 0x80050010; apic->task_prio.val = 0x00000000; apic->arb_prio.val = 0x00000000; apic->proc_prio.val = 0x00000000; apic->log_dst.val = 0x00000000; apic->dst_fmt.val = 0xffffffff; apic->spurious_int.val = 0x000000ff; apic->err_status.val = 0x00000000; apic->int_cmd.val = 0x0000000000000000LL; apic->tmr_vec_tbl.val = 0x00010000; apic->therm_loc_vec_tbl.val = 0x00010000; apic->perf_ctr_loc_vec_tbl.val = 0x00010000; apic->lint0_vec_tbl.val = 0x00010000; apic->lint1_vec_tbl.val = 0x00010000; apic->err_vec_tbl.val = 0x00010000; apic->tmr_div_cfg.val = 0x00000000; //apic->ext_apic_feature.val = 0x00000007; apic->ext_apic_feature.val = 0x00040007; apic->ext_apic_ctrl.val = 0x00000000; apic->spec_eoi.val = 0x00000000; v3_init_queue(&(apic->irq_queue)); } static int read_apic_msr(struct guest_info * core, uint_t msr, v3_msr_t * dst, void * priv_data) { struct apic_dev_state * apic_dev = (struct apic_dev_state *)priv_data; struct apic_state * apic = &(apic_dev->apics[core->vcpu_id]); PrintDebug("apic %u: core %u: MSR read\n", apic->lapic_id.val, core->vcpu_id); dst->value = apic->base_addr; return 0; } static int write_apic_msr(struct guest_info * core, uint_t msr, v3_msr_t src, void * priv_data) { struct apic_dev_state * apic_dev = (struct apic_dev_state *)priv_data; struct apic_state * apic = &(apic_dev->apics[core->vcpu_id]); struct v3_mem_region * old_reg = v3_get_mem_region(core->vm_info, core->vcpu_id, apic->base_addr); PrintDebug("apic %u: core %u: MSR write\n", apic->lapic_id.val, core->vcpu_id); if (old_reg == NULL) { // uh oh... PrintError("apic %u: core %u: APIC Base address region does not exit...\n", apic->lapic_id.val, core->vcpu_id); return -1; } v3_delete_mem_region(core->vm_info, old_reg); apic->base_addr = src.value; if (v3_hook_full_mem(core->vm_info, core->vcpu_id, apic->base_addr, apic->base_addr + PAGE_SIZE_4KB, apic_read, apic_write, apic_dev) == -1) { PrintError("apic %u: core %u: Could not hook new APIC Base address\n", apic->lapic_id.val, core->vcpu_id); return -1; } return 0; } // irq_num is the bit offset into a 256 bit buffer... static int activate_apic_irq(struct apic_state * apic, uint32_t irq_num) { int major_offset = (irq_num & ~0x00000007) >> 3; int minor_offset = irq_num & 0x00000007; uint8_t * req_location = apic->int_req_reg + major_offset; uint8_t * en_location = apic->int_en_reg + major_offset; uint8_t flag = 0x1 << minor_offset; PrintDebug("apic %u: core %d: Raising APIC IRQ %d\n", apic->lapic_id.val, apic->core->vcpu_id, irq_num); if (*req_location & flag) { PrintDebug("Interrupt %d coallescing\n", irq_num); return 0; } if (*en_location & flag) { *req_location |= flag; return 1; } else { PrintDebug("apic %u: core %d: Interrupt not enabled... %.2x\n", apic->lapic_id.val, apic->core->vcpu_id, *en_location); } return 0; } static int add_apic_irq_entry(struct apic_state * apic, uint8_t irq_num) { if (irq_num <= 15) { PrintError("core %d: Attempting to raise an invalid interrupt: %d\n", apic->core->vcpu_id, irq_num); return -1; } v3_enqueue(&(apic->irq_queue), (addr_t)irq_num); return 0; } static void drain_irq_entries(struct apic_state * apic) { uint32_t irq = 0; while ((irq = (uint32_t)v3_dequeue(&(apic->irq_queue))) != 0) { activate_apic_irq(apic, irq); } } static int get_highest_isr(struct apic_state * apic) { int i = 0, j = 0; // We iterate backwards to find the highest priority for (i = 31; i >= 0; i--) { uint8_t * svc_major = apic->int_svc_reg + i; if ((*svc_major) & 0xff) { for (j = 7; j >= 0; j--) { uint8_t flag = 0x1 << j; if ((*svc_major) & flag) { return ((i * 8) + j); } } } } return -1; } static int get_highest_irr(struct apic_state * apic) { int i = 0, j = 0; // We iterate backwards to find the highest priority for (i = 31; i >= 0; i--) { uint8_t * req_major = apic->int_req_reg + i; if ((*req_major) & 0xff) { for (j = 7; j >= 0; j--) { uint8_t flag = 0x1 << j; if ((*req_major) & flag) { return ((i * 8) + j); } } } } return -1; } static int apic_do_eoi(struct apic_state * apic) { int isr_irq = get_highest_isr(apic); if (isr_irq != -1) { int major_offset = (isr_irq & ~0x00000007) >> 3; int minor_offset = isr_irq & 0x00000007; uint8_t flag = 0x1 << minor_offset; uint8_t * svc_location = apic->int_svc_reg + major_offset; PrintDebug("apic %u: core ?: Received APIC EOI for IRQ %d\n", apic->lapic_id.val,isr_irq); *svc_location &= ~flag; #ifdef V3_CONFIG_CRAY_XT if ((isr_irq == 238) || (isr_irq == 239)) { PrintDebug("apic %u: core ?: Acking IRQ %d\n", apic->lapic_id.val,isr_irq); } if (isr_irq == 238) { V3_ACK_IRQ(238); } #endif } else { //PrintError("apic %u: core ?: Spurious EOI...\n",apic->lapic_id.val); } return 0; } static int activate_internal_irq(struct apic_state * apic, apic_irq_type_t int_type) { uint32_t vec_num = 0; uint32_t del_mode = 0; int masked = 0; switch (int_type) { case APIC_TMR_INT: vec_num = apic->tmr_vec_tbl.vec; del_mode = APIC_FIXED_DELIVERY; masked = apic->tmr_vec_tbl.mask; break; case APIC_THERM_INT: vec_num = apic->therm_loc_vec_tbl.vec; del_mode = apic->therm_loc_vec_tbl.msg_type; masked = apic->therm_loc_vec_tbl.mask; break; case APIC_PERF_INT: vec_num = apic->perf_ctr_loc_vec_tbl.vec; del_mode = apic->perf_ctr_loc_vec_tbl.msg_type; masked = apic->perf_ctr_loc_vec_tbl.mask; break; case APIC_LINT0_INT: vec_num = apic->lint0_vec_tbl.vec; del_mode = apic->lint0_vec_tbl.msg_type; masked = apic->lint0_vec_tbl.mask; break; case APIC_LINT1_INT: vec_num = apic->lint1_vec_tbl.vec; del_mode = apic->lint1_vec_tbl.msg_type; masked = apic->lint1_vec_tbl.mask; break; case APIC_ERR_INT: vec_num = apic->err_vec_tbl.vec; del_mode = APIC_FIXED_DELIVERY; masked = apic->err_vec_tbl.mask; break; default: PrintError("apic %u: core ?: Invalid APIC interrupt type\n", apic->lapic_id.val); return -1; } // interrupt is masked, don't send if (masked == 1) { PrintDebug("apic %u: core ?: Inerrupt is masked\n", apic->lapic_id.val); return 0; } if (del_mode == APIC_FIXED_DELIVERY) { //PrintDebug("Activating internal APIC IRQ %d\n", vec_num); return add_apic_irq_entry(apic, vec_num); } else { PrintError("apic %u: core ?: Unhandled Delivery Mode\n", apic->lapic_id.val); return -1; } } static inline int should_deliver_cluster_ipi(struct apic_dev_state * apic_dev, struct guest_info * dst_core, struct apic_state * dst_apic, uint8_t mda) { int ret = 0; if ( ((mda & 0xf0) == (dst_apic->log_dst.dst_log_id & 0xf0)) && /* (I am in the cluster and */ ((mda & 0x0f) & (dst_apic->log_dst.dst_log_id & 0x0f)) ) { /* I am in the set) */ ret = 1; } else { ret = 0; } if (ret == 1) { PrintDebug("apic %u core %u: accepting clustered IRQ (mda 0x%x == log_dst 0x%x)\n", dst_apic->lapic_id.val, dst_core->vcpu_id, mda, dst_apic->log_dst.dst_log_id); } else { PrintDebug("apic %u core %u: rejecting clustered IRQ (mda 0x%x != log_dst 0x%x)\n", dst_apic->lapic_id.val, dst_core->vcpu_id, mda, dst_apic->log_dst.dst_log_id); } return ret; } static inline int should_deliver_flat_ipi(struct apic_dev_state * apic_dev, struct guest_info * dst_core, struct apic_state * dst_apic, uint8_t mda) { int ret = 0; if ((dst_apic->log_dst.dst_log_id & mda) != 0) { // I am in the set ret = 1; } else { ret = 0; } if (ret == 1) { PrintDebug("apic %u core %u: accepting flat IRQ (mda 0x%x == log_dst 0x%x)\n", dst_apic->lapic_id.val, dst_core->vcpu_id, mda, dst_apic->log_dst.dst_log_id); } else { PrintDebug("apic %u core %u: rejecting flat IRQ (mda 0x%x != log_dst 0x%x)\n", dst_apic->lapic_id.val, dst_core->vcpu_id, mda, dst_apic->log_dst.dst_log_id); } return ret; } static int should_deliver_ipi(struct apic_dev_state * apic_dev, struct guest_info * dst_core, struct apic_state * dst_apic, uint8_t mda) { addr_t flags = 0; int ret = 0; flags = v3_lock_irqsave(apic_dev->state_lock); if (dst_apic->dst_fmt.model == 0xf) { if (mda == 0xff) { /* always deliver broadcast */ ret = 1; } else { ret = should_deliver_flat_ipi(apic_dev, dst_core, dst_apic, mda); } } else if (dst_apic->dst_fmt.model == 0x0) { if (mda == 0xff) { /* always deliver broadcast */ ret = 1; } else { ret = should_deliver_cluster_ipi(apic_dev, dst_core, dst_apic, mda); } } else { ret = -1; } v3_unlock_irqrestore(apic_dev->state_lock, flags); if (ret == -1) { PrintError("apic %u core %u: invalid destination format register value 0x%x for logical mode delivery.\n", dst_apic->lapic_id.val, dst_core->vcpu_id, dst_apic->dst_fmt.model); } return ret; } // Only the src_apic pointer is used static int deliver_ipi(struct apic_state * src_apic, struct apic_state * dst_apic, uint32_t vector, uint8_t del_mode) { struct guest_info * dst_core = dst_apic->core; switch (del_mode) { case APIC_FIXED_DELIVERY: case APIC_LOWEST_DELIVERY: { // lowest priority - // caller needs to have decided which apic to deliver to! PrintDebug("delivering IRQ %d to core %u\n", vector, dst_core->vcpu_id); add_apic_irq_entry(dst_apic, vector); #ifdef V3_CONFIG_MULTITHREAD_OS if (dst_apic != src_apic) { PrintDebug(" non-local core with new interrupt, forcing it to exit now\n"); v3_interrupt_cpu(dst_core->vm_info, dst_core->pcpu_id, 0); } #endif break; } case APIC_INIT_DELIVERY: { PrintDebug(" INIT delivery to core %u\n", dst_core->vcpu_id); // TODO: any APIC reset on dest core (shouldn't be needed, but not sure...) // Sanity check if (dst_apic->ipi_state != INIT_ST) { PrintError(" Warning: core %u is not in INIT state (mode = %d), ignored (assuming this is the deassert)\n", dst_core->vcpu_id, dst_apic->ipi_state); // Only a warning, since INIT INIT SIPI is common break; } // We transition the target core to SIPI state dst_apic->ipi_state = SIPI; // note: locking should not be needed here // That should be it since the target core should be // waiting in host on this transition // either it's on another core or on a different preemptive thread // in both cases, it will quickly notice this transition // in particular, we should not need to force an exit here PrintDebug(" INIT delivery done\n"); break; } case APIC_SIPI_DELIVERY: { // Sanity check if (dst_apic->ipi_state != SIPI) { PrintError(" core %u is not in SIPI state (mode = %d), ignored!\n", dst_core->vcpu_id, dst_apic->ipi_state); break; } v3_reset_vm_core(dst_core, vector); PrintDebug(" SIPI delivery (0x%x -> 0x%x:0x0) to core %u\n", vector, dst_core->segments.cs.selector, dst_core->vcpu_id); // Maybe need to adjust the APIC? // We transition the target core to SIPI state dst_core->core_run_state = CORE_RUNNING; // note: locking should not be needed here dst_apic->ipi_state = STARTED; // As with INIT, we should not need to do anything else PrintDebug(" SIPI delivery done\n"); break; } case APIC_EXTINT_DELIVERY: // EXTINT /* Two possible things to do here: * 1. Ignore the IPI and assume the 8259a (PIC) will handle it * 2. Add 32 to the vector and inject it... * We probably just want to do 1 here, and assume the raise_irq() will hit the 8259a. */ return 0; case APIC_SMI_DELIVERY: case APIC_RES1_DELIVERY: // reserved case APIC_NMI_DELIVERY: default: PrintError("IPI %d delivery is unsupported\n", del_mode); return -1; } return 0; } static struct apic_state * find_physical_apic(struct apic_dev_state * apic_dev, uint32_t dst_idx) { struct apic_state * dst_apic = NULL; addr_t flags; int i; flags = v3_lock_irqsave(apic_dev->state_lock); if ( (dst_idx > 0) && (dst_idx < apic_dev->num_apics) ) { // see if it simply is the core id if (apic_dev->apics[dst_idx].lapic_id.val == dst_idx) { dst_apic = &(apic_dev->apics[dst_idx]); } } for (i = 0; i < apic_dev->num_apics; i++) { if (apic_dev->apics[i].lapic_id.val == dst_idx) { dst_apic = &(apic_dev->apics[i]); } } v3_unlock_irqrestore(apic_dev->state_lock, flags); return dst_apic; } static int route_ipi(struct apic_dev_state * apic_dev, struct apic_state * src_apic, struct int_cmd_reg * icr) { struct apic_state * dest_apic = NULL; PrintDebug("apic: IPI %s %u from apic %p to %s %s %u (icr=0x%llx)\n", deliverymode_str[icr->del_mode], icr->vec, src_apic, (icr->dst_mode == 0) ? "(physical)" : "(logical)", shorthand_str[icr->dst_shorthand], icr->dst, icr->val); switch (icr->dst_shorthand) { case APIC_SHORTHAND_NONE: // no shorthand if (icr->dst_mode == APIC_DEST_PHYSICAL) { dest_apic = find_physical_apic(apic_dev, icr->dst); if (dest_apic == NULL) { PrintError("apic: Attempted send to unregistered apic id=%u\n", icr->dst); return -1; } if (deliver_ipi(src_apic, dest_apic, icr->vec, icr->del_mode) == -1) { PrintError("apic: Could not deliver IPI\n"); return -1; } PrintDebug("apic: done\n"); } else if (icr->dst_mode == APIC_DEST_LOGICAL) { if (icr->del_mode != APIC_LOWEST_DELIVERY) { int i; uint8_t mda = icr->dst; // logical, but not lowest priority // we immediately trigger // fixed, smi, reserved, nmi, init, sipi, etc for (i = 0; i < apic_dev->num_apics; i++) { int del_flag = 0; dest_apic = &(apic_dev->apics[i]); del_flag = should_deliver_ipi(apic_dev, dest_apic->core, dest_apic, mda); if (del_flag == -1) { PrintError("apic: Error checking delivery mode\n"); return -1; } else if (del_flag == 1) { if (deliver_ipi(src_apic, dest_apic, icr->vec, icr->del_mode) == -1) { PrintError("apic: Error: Could not deliver IPI\n"); return -1; } } } } else { // APIC_LOWEST_DELIVERY struct apic_state * cur_best_apic = NULL; uint8_t mda = icr->dst; int i; // logical, lowest priority for (i = 0; i < apic_dev->num_apics; i++) { int del_flag = 0; dest_apic = &(apic_dev->apics[i]); del_flag = should_deliver_ipi(apic_dev, dest_apic->core, dest_apic, mda); if (del_flag == -1) { PrintError("apic: Error checking delivery mode\n"); return -1; } else if (del_flag == 1) { // update priority for lowest priority scan addr_t flags = 0; flags = v3_lock_irqsave(apic_dev->state_lock); if (cur_best_apic == 0) { cur_best_apic = dest_apic; } else if (dest_apic->task_prio.val < cur_best_apic->task_prio.val) { cur_best_apic = dest_apic; } v3_unlock_irqrestore(apic_dev->state_lock, flags); } } // now we will deliver to the best one if it exists if (!cur_best_apic) { PrintDebug("apic: lowest priority deliver, but no destinations!\n"); } else { if (deliver_ipi(src_apic, cur_best_apic, icr->vec, icr->del_mode) == -1) { PrintError("apic: Error: Could not deliver IPI\n"); return -1; } //V3_Print("apic: logical, lowest priority delivery to apic %u\n",cur_best_apic->lapic_id.val); } } } break; case APIC_SHORTHAND_SELF: // self if (src_apic == NULL) { /* this is not an apic, but it's trying to send to itself??? */ PrintError("apic: Sending IPI to self from generic IPI sender\n"); break; } if (icr->dst_mode == APIC_DEST_PHYSICAL) { /* physical delivery */ if (deliver_ipi(src_apic, src_apic, icr->vec, icr->del_mode) == -1) { PrintError("apic: Could not deliver IPI to self (physical)\n"); return -1; } } else if (icr->dst_mode == APIC_DEST_LOGICAL) { /* logical delivery */ PrintError("apic: use of logical delivery in self (untested)\n"); if (deliver_ipi(src_apic, src_apic, icr->vec, icr->del_mode) == -1) { PrintError("apic: Could not deliver IPI to self (logical)\n"); return -1; } } break; case APIC_SHORTHAND_ALL: case APIC_SHORTHAND_ALL_BUT_ME: { /* all and all-but-me */ /* assuming that logical verus physical doesn't matter although it is odd that both are used */ int i; for (i = 0; i < apic_dev->num_apics; i++) { dest_apic = &(apic_dev->apics[i]); if ((dest_apic != src_apic) || (icr->dst_shorthand == APIC_SHORTHAND_ALL)) { if (deliver_ipi(src_apic, dest_apic, icr->vec, icr->del_mode) == -1) { PrintError("apic: Error: Could not deliver IPI\n"); return -1; } } } break; } default: PrintError("apic: Error routing IPI, invalid Mode (%d)\n", icr->dst_shorthand); return -1; } return 0; } // External function, expected to acquire lock on apic static int apic_read(struct guest_info * core, addr_t guest_addr, void * dst, uint_t length, void * priv_data) { struct apic_dev_state * apic_dev = (struct apic_dev_state *)(priv_data); struct apic_state * apic = &(apic_dev->apics[core->vcpu_id]); addr_t reg_addr = guest_addr - apic->base_addr; struct apic_msr * msr = (struct apic_msr *)&(apic->base_addr_msr.value); uint32_t val = 0; PrintDebug("apic %u: core %u: at %p: Read apic address space (%p)\n", apic->lapic_id.val, core->vcpu_id, apic, (void *)guest_addr); if (msr->apic_enable == 0) { PrintError("apic %u: core %u: Read from APIC address space with disabled APIC, apic msr=0x%llx\n", apic->lapic_id.val, core->vcpu_id, apic->base_addr_msr.value); return -1; } /* Because "May not be supported" doesn't matter to Linux developers... */ /* if (length != 4) { */ /* PrintError("Invalid apic read length (%d)\n", length); */ /* return -1; */ /* } */ switch (reg_addr & ~0x3) { case EOI_OFFSET: // Well, only an idiot would read from a architectural write only register // Oh, Hello Linux. // PrintError("Attempting to read from write only register\n"); // return -1; break; // data registers case APIC_ID_OFFSET: val = apic->lapic_id.val; break; case APIC_VERSION_OFFSET: val = apic->apic_ver.val; break; case TPR_OFFSET: val = apic->task_prio.val; break; case APR_OFFSET: val = apic->arb_prio.val; break; case PPR_OFFSET: val = apic->proc_prio.val; break; case REMOTE_READ_OFFSET: val = apic->rem_rd_data; break; case LDR_OFFSET: val = apic->log_dst.val; break; case DFR_OFFSET: val = apic->dst_fmt.val; break; case SPURIOUS_INT_VEC_OFFSET: val = apic->spurious_int.val; break; case ESR_OFFSET: val = apic->err_status.val; break; case TMR_LOC_VEC_TBL_OFFSET: val = apic->tmr_vec_tbl.val; break; case LINT0_VEC_TBL_OFFSET: val = apic->lint0_vec_tbl.val; break; case LINT1_VEC_TBL_OFFSET: val = apic->lint1_vec_tbl.val; break; case ERR_VEC_TBL_OFFSET: val = apic->err_vec_tbl.val; break; case TMR_INIT_CNT_OFFSET: val = apic->tmr_init_cnt; break; case TMR_DIV_CFG_OFFSET: val = apic->tmr_div_cfg.val; break; case IER_OFFSET0: val = *(uint32_t *)(apic->int_en_reg); break; case IER_OFFSET1: val = *(uint32_t *)(apic->int_en_reg + 4); break; case IER_OFFSET2: val = *(uint32_t *)(apic->int_en_reg + 8); break; case IER_OFFSET3: val = *(uint32_t *)(apic->int_en_reg + 12); break; case IER_OFFSET4: val = *(uint32_t *)(apic->int_en_reg + 16); break; case IER_OFFSET5: val = *(uint32_t *)(apic->int_en_reg + 20); break; case IER_OFFSET6: val = *(uint32_t *)(apic->int_en_reg + 24); break; case IER_OFFSET7: val = *(uint32_t *)(apic->int_en_reg + 28); break; case ISR_OFFSET0: val = *(uint32_t *)(apic->int_svc_reg); break; case ISR_OFFSET1: val = *(uint32_t *)(apic->int_svc_reg + 4); break; case ISR_OFFSET2: val = *(uint32_t *)(apic->int_svc_reg + 8); break; case ISR_OFFSET3: val = *(uint32_t *)(apic->int_svc_reg + 12); break; case ISR_OFFSET4: val = *(uint32_t *)(apic->int_svc_reg + 16); break; case ISR_OFFSET5: val = *(uint32_t *)(apic->int_svc_reg + 20); break; case ISR_OFFSET6: val = *(uint32_t *)(apic->int_svc_reg + 24); break; case ISR_OFFSET7: val = *(uint32_t *)(apic->int_svc_reg + 28); break; case TRIG_OFFSET0: val = *(uint32_t *)(apic->trig_mode_reg); break; case TRIG_OFFSET1: val = *(uint32_t *)(apic->trig_mode_reg + 4); break; case TRIG_OFFSET2: val = *(uint32_t *)(apic->trig_mode_reg + 8); break; case TRIG_OFFSET3: val = *(uint32_t *)(apic->trig_mode_reg + 12); break; case TRIG_OFFSET4: val = *(uint32_t *)(apic->trig_mode_reg + 16); break; case TRIG_OFFSET5: val = *(uint32_t *)(apic->trig_mode_reg + 20); break; case TRIG_OFFSET6: val = *(uint32_t *)(apic->trig_mode_reg + 24); break; case TRIG_OFFSET7: val = *(uint32_t *)(apic->trig_mode_reg + 28); break; case IRR_OFFSET0: val = *(uint32_t *)(apic->int_req_reg); break; case IRR_OFFSET1: val = *(uint32_t *)(apic->int_req_reg + 4); break; case IRR_OFFSET2: val = *(uint32_t *)(apic->int_req_reg + 8); break; case IRR_OFFSET3: val = *(uint32_t *)(apic->int_req_reg + 12); break; case IRR_OFFSET4: val = *(uint32_t *)(apic->int_req_reg + 16); break; case IRR_OFFSET5: val = *(uint32_t *)(apic->int_req_reg + 20); break; case IRR_OFFSET6: val = *(uint32_t *)(apic->int_req_reg + 24); break; case IRR_OFFSET7: val = *(uint32_t *)(apic->int_req_reg + 28); break; case TMR_CUR_CNT_OFFSET: val = apic->tmr_cur_cnt; break; // We are not going to implement these.... case THERM_LOC_VEC_TBL_OFFSET: val = apic->therm_loc_vec_tbl.val; break; case PERF_CTR_LOC_VEC_TBL_OFFSET: val = apic->perf_ctr_loc_vec_tbl.val; break; // handled registers case INT_CMD_LO_OFFSET: val = apic->int_cmd.lo; break; case INT_CMD_HI_OFFSET: val = apic->int_cmd.hi; break; // handle current timer count // Unhandled Registers case EXT_INT_LOC_VEC_TBL_OFFSET0: val = apic->ext_intr_vec_tbl[0].val; break; case EXT_INT_LOC_VEC_TBL_OFFSET1: val = apic->ext_intr_vec_tbl[1].val; break; case EXT_INT_LOC_VEC_TBL_OFFSET2: val = apic->ext_intr_vec_tbl[2].val; break; case EXT_INT_LOC_VEC_TBL_OFFSET3: val = apic->ext_intr_vec_tbl[3].val; break; case EXT_APIC_FEATURE_OFFSET: case EXT_APIC_CMD_OFFSET: case SEOI_OFFSET: default: PrintError("apic %u: core %u: Read from Unhandled APIC Register: %x (getting zero)\n", apic->lapic_id.val, core->vcpu_id, (uint32_t)reg_addr); return -1; } if (length == 1) { uint_t byte_addr = reg_addr & 0x3; uint8_t * val_ptr = (uint8_t *)dst; *val_ptr = *(((uint8_t *)&val) + byte_addr); } else if ((length == 2) && ((reg_addr & 0x3) != 0x3)) { uint_t byte_addr = reg_addr & 0x3; uint16_t * val_ptr = (uint16_t *)dst; *val_ptr = *(((uint16_t *)&val) + byte_addr); } else if (length == 4) { uint32_t * val_ptr = (uint32_t *)dst; *val_ptr = val; } else { PrintError("apic %u: core %u: Invalid apic read length (%d)\n", apic->lapic_id.val, core->vcpu_id, length); return -1; } PrintDebug("apic %u: core %u: Read finished (val=%x)\n", apic->lapic_id.val, core->vcpu_id, *(uint32_t *)dst); return length; } /** * */ static int apic_write(struct guest_info * core, addr_t guest_addr, void * src, uint_t length, void * priv_data) { struct apic_dev_state * apic_dev = (struct apic_dev_state *)(priv_data); struct apic_state * apic = &(apic_dev->apics[core->vcpu_id]); addr_t reg_addr = guest_addr - apic->base_addr; struct apic_msr * msr = (struct apic_msr *)&(apic->base_addr_msr.value); uint32_t op_val = *(uint32_t *)src; addr_t flags = 0; PrintDebug("apic %u: core %u: at %p and priv_data is at %p\n", apic->lapic_id.val, core->vcpu_id, apic, priv_data); PrintDebug("apic %u: core %u: write to address space (%p) (val=%x)\n", apic->lapic_id.val, core->vcpu_id, (void *)guest_addr, *(uint32_t *)src); if (msr->apic_enable == 0) { PrintError("apic %u: core %u: Write to APIC address space with disabled APIC, apic msr=0x%llx\n", apic->lapic_id.val, core->vcpu_id, apic->base_addr_msr.value); return -1; } if (length != 4) { PrintError("apic %u: core %u: Invalid apic write length (%d)\n", apic->lapic_id.val, length, core->vcpu_id); return -1; } switch (reg_addr) { case REMOTE_READ_OFFSET: case APIC_VERSION_OFFSET: case APR_OFFSET: case IRR_OFFSET0: case IRR_OFFSET1: case IRR_OFFSET2: case IRR_OFFSET3: case IRR_OFFSET4: case IRR_OFFSET5: case IRR_OFFSET6: case IRR_OFFSET7: case ISR_OFFSET0: case ISR_OFFSET1: case ISR_OFFSET2: case ISR_OFFSET3: case ISR_OFFSET4: case ISR_OFFSET5: case ISR_OFFSET6: case ISR_OFFSET7: case TRIG_OFFSET0: case TRIG_OFFSET1: case TRIG_OFFSET2: case TRIG_OFFSET3: case TRIG_OFFSET4: case TRIG_OFFSET5: case TRIG_OFFSET6: case TRIG_OFFSET7: case PPR_OFFSET: case EXT_APIC_FEATURE_OFFSET: PrintError("apic %u: core %u: Attempting to write to read only register %p (error)\n", apic->lapic_id.val, core->vcpu_id, (void *)reg_addr); break; // Data registers case APIC_ID_OFFSET: //V3_Print("apic %u: core %u: my id is being changed to %u\n", // apic->lapic_id.val, core->vcpu_id, op_val); apic->lapic_id.val = op_val; break; case TPR_OFFSET: apic->task_prio.val = op_val; break; case LDR_OFFSET: PrintDebug("apic %u: core %u: setting log_dst.val to 0x%x\n", apic->lapic_id.val, core->vcpu_id, op_val); flags = v3_lock_irqsave(apic_dev->state_lock); apic->log_dst.val = op_val; v3_unlock_irqrestore(apic_dev->state_lock, flags); break; case DFR_OFFSET: flags = v3_lock_irqsave(apic_dev->state_lock); apic->dst_fmt.val = op_val; v3_unlock_irqrestore(apic_dev->state_lock, flags); break; case SPURIOUS_INT_VEC_OFFSET: apic->spurious_int.val = op_val; break; case ESR_OFFSET: apic->err_status.val = op_val; break; case TMR_LOC_VEC_TBL_OFFSET: apic->tmr_vec_tbl.val = op_val; break; case THERM_LOC_VEC_TBL_OFFSET: apic->therm_loc_vec_tbl.val = op_val; break; case PERF_CTR_LOC_VEC_TBL_OFFSET: apic->perf_ctr_loc_vec_tbl.val = op_val; break; case LINT0_VEC_TBL_OFFSET: apic->lint0_vec_tbl.val = op_val; break; case LINT1_VEC_TBL_OFFSET: apic->lint1_vec_tbl.val = op_val; break; case ERR_VEC_TBL_OFFSET: apic->err_vec_tbl.val = op_val; break; case TMR_INIT_CNT_OFFSET: apic->tmr_init_cnt = op_val; apic->tmr_cur_cnt = op_val; break; case TMR_CUR_CNT_OFFSET: apic->tmr_cur_cnt = op_val; break; case TMR_DIV_CFG_OFFSET: PrintDebug("apic %u: core %u: setting tmr_div_cfg to 0x%x\n", apic->lapic_id.val, core->vcpu_id, op_val); apic->tmr_div_cfg.val = op_val; break; // Enable mask (256 bits) case IER_OFFSET0: *(uint32_t *)(apic->int_en_reg) = op_val; break; case IER_OFFSET1: *(uint32_t *)(apic->int_en_reg + 4) = op_val; break; case IER_OFFSET2: *(uint32_t *)(apic->int_en_reg + 8) = op_val; break; case IER_OFFSET3: *(uint32_t *)(apic->int_en_reg + 12) = op_val; break; case IER_OFFSET4: *(uint32_t *)(apic->int_en_reg + 16) = op_val; break; case IER_OFFSET5: *(uint32_t *)(apic->int_en_reg + 20) = op_val; break; case IER_OFFSET6: *(uint32_t *)(apic->int_en_reg + 24) = op_val; break; case IER_OFFSET7: *(uint32_t *)(apic->int_en_reg + 28) = op_val; break; case EXT_INT_LOC_VEC_TBL_OFFSET0: apic->ext_intr_vec_tbl[0].val = op_val; break; case EXT_INT_LOC_VEC_TBL_OFFSET1: apic->ext_intr_vec_tbl[1].val = op_val; break; case EXT_INT_LOC_VEC_TBL_OFFSET2: apic->ext_intr_vec_tbl[2].val = op_val; break; case EXT_INT_LOC_VEC_TBL_OFFSET3: apic->ext_intr_vec_tbl[3].val = op_val; break; // Action Registers case EOI_OFFSET: // do eoi apic_do_eoi(apic); break; case INT_CMD_LO_OFFSET: { // execute command struct int_cmd_reg tmp_icr; apic->int_cmd.lo = op_val; tmp_icr = apic->int_cmd; // V3_Print("apic %u: core %u: sending cmd 0x%llx to apic %u\n", // apic->lapic_id.val, core->vcpu_id, // apic->int_cmd.val, apic->int_cmd.dst); if (route_ipi(apic_dev, apic, &tmp_icr) == -1) { PrintError("IPI Routing failure\n"); return -1; } break; } case INT_CMD_HI_OFFSET: { apic->int_cmd.hi = op_val; V3_Print("apic %u: core %u: writing command high=0x%x\n", apic->lapic_id.val, core->vcpu_id,apic->int_cmd.hi); break; } // Unhandled Registers case EXT_APIC_CMD_OFFSET: case SEOI_OFFSET: default: PrintError("apic %u: core %u: Write to Unhandled APIC Register: %x (ignored)\n", apic->lapic_id.val, core->vcpu_id, (uint32_t)reg_addr); return -1; } PrintDebug("apic %u: core %u: Write finished\n", apic->lapic_id.val, core->vcpu_id); return length; } /* Interrupt Controller Functions */ static int apic_intr_pending(struct guest_info * core, void * private_data) { struct apic_dev_state * apic_dev = (struct apic_dev_state *)(private_data); struct apic_state * apic = &(apic_dev->apics[core->vcpu_id]); int req_irq = 0; int svc_irq = 0; // Activate all queued IRQ entries drain_irq_entries(apic); // Check for newly activated entries req_irq = get_highest_irr(apic); svc_irq = get_highest_isr(apic); // PrintDebug("apic %u: core %u: req_irq=%d, svc_irq=%d\n",apic->lapic_id.val,info->vcpu_id,req_irq,svc_irq); if ((req_irq >= 0) && (req_irq > svc_irq)) { return 1; } return 0; } static int apic_get_intr_number(struct guest_info * core, void * private_data) { struct apic_dev_state * apic_dev = (struct apic_dev_state *)(private_data); struct apic_state * apic = &(apic_dev->apics[core->vcpu_id]); int req_irq = get_highest_irr(apic); int svc_irq = get_highest_isr(apic); if (svc_irq == -1) { return req_irq; } else if (svc_irq < req_irq) { return req_irq; } return -1; } int v3_apic_send_ipi(struct v3_vm_info * vm, struct v3_gen_ipi * ipi, void * dev_data) { struct apic_dev_state * apic_dev = (struct apic_dev_state *) (((struct vm_device *)dev_data)->private_data); struct int_cmd_reg tmp_icr; // zero out all the fields tmp_icr.val = 0; tmp_icr.vec = ipi->vector; tmp_icr.del_mode = ipi->mode; tmp_icr.dst_mode = ipi->logical; tmp_icr.trig_mode = ipi->trigger_mode; tmp_icr.dst_shorthand = ipi->dst_shorthand; tmp_icr.dst = ipi->dst; return route_ipi(apic_dev, NULL, &tmp_icr); } int v3_apic_raise_intr(struct v3_vm_info * vm, uint32_t irq, uint32_t dst, void * dev_data) { struct apic_dev_state * apic_dev = (struct apic_dev_state *) (((struct vm_device*)dev_data)->private_data); struct apic_state * apic = &(apic_dev->apics[dst]); PrintDebug("apic %u core ?: raising interrupt IRQ %u (dst = %u).\n", apic->lapic_id.val, irq, dst); add_apic_irq_entry(apic, irq); #ifdef V3_CONFIG_MULTITHREAD_OS if ((V3_Get_CPU() != dst)) { v3_interrupt_cpu(vm, dst, 0); } #endif return 0; } static int apic_begin_irq(struct guest_info * core, void * private_data, int irq) { struct apic_dev_state * apic_dev = (struct apic_dev_state *)(private_data); struct apic_state * apic = &(apic_dev->apics[core->vcpu_id]); int major_offset = (irq & ~0x00000007) >> 3; int minor_offset = irq & 0x00000007; uint8_t *req_location = apic->int_req_reg + major_offset; uint8_t *svc_location = apic->int_svc_reg + major_offset; uint8_t flag = 0x01 << minor_offset; if (*req_location & flag) { // we will only pay attention to a begin irq if we // know that we initiated it! *svc_location |= flag; *req_location &= ~flag; } else { // do nothing... //PrintDebug("apic %u: core %u: begin irq for %d ignored since I don't own it\n", // apic->lapic_id.val, core->vcpu_id, irq); } return 0; } /* Timer Functions */ static void apic_update_time(struct guest_info * core, uint64_t cpu_cycles, uint64_t cpu_freq, void * priv_data) { struct apic_dev_state * apic_dev = (struct apic_dev_state *)(priv_data); struct apic_state * apic = &(apic_dev->apics[core->vcpu_id]); // The 32 bit GCC runtime is a pile of shit #ifdef __V3_64BIT__ uint64_t tmr_ticks = 0; #else uint32_t tmr_ticks = 0; #endif uint8_t tmr_div = *(uint8_t *)&(apic->tmr_div_cfg.val); uint_t shift_num = 0; // Check whether this is true: // -> If the Init count is zero then the timer is disabled // and doesn't just blitz interrupts to the CPU if ((apic->tmr_init_cnt == 0) || ( (apic->tmr_vec_tbl.tmr_mode == APIC_TMR_ONESHOT) && (apic->tmr_cur_cnt == 0))) { //PrintDebug("apic %u: core %u: APIC timer not yet initialized\n",apic->lapic_id.val,info->vcpu_id); return; } switch (tmr_div) { case APIC_TMR_DIV1: shift_num = 0; break; case APIC_TMR_DIV2: shift_num = 1; break; case APIC_TMR_DIV4: shift_num = 2; break; case APIC_TMR_DIV8: shift_num = 3; break; case APIC_TMR_DIV16: shift_num = 4; break; case APIC_TMR_DIV32: shift_num = 5; break; case APIC_TMR_DIV64: shift_num = 6; break; case APIC_TMR_DIV128: shift_num = 7; break; default: PrintError("apic %u: core %u: Invalid Timer Divider configuration\n", apic->lapic_id.val, core->vcpu_id); return; } tmr_ticks = cpu_cycles >> shift_num; // PrintDebug("Timer Ticks: %p\n", (void *)tmr_ticks); if (tmr_ticks < apic->tmr_cur_cnt) { apic->tmr_cur_cnt -= tmr_ticks; } else { tmr_ticks -= apic->tmr_cur_cnt; apic->tmr_cur_cnt = 0; // raise irq PrintDebug("apic %u: core %u: Raising APIC Timer interrupt (periodic=%d) (icnt=%d) (div=%d)\n", apic->lapic_id.val, core->vcpu_id, apic->tmr_vec_tbl.tmr_mode, apic->tmr_init_cnt, shift_num); if (apic_intr_pending(core, priv_data)) { PrintDebug("apic %u: core %u: Overriding pending IRQ %d\n", apic->lapic_id.val, core->vcpu_id, apic_get_intr_number(core, priv_data)); } if (activate_internal_irq(apic, APIC_TMR_INT) == -1) { PrintError("apic %u: core %u: Could not raise Timer interrupt\n", apic->lapic_id.val, core->vcpu_id); } if (apic->tmr_vec_tbl.tmr_mode == APIC_TMR_PERIODIC) { static unsigned int nexits = 0; static unsigned int missed_ints = 0; nexits++; missed_ints += tmr_ticks / apic->tmr_init_cnt; if ((missed_ints > 0) && (nexits >= 5000)) { V3_Print("apic %u: core %u: missed %u timer interrupts total in last %u exits.\n", apic->lapic_id.val, core->vcpu_id, missed_ints, nexits); missed_ints = 0; nexits = 0; } tmr_ticks = tmr_ticks % apic->tmr_init_cnt; apic->tmr_cur_cnt = apic->tmr_init_cnt - tmr_ticks; } } return; } static struct intr_ctrl_ops intr_ops = { .intr_pending = apic_intr_pending, .get_intr_number = apic_get_intr_number, .begin_irq = apic_begin_irq, }; static struct v3_timer_ops timer_ops = { .update_timer = apic_update_time, }; static int apic_free(struct apic_dev_state * apic_dev) { int i = 0; struct v3_vm_info * vm = NULL; for (i = 0; i < apic_dev->num_apics; i++) { struct apic_state * apic = &(apic_dev->apics[i]); struct guest_info * core = apic->core; vm = core->vm_info; v3_remove_intr_controller(core, apic->controller_handle); if (apic->timer) { v3_remove_timer(core, apic->timer); } // unhook memory } v3_unhook_msr(vm, BASE_ADDR_MSR); V3_Free(apic_dev); return 0; } #ifdef V3_CONFIG_CHECKPOINT static int apic_save(struct v3_chkpt_ctx * ctx, void * private_data) { struct apic_dev_state * apic_state = (struct apic_dev_state *)private_data; int i = 0; V3_CHKPT_STD_SAVE(ctx, apic_state->num_apics); //V3_CHKPT_STD_SAVE(ctx,apic_state->state_lock); for (i = 0; i < apic_state->num_apics; i++) { V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].base_addr); V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].base_addr_msr); V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].lapic_id); V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].apic_ver); V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].ext_apic_ctrl); V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].local_vec_tbl); V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].tmr_vec_tbl); V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].tmr_div_cfg); V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].lint0_vec_tbl); V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].lint1_vec_tbl); V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].perf_ctr_loc_vec_tbl); V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].therm_loc_vec_tbl); V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].err_vec_tbl); V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].err_status); V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].spurious_int); V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].int_cmd); V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].log_dst); V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].dst_fmt); V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].arb_prio); V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].task_prio); V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].proc_prio); V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].ext_apic_feature); V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].spec_eoi); V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].tmr_cur_cnt); V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].tmr_init_cnt); V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].ext_intr_vec_tbl); V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].rem_rd_data); V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].ipi_state); V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].int_req_reg); V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].int_svc_reg); V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].int_en_reg); V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].trig_mode_reg); V3_CHKPT_STD_SAVE(ctx, apic_state->apics[i].eoi); } return 0; } static int apic_load(struct v3_chkpt_ctx * ctx, void * private_data) { struct apic_dev_state *apic_state = (struct apic_dev_state *)private_data; int i = 0; V3_CHKPT_STD_LOAD(ctx,apic_state->num_apics); for (i = 0; i < apic_state->num_apics; i++) { V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].base_addr); V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].base_addr_msr); V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].lapic_id); V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].apic_ver); V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].ext_apic_ctrl); V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].local_vec_tbl); V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].tmr_vec_tbl); V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].tmr_div_cfg); V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].lint0_vec_tbl); V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].lint1_vec_tbl); V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].perf_ctr_loc_vec_tbl); V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].therm_loc_vec_tbl); V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].err_vec_tbl); V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].err_status); V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].spurious_int); V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].int_cmd); V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].log_dst); V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].dst_fmt); V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].arb_prio); V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].task_prio); V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].proc_prio); V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].ext_apic_feature); V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].spec_eoi); V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].tmr_cur_cnt); V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].tmr_init_cnt); V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].ext_intr_vec_tbl); V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].rem_rd_data); V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].ipi_state); V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].int_req_reg); V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].int_svc_reg); V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].int_en_reg); V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].trig_mode_reg); V3_CHKPT_STD_LOAD(ctx, apic_state->apics[i].eoi); } return 0; } #endif static struct v3_device_ops dev_ops = { .free = (int (*)(void *))apic_free, #ifdef V3_CONFIG_CHECKPOINT .save = apic_save, .load = apic_load #endif }; static int apic_init(struct v3_vm_info * vm, v3_cfg_tree_t * cfg) { char * dev_id = v3_cfg_val(cfg, "ID"); struct apic_dev_state * apic_dev = NULL; int i = 0; PrintDebug("apic: creating an APIC for each core\n"); apic_dev = (struct apic_dev_state *)V3_Malloc(sizeof(struct apic_dev_state) + sizeof(struct apic_state) * vm->num_cores); apic_dev->num_apics = vm->num_cores; v3_lock_init(&(apic_dev->state_lock)); struct vm_device * dev = v3_add_device(vm, dev_id, &dev_ops, apic_dev); if (dev == NULL) { PrintError("apic: Could not attach device %s\n", dev_id); V3_Free(apic_dev); return -1; } for (i = 0; i < vm->num_cores; i++) { struct apic_state * apic = &(apic_dev->apics[i]); struct guest_info * core = &(vm->cores[i]); apic->core = core; init_apic_state(apic, i); apic->controller_handle = v3_register_intr_controller(core, &intr_ops, apic_dev); apic->timer = v3_add_timer(core, &timer_ops, apic_dev); if (apic->timer == NULL) { PrintError("APIC: Failed to attach timer to core %d\n", i); v3_remove_device(dev); return -1; } v3_hook_full_mem(vm, core->vcpu_id, apic->base_addr, apic->base_addr + PAGE_SIZE_4KB, apic_read, apic_write, apic_dev); PrintDebug("apic %u: (setup device): done, my id is %u\n", i, apic->lapic_id.val); } #ifdef V3_CONFIG_DEBUG_APIC for (i = 0; i < vm->num_cores; i++) { struct apic_state * apic = &(apic_dev->apics[i]); PrintDebug("apic: sanity check: apic %u (at %p) has id %u and msr value %llx and core at %p\n", i, apic, apic->lapic_id.val, apic->base_addr_msr.value,apic->core); } #endif PrintDebug("apic: priv_data is at %p\n", apic_dev); v3_hook_msr(vm, BASE_ADDR_MSR, read_apic_msr, write_apic_msr, apic_dev); return 0; } device_register("LAPIC", apic_init)