/* * This file is part of the Palacios Virtual Machine Monitor developed * by the V3VEE Project with funding from the United States National * Science Foundation and the Department of Energy. * * The V3VEE Project is a joint project between Northwestern University * and the University of New Mexico. You can find out more at * http://www.v3vee.org * * Copyright (c) 2008, Jack Lange * Copyright (c) 2008, The V3VEE Project * All rights reserved. * * Author: Jack Lange * * This is free software. You are permitted to use, * redistribute, and modify it as specified in the file "V3VEE_LICENSE". */ #include #include #include #include #include #include #ifndef CONFIG_DEBUG_PIT #undef PrintDebug #define PrintDebug(fmt, args...) #endif // constants #define OSC_HZ 1193182 /* The 8254 has three counters and one control port */ #define CHANNEL0_PORT 0x40 #define CHANNEL1_PORT 0x41 #define CHANNEL2_PORT 0x42 #define COMMAND_PORT 0x43 #define PIT_INTR_NUM 0 /* The order of these typedefs is important because the numerical values correspond to the * values coming from the io ports */ typedef enum {NOT_RUNNING, PENDING, RUNNING} channel_run_state_t; typedef enum {NOT_WAITING, WAITING_LOBYTE, WAITING_HIBYTE} channel_access_state_t; typedef enum {LATCH_COUNT, LOBYTE_ONLY, HIBYTE_ONLY, LOBYTE_HIBYTE} channel_access_mode_t; typedef enum {IRQ_ON_TERM_CNT, ONE_SHOT, RATE_GEN, SQR_WAVE, SW_STROBE, HW_STROBE} channel_op_mode_t; struct channel { channel_access_mode_t access_mode; channel_access_state_t access_state; channel_run_state_t run_state; channel_op_mode_t op_mode; // Time til interrupt trigger ushort_t counter; ushort_t reload_value; ushort_t latched_value; enum {NOTLATCHED, LATCHED} latch_state; enum {LSB, MSB} read_state; uint_t output_pin : 1; uint_t gate_input_pin : 1; }; struct pit { ullong_t pit_counter; ullong_t pit_reload; struct channel ch_0; struct channel ch_1; struct channel ch_2; }; struct pit_cmd_word { uint_t bcd_mode : 1; uint_t op_mode : 3; uint_t access_mode : 2; uint_t channel : 2; }; struct pit_rdb_cmd_word { uint_t rsvd : 1; // SBZ uint_t ch_0 : 1; uint_t ch_1 : 1; uint_t ch_2 : 1; uint_t latch_status : 1; uint_t latch_count : 1; uint_t readback_cmd : 2; // Must Be 0x3 }; struct pit_rdb_status_word { uint_t bcd_mode : 1; uint_t op_mode : 3; uint_t access_mode : 2; uint_t null_count : 1; uint_t pin_state : 1; }; /* * This should call out to handle_SQR_WAVE_tics, etc... */ // Returns true if the the output signal changed state static int handle_crystal_tics(struct vm_device * dev, struct channel * ch, uint_t oscillations) { uint_t channel_cycles = 0; uint_t output_changed = 0; // PrintDebug("8254 PIT: %d crystal tics\n", oscillations); if (ch->run_state == PENDING) { oscillations--; ch->counter = ch->reload_value; if (ch->op_mode == SQR_WAVE) { ch->counter -= ch->counter % 2; } ch->run_state = RUNNING; } else if (ch->run_state != RUNNING) { return output_changed; } /* PrintDebug("8254 PIT: Channel Run State = %d, counter=", ch->run_state); PrintTraceLL(ch->counter); PrintDebug("\n"); */ if (ch->op_mode == SQR_WAVE) { oscillations *= 2; } if (ch->counter > oscillations) { ch->counter -= oscillations; return output_changed; } else { ushort_t reload_val = ch->reload_value; if (ch->op_mode == SW_STROBE) { reload_val = 0xffff; } // TODO: Check this.... // Is this correct??? if (reload_val == 0) { reload_val = 1; } oscillations -= ch->counter; ch->counter = 0; channel_cycles = 1; if (ch->op_mode == SQR_WAVE) { reload_val -= reload_val % 2; } channel_cycles += oscillations / reload_val; oscillations = oscillations % reload_val; ch->counter = reload_val - oscillations; } // PrintDebug("8254 PIT: Channel Cycles: %d\n", channel_cycles); switch (ch->op_mode) { case IRQ_ON_TERM_CNT: if ((channel_cycles > 0) && (ch->output_pin == 0)) { ch->output_pin = 1; output_changed = 1; } break; case ONE_SHOT: if ((channel_cycles > 0) && (ch->output_pin == 0)) { ch->output_pin = 1; output_changed = 1; } break; case RATE_GEN: // See the data sheet: we ignore the output pin cycle... if (channel_cycles > 0) { output_changed = 1; } break; case SQR_WAVE: ch->output_pin = (ch->output_pin + 1) % 2; if (ch->output_pin == 1) { output_changed = 1; } break; case SW_STROBE: if (channel_cycles > 0) { if (ch->output_pin == 1) { ch->output_pin = 0; output_changed = 1; } } break; case HW_STROBE: PrintError("Hardware strobe not implemented\n"); return -1; break; default: break; } return output_changed; } static void pit_update_time(ullong_t cpu_cycles, ullong_t cpu_freq, void * private_data) { struct vm_device * dev = (struct vm_device *)private_data; struct pit * state = (struct pit *)dev->private_data; // ullong_t tmp_ctr = state->pit_counter; ullong_t tmp_cycles; uint_t oscillations = 0; /* PrintDebug("updating cpu_cycles="); PrintTraceLL(cpu_cycles); PrintDebug("\n"); PrintDebug("pit_counter="); PrintTraceLL(state->pit_counter); PrintDebug("\n"); PrintDebug("pit_reload="); PrintTraceLL(state->pit_reload); PrintDebug("\n"); */ if (state->pit_counter > cpu_cycles) { // Easy... state->pit_counter -= cpu_cycles; } else { ushort_t reload_val = state->pit_reload; // Take off the first part cpu_cycles -= state->pit_counter; state->pit_counter = 0; oscillations = 1; if (cpu_cycles > state->pit_reload) { // how many full oscillations //PrintError("cpu_cycles = %p, reload = %p...\n", // (void *)(addr_t)cpu_cycles, // (void *)(addr_t)state->pit_reload); // How do we check for a one shot.... if (state->pit_reload == 0) { reload_val = 1; } tmp_cycles = cpu_cycles; #ifdef __V3_64BIT__ cpu_cycles = tmp_cycles % state->pit_reload; tmp_cycles = tmp_cycles / state->pit_reload; #else cpu_cycles = do_divll(tmp_cycles, state->pit_reload); #endif oscillations += tmp_cycles; } // update counter with remainder (mod reload) state->pit_counter = state->pit_reload - cpu_cycles; //PrintDebug("8254 PIT: Handling %d crystal tics\n", oscillations); if (handle_crystal_tics(dev, &(state->ch_0), oscillations) == 1) { // raise interrupt PrintDebug("8254 PIT: Injecting Timer interrupt to guest\n"); v3_raise_irq(dev->vm, 0); } //handle_crystal_tics(dev, &(state->ch_1), oscillations); //handle_crystal_tics(dev, &(state->ch_2), oscillations); } return; } /* This should call out to handle_SQR_WAVE_write, etc... */ static int handle_channel_write(struct channel * ch, char val) { switch (ch->access_state) { case WAITING_HIBYTE: { ushort_t tmp_val = ((ushort_t)val) << 8; ch->reload_value &= 0x00ff; ch->reload_value |= tmp_val; if ((ch->op_mode != RATE_GEN) || (ch->run_state != RUNNING)){ ch->run_state = PENDING; } if (ch->access_mode == LOBYTE_HIBYTE) { ch->access_state = WAITING_LOBYTE; } PrintDebug("8254 PIT: updated channel counter: %d\n", ch->reload_value); PrintDebug("8254 PIT: Channel Run State=%d\n", ch->run_state); break; } case WAITING_LOBYTE: ch->reload_value &= 0xff00; ch->reload_value |= val; if (ch->access_mode == LOBYTE_HIBYTE) { ch->access_state = WAITING_HIBYTE; } else if ((ch->op_mode != RATE_GEN) || (ch->run_state != RUNNING)) { ch->run_state = PENDING; } PrintDebug("8254 PIT: updated channel counter: %d\n", ch->reload_value); PrintDebug("8254 PIT: Channel Run State=%d\n", ch->run_state); break; default: PrintError("Invalid Access state\n"); return -1; } switch (ch->op_mode) { case IRQ_ON_TERM_CNT: ch->output_pin = 0; break; case ONE_SHOT: ch->output_pin = 1; break; case RATE_GEN: ch->output_pin = 1; break; case SQR_WAVE: ch->output_pin = 1; break; case SW_STROBE: ch->output_pin = 1; break; default: PrintError("Invalid OP_MODE: %d\n", ch->op_mode); return -1; break; } return 0; } static int handle_channel_read(struct channel * ch, char * val) { ushort_t * myval; if (ch->latch_state == NOTLATCHED) { myval = &(ch->counter); } else { myval = &(ch->latched_value); } if (ch->read_state == LSB) { *val = ((char*)myval)[0]; // little endian ch->read_state = MSB; } else { *val = ((char*)myval)[1]; ch->read_state = LSB; if (ch->latch_state == LATCHED) { ch->latch_state = NOTLATCHED; } } return 0; } static int handle_channel_cmd(struct channel * ch, struct pit_cmd_word cmd) { ch->op_mode = cmd.op_mode; ch->access_mode = cmd.access_mode; switch (cmd.access_mode) { case LATCH_COUNT: if (ch->latch_state == NOTLATCHED) { ch->latched_value = ch->counter; ch->latch_state = LATCHED; } break; case HIBYTE_ONLY: ch->access_state = WAITING_HIBYTE; break; case LOBYTE_ONLY: case LOBYTE_HIBYTE: ch->access_state = WAITING_LOBYTE; break; } switch (cmd.op_mode) { case IRQ_ON_TERM_CNT: ch->output_pin = 0; break; case ONE_SHOT: ch->output_pin = 1; break; case RATE_GEN: ch->output_pin = 1; break; case SQR_WAVE: ch->output_pin = 1; break; case SW_STROBE: ch->output_pin = 1; break; default: PrintError("Invalid OP_MODE: %d\n", cmd.op_mode); return -1; } return 0; } static int pit_read_channel(ushort_t port, void * dst, uint_t length, struct vm_device * dev) { struct pit * state = (struct pit *)dev->private_data; char * val = (char *)dst; if (length != 1) { PrintError("8254 PIT: Invalid Read Write length \n"); return -1; } PrintDebug("8254 PIT: Read of PIT Channel %d\n", port - CHANNEL0_PORT); switch (port) { case CHANNEL0_PORT: if (handle_channel_read(&(state->ch_0), val) == -1) { PrintError("CHANNEL0 read error\n"); return -1; } break; case CHANNEL1_PORT: if (handle_channel_read(&(state->ch_1), val) == -1) { PrintError("CHANNEL1 read error\n"); return -1; } break; case CHANNEL2_PORT: if (handle_channel_read(&(state->ch_2), val) == -1) { PrintError("CHANNEL2 read error\n"); return -1; } break; default: PrintError("8254 PIT: Read from invalid port (%d)\n", port); return -1; } return length; } static int pit_write_channel(ushort_t port, void * src, uint_t length, struct vm_device * dev) { struct pit * state = (struct pit *)dev->private_data; char val = *(char *)src; if (length != 1) { PrintError("8254 PIT: Invalid Write Length\n"); return -1; } PrintDebug("8254 PIT: Write to PIT Channel %d (%x)\n", port - CHANNEL0_PORT, *(char*)src); switch (port) { case CHANNEL0_PORT: if (handle_channel_write(&(state->ch_0), val) == -1) { PrintError("CHANNEL0 write error\n"); return -1; } break; case CHANNEL1_PORT: if (handle_channel_write(&(state->ch_1), val) == -1) { PrintError("CHANNEL1 write error\n"); return -1; } break; case CHANNEL2_PORT: if (handle_channel_write(&(state->ch_2), val) == -1) { PrintError("CHANNEL2 write error\n"); return -1; } break; default: PrintError("8254 PIT: Write to invalid port (%d)\n", port); return -1; } return length; } static int pit_write_command(ushort_t port, void * src, uint_t length, struct vm_device * dev) { struct pit * state = (struct pit *)dev->private_data; struct pit_cmd_word * cmd = (struct pit_cmd_word *)src; PrintDebug("8254 PIT: Write to PIT Command port\n"); PrintDebug("8254 PIT: Writing to channel %d (access_mode = %d, op_mode = %d)\n", cmd->channel, cmd->access_mode, cmd->op_mode); if (length != 1) { PrintError("8254 PIT: Write of Invalid length to command port\n"); return -1; } switch (cmd->channel) { case 0: if (handle_channel_cmd(&(state->ch_0), *cmd) == -1) { PrintError("CHANNEL0 command error\n"); return -1; } break; case 1: if (handle_channel_cmd(&(state->ch_1), *cmd) == -1) { PrintError("CHANNEL1 command error\n"); return -1; } break; case 2: if (handle_channel_cmd(&(state->ch_2), *cmd) == -1) { PrintError("CHANNEL2 command error\n"); return -1; } break; case 3: // Read Back command PrintError("Read back command not implemented\n"); return -1; break; default: break; } return length; } static struct vm_timer_ops timer_ops = { .update_time = pit_update_time, }; static void init_channel(struct channel * ch) { ch->run_state = NOT_RUNNING; ch->access_state = NOT_WAITING; ch->access_mode = 0; ch->op_mode = 0; ch->counter = 0; ch->reload_value = 0; ch->output_pin = 0; ch->gate_input_pin = 0; ch->latched_value = 0; ch->latch_state = NOTLATCHED; ch->read_state = LSB; return; } static int pit_free(struct vm_device * dev) { return 0; } static struct v3_device_ops dev_ops = { .free = pit_free, .reset = NULL, .start = NULL, .stop = NULL, }; static int pit_init(struct guest_info * info, v3_cfg_tree_t * cfg) { struct pit * pit_state = NULL; struct vm_device * dev = NULL; char * name = v3_cfg_val(cfg, "name"); uint_t cpu_khz = V3_CPU_KHZ(); ullong_t reload_val = (ullong_t)cpu_khz * 1000; pit_state = (struct pit *)V3_Malloc(sizeof(struct pit)); V3_ASSERT(pit_state != NULL); dev = v3_allocate_device(name, &dev_ops, pit_state); if (v3_attach_device(info, dev) == -1) { PrintError("Could not attach device %s\n", name); return -1; } v3_dev_hook_io(dev, CHANNEL0_PORT, &pit_read_channel, &pit_write_channel); v3_dev_hook_io(dev, CHANNEL1_PORT, &pit_read_channel, &pit_write_channel); v3_dev_hook_io(dev, CHANNEL2_PORT, &pit_read_channel, &pit_write_channel); v3_dev_hook_io(dev, COMMAND_PORT, NULL, &pit_write_command); #ifdef CONFIG_DEBUG_PIT PrintDebug("8254 PIT: OSC_HZ=%d, reload_val=", OSC_HZ); PrintTraceLL(reload_val); PrintDebug("\n"); #endif v3_add_timer(info, &timer_ops, dev); // Get cpu frequency and calculate the global pit oscilattor counter/cycle do_divll(reload_val, OSC_HZ); pit_state->pit_counter = reload_val; pit_state->pit_reload = reload_val; init_channel(&(pit_state->ch_0)); init_channel(&(pit_state->ch_1)); init_channel(&(pit_state->ch_2)); #ifdef CONFIG_DEBUG_PIT PrintDebug("8254 PIT: CPU MHZ=%d -- pit count=", cpu_khz / 1000); PrintTraceLL(pit_state->pit_counter); PrintDebug("\n"); #endif return 0; } device_register("8254_PIT", pit_init);