#ifndef __VMM_EMULATE_H #define __VMM_EMULATE_H #include #include /* * This is where we do the hideous X86 instruction parsing among other things * We can parse out the instruction prefixes, as well as decode the operands */ typedef enum {INVALID_OPERAND, REG_OPERAND, MEM_OPERAND} operand_type_t; int parse(); struct x86_operand { addr_t operand; uint_t size; operand_type_t type; }; struct x86_prefix_list { uint_t lock : 1; }; /* This parses an instruction * All addresses in arguments are in the host address space */ int v3_parse_instr(struct guest_info * info, // input char * instr_ptr, // input uint_t * instr_length, // output addr_t * opcode, // output uint_t * opcode_length, // output struct x86_prefix_list * prefixes, // output struct x86_operand * src_operand, // output struct x86_operand * dst_operand, // output struct x86_operand * extra_operand); // output /* * JRL: Some of this was taken from the Xen sources... */ #define PACKED __attribute__((packed)) #define MODRM_MOD(x) ((x >> 6) & 0x3) #define MODRM_REG(x) ((x >> 3) & 0x7) #define MODRM_RM(x) (x & 0x7) struct modrm_byte { uint_t rm : 3 PACKED; uint_t reg : 3 PACKED; uint_t mod : 2 PACKED; }; #define SIB_BASE(x) ((x >> 6) & 0x3) #define SIB_INDEX(x) ((x >> 3) & 0x7) #define SIB_SCALE(x) (x & 0x7) struct sib_byte { uint_t base : 3 PACKED; uint_t index : 3 PACKED; uint_t scale : 2 PACKED; }; #define MAKE_INSTR(nm, ...) static const uchar_t OPCODE_##nm[] = { __VA_ARGS__ } /* * Here's how it works: * First byte: Length. * Following bytes: Opcode bytes. * Special case: Last byte, if zero, doesn't need to match. */ MAKE_INSTR(INVD, 2, 0x0f, 0x08); MAKE_INSTR(CPUID, 2, 0x0f, 0xa2); MAKE_INSTR(RDMSR, 2, 0x0f, 0x32); MAKE_INSTR(WRMSR, 2, 0x0f, 0x30); MAKE_INSTR(RDTSC, 2, 0x0f, 0x31); MAKE_INSTR(RDTSCP, 3, 0x0f, 0x01, 0xf9); MAKE_INSTR(CLI, 1, 0xfa); MAKE_INSTR(STI, 1, 0xfb); MAKE_INSTR(RDPMC, 2, 0x0f, 0x33); MAKE_INSTR(CLGI, 3, 0x0f, 0x01, 0xdd); MAKE_INSTR(STGI, 3, 0x0f, 0x01, 0xdc); MAKE_INSTR(VMRUN, 3, 0x0f, 0x01, 0xd8); MAKE_INSTR(VMLOAD, 3, 0x0f, 0x01, 0xda); MAKE_INSTR(VMSAVE, 3, 0x0f, 0x01, 0xdb); MAKE_INSTR(VMCALL, 3, 0x0f, 0x01, 0xd9); MAKE_INSTR(PAUSE, 2, 0xf3, 0x90); MAKE_INSTR(SKINIT, 3, 0x0f, 0x01, 0xde); MAKE_INSTR(MOV2CR, 3, 0x0f, 0x22, 0x00); MAKE_INSTR(MOVCR2, 3, 0x0f, 0x20, 0x00); MAKE_INSTR(MOV2DR, 3, 0x0f, 0x23, 0x00); MAKE_INSTR(MOVDR2, 3, 0x0f, 0x21, 0x00); MAKE_INSTR(PUSHF, 1, 0x9c); MAKE_INSTR(POPF, 1, 0x9d); MAKE_INSTR(RSM, 2, 0x0f, 0xaa); MAKE_INSTR(INVLPG, 3, 0x0f, 0x01, 0x00); MAKE_INSTR(INVLPGA,3, 0x0f, 0x01, 0xdf); MAKE_INSTR(HLT, 1, 0xf4); MAKE_INSTR(CLTS, 2, 0x0f, 0x06); MAKE_INSTR(LMSW, 3, 0x0f, 0x01, 0x00); MAKE_INSTR(SMSW, 3, 0x0f, 0x01, 0x00); #define PREFIX_LOCK 0xF0 #define PREFIX_REPNE 0xF2 #define PREFIX_REPNZ 0xF2 #define PREFIX_REP 0xF3 #define PREFIX_REPE 0xF3 #define PREFIX_REPZ 0xF3 #define PREFIX_CS_OVERRIDE 0x2E #define PREFIX_SS_OVERRIDE 0x36 #define PREFIX_DS_OVERRIDE 0x3E #define PREFIX_ES_OVERRIDE 0x26 #define PREFIX_FS_OVERRIDE 0x64 #define PREFIX_GS_OVERRIDE 0x65 #define PREFIX_BR_NOT_TAKEN 0x2E #define PREFIX_BR_TAKEN 0x3E #define PREFIX_OP_SIZE 0x66 #define PREFIX_ADDR_SIZE 0x67 static inline int is_prefix_byte(char byte) { switch (byte) { case 0xF0: // lock case 0xF2: // REPNE/REPNZ case 0xF3: // REP or REPE/REPZ case 0x2E: // CS override or Branch hint not taken (with Jcc instrs) case 0x36: // SS override case 0x3E: // DS override or Branch hint taken (with Jcc instrs) case 0x26: // ES override case 0x64: // FS override case 0x65: // GS override //case 0x2E: // branch not taken hint // case 0x3E: // branch taken hint case 0x66: // operand size override case 0x67: // address size override return 1; break; default: return 0; break; } } static inline v3_reg_t get_gpr_mask(struct guest_info * info) { switch (info->cpu_mode) { case REAL: return 0xffff; break; case PROTECTED: return 0xffffffff; default: V3_ASSERT(0); return 0; } } static inline addr_t get_addr_linear(struct guest_info * info, addr_t addr, struct v3_segment * seg) { switch (info->cpu_mode) { case REAL: // It appears that the segment values are computed and cached in the vmcb structure // We Need to check this for Intel /* return addr + (seg->selector << 4); break;*/ case PROTECTED: return addr + seg->base; break; default: V3_ASSERT(0); return 0; } } typedef enum {INVALID_ADDR_TYPE, REG, DISP0, DISP8, DISP16, DISP32} modrm_mode_t; typedef enum {INVALID_REG_SIZE, REG64, REG32, REG16, REG8} reg_size_t; struct v3_gprs; static inline addr_t decode_register(struct v3_gprs * gprs, char reg_code, reg_size_t reg_size) { addr_t reg_addr; switch (reg_code) { case 0: reg_addr = (addr_t)&(gprs->rax); break; case 1: reg_addr = (addr_t)&(gprs->rcx); break; case 2: reg_addr = (addr_t)&(gprs->rdx); break; case 3: reg_addr = (addr_t)&(gprs->rbx); break; case 4: if (reg_size == REG8) { reg_addr = (addr_t)&(gprs->rax) + 1; } else { reg_addr = (addr_t)&(gprs->rsp); } break; case 5: if (reg_size == REG8) { reg_addr = (addr_t)&(gprs->rcx) + 1; } else { reg_addr = (addr_t)&(gprs->rbp); } break; case 6: if (reg_size == REG8) { reg_addr = (addr_t)&(gprs->rdx) + 1; } else { reg_addr = (addr_t)&(gprs->rsi); } break; case 7: if (reg_size == REG8) { reg_addr = (addr_t)&(gprs->rbx) + 1; } else { reg_addr = (addr_t)&(gprs->rdi); } break; default: reg_addr = 0; break; } return reg_addr; } static inline operand_type_t decode_operands16(struct v3_gprs * gprs, // input/output char * modrm_instr, // input int * offset, // output addr_t * first_operand, // output addr_t * second_operand, // output reg_size_t reg_size) { // input struct modrm_byte * modrm = (struct modrm_byte *)modrm_instr; addr_t base_addr = 0; modrm_mode_t mod_mode = 0; operand_type_t addr_type = INVALID_OPERAND; char * instr_cursor = modrm_instr; PrintDebug("ModRM mod=%d\n", modrm->mod); instr_cursor += 1; if (modrm->mod == 3) { mod_mode = REG; addr_type = REG_OPERAND; PrintDebug("first operand = Register (RM=%d)\n",modrm->rm); *first_operand = decode_register(gprs, modrm->rm, reg_size); } else { addr_type = MEM_OPERAND; if (modrm->mod == 0) { mod_mode = DISP0; } else if (modrm->mod == 1) { mod_mode = DISP8; } else if (modrm->mod == 2) { mod_mode = DISP16; } switch (modrm->rm) { case 0: base_addr = gprs->rbx + gprs->rsi; break; case 1: base_addr = gprs->rbx + gprs->rdi; break; case 2: base_addr = gprs->rbp + gprs->rsi; break; case 3: base_addr = gprs->rbp + gprs->rdi; break; case 4: base_addr = gprs->rsi; break; case 5: base_addr = gprs->rdi; break; case 6: if (modrm->mod == 0) { base_addr = 0; mod_mode = DISP16; } else { base_addr = gprs->rbp; } break; case 7: base_addr = gprs->rbx; break; } if (mod_mode == DISP8) { base_addr += (uchar_t)*(instr_cursor); instr_cursor += 1; } else if (mod_mode == DISP16) { base_addr += (ushort_t)*(instr_cursor); instr_cursor += 2; } *first_operand = base_addr; } *offset += (instr_cursor - modrm_instr); *second_operand = decode_register(gprs, modrm->reg, reg_size); return addr_type; } static inline operand_type_t decode_operands32(struct v3_gprs * gprs, // input/output char * modrm_instr, // input int * offset, // output addr_t * first_operand, // output addr_t * second_operand, // output reg_size_t reg_size) { // input char * instr_cursor = modrm_instr; struct modrm_byte * modrm = (struct modrm_byte *)modrm_instr; addr_t base_addr = 0; modrm_mode_t mod_mode = 0; uint_t has_sib_byte = 0; operand_type_t addr_type = INVALID_OPERAND; instr_cursor += 1; if (modrm->mod == 3) { mod_mode = REG; addr_type = REG_OPERAND; PrintDebug("first operand = Register (RM=%d)\n",modrm->rm); *first_operand = decode_register(gprs, modrm->rm, reg_size); } else { addr_type = MEM_OPERAND; if (modrm->mod == 0) { mod_mode = DISP0; } else if (modrm->mod == 1) { mod_mode = DISP8; } else if (modrm->mod == 2) { mod_mode = DISP32; } switch (modrm->rm) { case 0: base_addr = gprs->rax; break; case 1: base_addr = gprs->rcx; break; case 2: base_addr = gprs->rdx; break; case 3: base_addr = gprs->rbx; break; case 4: has_sib_byte = 1; break; case 5: if (modrm->mod == 0) { base_addr = 0; mod_mode = DISP32; } else { base_addr = gprs->rbp; } break; case 6: base_addr = gprs->rsi; break; case 7: base_addr = gprs->rdi; break; } if (has_sib_byte) { instr_cursor += 1; struct sib_byte * sib = (struct sib_byte *)(instr_cursor); int scale = 1; instr_cursor += 1; if (sib->scale == 1) { scale = 2; } else if (sib->scale == 2) { scale = 4; } else if (sib->scale == 3) { scale = 8; } switch (sib->index) { case 0: base_addr = gprs->rax; break; case 1: base_addr = gprs->rcx; break; case 2: base_addr = gprs->rdx; break; case 3: base_addr = gprs->rbx; break; case 4: base_addr = 0; break; case 5: base_addr = gprs->rbp; break; case 6: base_addr = gprs->rsi; break; case 7: base_addr = gprs->rdi; break; } base_addr *= scale; switch (sib->base) { case 0: base_addr += gprs->rax; break; case 1: base_addr += gprs->rcx; break; case 2: base_addr += gprs->rdx; break; case 3: base_addr += gprs->rbx; break; case 4: base_addr += gprs->rsp; break; case 5: if (modrm->mod != 0) { base_addr += gprs->rbp; } break; case 6: base_addr += gprs->rsi; break; case 7: base_addr += gprs->rdi; break; } } if (mod_mode == DISP8) { base_addr += (uchar_t)*(instr_cursor); instr_cursor += 1; } else if (mod_mode == DISP32) { base_addr += (uint_t)*(instr_cursor); instr_cursor += 4; } *first_operand = base_addr; } *offset += (instr_cursor - modrm_instr); *second_operand = decode_register(gprs, modrm->reg, reg_size); return addr_type; } #endif