
1

Electrical Engineering and Computer Science Department

Technical Report

EECS-499

Abhinav Kannan

abhinavkannan2013@u.northwestern.edu

Prof. Peter Dinda

pdinda@northwestern.edu

Introduction to the Graphical User Interface for the Palacios VMM

2

TABLE OF CONTENTS

1 INTRODUCTION 3

2 REQUIREMENTS 3

3 BUILDING THE GUI MODULE 6

4 CODE STRUCTURE 8

5 USING THE GUI 10

6 FUTURE EXTENSIONS 13

ACKNOWLEDGEMENTS 13

REFERENCES 14

3

1. INTRODUCTION

The V3VEE project (v3vee.org) has created a virtual machine monitor framework for modern

architectures (those with hardware virtualization support) that enables the compile-time creation

of VMMs with different structures, including those optimized for computer architecture research

and use in high performance computing. V3VEE began as a collaborative project between

Northwestern University and the University of New Mexico. It currently includes Northwestern

University, the University of New Mexico, the University of Pittsburgh, Sandia National Labs,

and Oak Ridge National Lab. Research publications on using Palacios can be found on the

V3VEE project web site. For a quick start guide to Palacios refer [1]. A discussion of our and

others’ Palacios-based research is beyond the scope of this document.

This document describes the new Graphical User Interface (GUI) module of Palacios. The GUI

module is designed to help users to easily manage the creation and maintenance of Virtual

Machine instances. The interface is built on top of the existing Palacios command line tools and

serves as a graphical front-end engine for these tools. The following sections provide a detailed

description about the module. The current version of the GUI module is 1.0.

2. REQUIREMENTS

In order to run Palacios you will need either suitable hardware or an emulator, as well as a small

set of required build software. Almost any recent machine can be used for testing, and if none is

available a free emulator can be used. The needed build software is all free and is already a part

of typical Linux distributions, or can be readily installed. This document does not describe the

setup for Palacios VMM. For a quick startup guide refer [1].

The GUI module is built using the Qt framework [2]. Qt is a C++ framework developed by

Nokia. The latest version of Qt can be downloaded from their website. Qt is a very popular

framework and many applications including VirtualBox use Qt. A detailed discussion of Qt is

beyond the scope of the document but we will discuss components which are relevant to our

project. The module is available as part of the Palacios release which can be downloaded from

http://www.v3vee.org/palacios. The source is available in the form of a public git repository or

source snapshot releases.

To build the GUI module you would need the following libraries:

1 The GUI is built using the Qt framework. Qt is a popular framework for building desktop

and embedded applications and is supported by Nokia [2]. It is written in C++ language.

For more details in Qt kindly visit the website. Qt is a very well documented software

with a lot of examples and community forums for reference. You would need the Qt

http://www.v3vee.org/palacios
http://www.v3vee.org/palacios
http://www.v3vee.org/palacios

4

open-source linux distribution which is available for free on Qt’s website. The GUI

module currently uses version 4.8.4 but can be easily upgraded to the latest version.

2 LibVNCServer library which is used to support VNC controls in Palacios [3].

3 GnuTLS and supporting libraries to support VNC controls in Palacios [4].

We now describe the building process for these libraries.

2.1 Building Qt Libraries

Qt can be built either as a static library or a dynamic library. By using static libraries, Qt is built

as part of the application executable which frees you from the trouble of linking at compile time.

However static linking increases the size of the executable. If you decide to use dynamic linking

you must make sure to redistribute Qt libraries along with application executable. This has the

advantage of a smaller executable and gives the flexibility of compiling application code

separate from Qt.

Currently the GUI module is build using static Qt linking but we aim to support dynamic linking

in the next release. We describe the static build process in this document. For more details visit

Qt’s website.

1 Untar the Qt open source package which you downloaded into some directory on you

machine

2 cd to /path/to/Qt

3 Execute the configuration script. The -static option is used to indicate static linking

./configure -static -prefix <path where you want to install the Qt libraries> <additional

options>.

This process may take some time

4 Once Qt is configured execute the command,

make install

This process may take a long time

After completing the above steps the Qt libraries will be available in the prefix directory. If

prefix is not given the Qt is installed in /usr/local. The next release will feature shared library

support for Qt libraries. As of this release it is recommended to build Qt libraries once at the

beginning of the setup.

5

2.2 Building LibVNCServer

LibVNCServer is available freely [3]. The details of installation and various configuration

options are available in the README and INSTALL files of LibVNCServer. The basic setup for

building is similar to Qt,

1 cd /path/to/LibVNCServer

2 ./configure -prefix=<your path>

3 make

4 make install

After the 4th step the libvncserver library will be available in the prefix path. This will be used in

the GUI module to support the VNC interactions.

2.3 Building GnuTLS

GnuTLS is used by the GUI application to enable secure VNC communication across the

network. GnuTLS requires additional support libraries libgcrypt and libgpg-error. The source of

these libraries are available from [4]. Some of the versions of libgnutls works with only certain

other versions of libgcrypt and libgpg-error. It is important to check the version dependencies

before building the libraries. The build process for the libraries is again similar to the previous

procedures.

1 cd /path/to/gpg-error

2 ./configure -prefix <path>

3 cd /path/to/gcrypt

4 ./configure --with-gpg-error-prefix=<path of gpg-error> -prefix=<path>

5 cd /path/to/gnutls

6 ./configure --with-libgcrypt-prefix=<path of gcrypt> -prefix=<path>

7 make

Once the make is complete the library will be available in the prefix path. It would be better if

you put all the required libraries in the same path as it would be easier to find the libraries at

compile time.

The next section describes how to build the GUI module and how to link the above libraries.

6

3. BUILDING THE GUI MODULE

After successfully compiling all the required libraries, you can move on to building the GUI

module. Qt provides a utility called qmake which helps to automatically generate the Makefile

for the project. Instead Qt requires a .pro file which will be used by qmake to create the proper

Makefile for the project. We will describe how to create a .pro file which will be needed for the

project.

A simple structure of the .pro file is given below

TEMPLATE = app

TARGET = <app name>

QT += core gui xml <other qt modules if required>

CONFIG = debug_and_release

INCLUDEPATH += <include paths for header files if required>

LIBS += <list of libraries>

HEADERS += <list of header files>

SOURCES += <list of source files>

RESOURCES += <list of resources, ex. images>

For the purpose of this project it is sufficient to understand the above .pro structure. There are

other extensive options which can be added to the .pro file ex. if you need to support multiple

platforms and need to include platform specific information you can use conditional scoping of

Qt. For more details visit the website.

Most of the above labels are self-explanatory. The QT label specifies which Qt modules are

required by the application. In most of the cases the QtCore (core) and QtGui (gui) modules are

needed. Other modules can be included by adding it to the QT label. The CONFIG label

specifies the mode of building Qt. It is useful to have separate Debug and Release configurations

to easily manage the development process. The RESOURCES label is also interesting because it

is used to include resources such as images into the application. The resource file is define with a

.qrc extension and the format is similar to an Xml file, ex.

<RCC>

 <qresource prefix=”/images”>

 <file></file>

 </qresource>

</RCC>

7

The LIBS label should be used to include any shared libraries which might be used for the

application. Since we are using libvncserver and libgnutls, they will be added to the label.

To generate the Makefile you need to run qmake and pass in the .pro file as argument

qmake Palacios.pro

Depending on the configuration specified in the CONFIG label, qmake will generate the required

files ex. if the configuration is set as above qmake generates three Makefiles (Makefile,

Makefile.Debug and Makefile.Release). It is suggested to use the debug_and_release mode.

Once the makefiles are generated the GUI module can be built using

make <-f Makefile name>

To run the application type the following command

./Palacios

This will launch the GUI application.

3.1 Additional build instructions

In case you do not want to build Qt source we ship pre-compiled libraries for all the Qt libraries.

However, these are compiled for a particular Linux distribution and may not work. It is

recommended to download the Qt source code and statically compile the libraries following the

above steps in case GUI module fails to compile with the pre-compiled libraries. The

precompiled libraries are available in the libraries folder of the distribution. We also provide the

qmake utility. When using precompiled libraries you would need to make the following changes.

You need to make these changes to both Makefile.Debug and Makefile.Release files.

 Change INCPATH to point to the libraries folder for all the include paths

o –Ilibraries/mkspecs/linux-g++-64

o –Ilibraries/include, –Ilibraries/include/QtCore, -Ilibraries/include/QtGui and

–Ilibraries/include/QtXml

 Change LFLAGS = -m64, -Wl, -rpath, /path/to/libraries

 Change LIBS to point to the libraries path for all the shared libraries

o Change –L/usr/X11R6/lib64 to –L/usr/lib64

Run make. If the application fails to compile, it is suggested to use the previous method.

8

4. CODE STRUCTURE

We now consider the directory structure used by the GUI module.

4.1 Directory structure

The GUI code is included in the gui directory of the Palacios source code. The structure is given

below

palacios/

 gui/

 palacios/

 All the main source files are located here

 vnc_module/

 All the source files necessary for VNC communication

 libs/

 Used to store all the libraries used by Palacios

The main source files are described below:

● gui/palacios/newpalacios {.h, .cpp}

This is the main source and header file for the application. This file defines and

implements the main window of the application including UI creation and event

handling.

● gui/palacios/vm_console_widget {.h, .cpp}

 Define the UI widget to show the stream, console and vnc views of Palacios

● gui/palacios/vm_info_widget {.h, .cpp}

 Define the main widget of the application. This widget hosts the console widget and also

 shows information about the VM created by parsing the configuration file.

● gui/palacios/vm_threads.cpp

 Defines background threads used for loading, adding and deleting VM instances

9

● gui/palacios/defs.h

 Defines string constants for all UI labels used by the application

● gui/palacios/vnc_module

This directory hosts files which are used to support VNC interaction in Palacios. We

reuse an existing Qt VNC solution provided by KDE in their KRDC application. The

source was freely available without any license agreement [5].

The next section describes how to use the GUI module.

10

5. USING THE GUI

The application is built on top of the existing command line tools provided by Palacios. This

means that the application is effectively a frontend and all the background processing is still

done by the command line tools (or v3 tools). The goal of the application therefore is not to

replace the existing tools but provide a simple visual interface to the users to easily manage their

virtual machines. We describe the important features of the application.

5.1 Startup

When the application is launched all the VMs currently available on the machine are displayed in

a side pane. We separate the VMs on the machine into three categories

● Active VM in inventory

● Inactive VM in inventory

● Active VM but not in inventory

The state machine for Palacios is augmented with new states to support the GUI operations.

 VM Exists only as Image file

(unknown)

Cmd line create GUI Create

Exists only in

/proc/v3vee/v3-guests

(active not in inventory)

Exists only in application

database (inactive but in

inventory)

Exists in both /proc

and database (active

and in inventory)

GUI activate

Start, stop, pause,

and continue
Execute v3 tool (Existing

state machine)

11

There are two main sources for loading VMs, the /proc file and a text file (future versions will

support an SQL database to store information on VMs). It is important to understand the purpose

of these files.

The /proc/v3vee/v3-guests file is used by Palacios to hold information of the VMs created on the

machine using the command line tool v3_create. Any VM created using v3_create will update

the /proc file with the name of the VM and the device file (/dev/v3-vm#).

<Vm name1> /dev/v3-vm0

<Vm name2> /dev/v3-vm1

…

The text file (virtual_machines_list.txt) also stores information about VMs created from the

application. An entry in the text file is shown below

<Vm name>,<path of config file>,<dev file name>,<current state of VM>,<path of image file>

● Vm name - name of the VM

● Config file - path of the config file used to create the VM

● Device file - /dev/v3-vm# used to control the VM

● State - stopped, paused, running

● Image file - path of the image file used to create the VM

On startup, both the /proc file and the text file is read and the VMs are loaded into the

application.

5.2 Creating a VM

There are two ways a user can create a VM, using the GUI or using the v3_create utility.

5.2.1 Creating a VM using GUI

To create a new VM, users can either press the “New VM” icon on the toolbar or go to File and

click “New”. On clicking the button a wizard is launched which will guide you through the VM

creation process. The wizard prompts you to enter the name of the VM (unique name for easy

identification), the path of the config file and the path of the image file. On completing the

wizard a new VM entry is added to the inactive inventory of the application. At this point the

VM entry is added to the application database (currently a text file). All VMs created using the

wizard are initially inactive. To use the VM it must be activated. Activation can be done from the

menu or toolbar. Once the VM is activated it is added to the active inventory. This stage

corresponds to launching v3_create to create the VM. When the VM is created an entry is added

to the /proc file and the database is updated with the device file information.

12

5.2.2 Creating VM using command line

A VM can also be created without the GUI by directly running v3_create. This would update the

/proc file but the application will not be aware of such a VM. When the application is launched,

it queries the /proc file and compares with the internal database. Any VM not found in the

database is added to the active but not in inventory list. In order to use these VMs the users must

activate them. In this case the user will be prompted to provide information on the configuration

file and the image file used during v3_create. VMs which are available in both the /proc and

database are designated active and can be used. VMs available only in the database are inactive

but part of the inventory.

The purpose of providing the inventory structure for the VMs is to properly manage the state of

the VM. In case the system is restarted all the information in the /proc file is lost and all the

active VMs not in the inventory are lost. If the VM was activated it will be available in the

database and recreated. In the case the database is lost then all the VM instances are lost.

5.3 Running a VM

VMs which belong to the active inventory list can be run, other VMs need to be activated in

order to be used. To start a VM you can press the play button in the toolbar, right click and select

start or select start from the menu. On pressing play a dialog is launched which will ask you for

the mode of operation. Palacios supports three modes stream, console and VNC. If stream mode

is selected you will additionally asked to provide a stream name for communication. The VM is

launched as a tab in the UI. The UI supports VM pause, continue and stop as well which can be

triggered by selecting the appropriate options. All these tasks are handled by the command line

tools at the backend. Some of the command line tools support only one VM at a time, therefore

we cannot run two VMs with the same mode. The stream mode is an exception as multiple

streams can be opened at the same time. Closing the application while VMs are running is not

allowed. All VMs must either be paused or stopped before exiting the application. The

application will reload the VMs using the state information stored in the database.

5.4 Deleting a VM

Any VM can be deleted irrespective of the inventory. Right click on a VM and select “Delete

VM” to remove a VM from the system. If the inventory is active then it is removed from the

/proc file as well as the database. An inactive VM is deleted only from the database and a non-

active VM can be removed only from /proc. If a VM is running, it cannot be deleted.

13

5.5 Telemetry Information

The application displays telemetry information at the bottom. This is done my tailing into

/var/log/messages. In the next release we plan to display dmesg output at given time intervals.

5.6 Reloading VMs state

It is also possible to use the GUI and the command line tools simultaneously. We provide a

reload option which updates the state of the VMs in the application.

5.7 Assumptions

It is assumed that the following steps are completed before starting the application:

 Install Palacios kernel module

 Setup memory for Palacios

 Set PATH variable to point to the location of the v3 tools (/path/to/linux_usr)

6. FUTURE EXTENSIONS

Since Palacios is continuously evolving we can expect new features to be added to the GUI

module in future releases. The current planned upgrades are:

1 Support for SQL database backend in place of text file database.

2 Support for VM checkpointing

3 Support for periodic telemetry information

4 UI improvements

As Palacios continues to evolve the GUI module will expand to support the new VM features.

ACKNOWLEDGMENT

I would like to thank Prof. Peter Dinda for his continued guidance throughout the duration of the

project providing valuable ideas and support. I would also like to thank Kyle Hale, Maciej

Swiech and Lei Xia for providing feedback during the implementation phase of the project.

This project is made possible by support from the National Science Foundation (NSF) via grants

CNS-0709168 (Northwestern), CNS-0707365 (UNM), and the Department of Energy (DOE) via

grant DE-SC0005343 (Northwestern, UNM, U.Pittsburgh, Sandia, and ORNL).

14

REFERENCES

[1] “An Introduction to the Palacios Virtual Machine Monitor---Version 1.3

http://www.v3vee.org/palacios/palacios-1.3-tr.pdf

[2] http://qt-project.org/

[3] “Qt implementation of LibVNCClient”, http://libvncserver.sourceforge.net/success.html

[4] “GnuTLS download link” ftp://ftp.gnutls.org/gcrypt

[5] “KRDC Qt Vnc”,

http://websvn.kde.org/trunk/KDE/kdenetwork/krdc/vnc/qtonly/README?view=markup

http://www.v3vee.org/palacios/palacios-1.3-tr.pdf
http://www.v3vee.org/palacios/palacios-1.3-tr.pdf
http://www.v3vee.org/palacios/palacios-1.3-tr.pdf
%20
%20
%20
%20
ftp://ftp.gnutls.org/gcrypt
http://websvn.kde.org/trunk/KDE/kdenetwork/krdc/vnc/qtonly/README?view=markup

