
Palacios Internal Developer Manual

March 3, 2009

This manual is written for Internal Palacios developers. It contains information on how to obtain the palacios
code base, how to go about the development process, and how to commit those changes to the mainline
source tree. This assumes that the reader has read An Introduction to the Palacios Virtual Machine Monitor
– Release 1.0 and also has a slight working knowledge of git.

1 Overview

Both Palacios and Kitten follow a hybrid development process that uses both the centralized repository and
distributed development models. A central repository exists that holds the master version of the code base.
This central repository is cloned by multiple people and in multiple places to support various development
efforts. A feature of git is that every developer actually has a fully copy of the entire repository, and so can
function independently until such time as they need to resync with the master version.

There are typically multiple levels of access to the central repository, that are granted based on the type of
developer being granted access. The three basic developer types and their access privileges are:

• Core Developers: These are the lead developers and are in charge of managing the master repository.
They have full read/write access permissions to the central repository.

• Internal Developers: Formal members of the development team. These people are capable of pulling
directly from the central repository, but lack the ability to write directly to it.

1

• External Developers: People who are not actual members of the development team. These people can
only access the public repository which is only updated to contain the release versions.

Because internal and external developers cannot write directly to the master repository, they need to first
submit their changes to a core developer before they can be added to the mainline. We will discuss that
process in Section ??.

2 Checking out Palacios

The central palacios repository is located on newskysaw.cs.northwestern.edu in /home/palacios/palacios.
All internal developers have read access to the directory. Each developer must create their own local version
of the repository, this is done with git clone.

git clone /home/palacios/palacios

This creates a local copy of the repository at ./palacios/.

All development work is done in the devel branch of the repository. The developer can access this branch
via:

git checkout --track -b devel origin/devel

or

/opt/vmm-tools/bin/checkout_branch devel

Important: Note that palacios is very actively developed so the contents of the devel branch are frequently
changing. In order to keep up to date with the latest version, it is necessary to periodically pull the latest
changes from the master repository by running git pull.

3 Checking out Kitten

Kitten is available from Sandia National Labs, and is the main host OS we are targetting with Palacios.
Loosely speaking core Palacios developers are internal Kitten developers, and internal Palacios developers
are external Kitten developers. Because we have limited access to the Kitten repository, we are maintaining
a local mirror copy in /home/palacios/kitten.

Kitten uses Mercurial for their source management, so you will have to make sure the local mercurial version
is configured correctly. Specifically you should add the following python path to your shell environment.

export PYTHONPATH=/usr/local/lib64/python2.4/site-packages/

2

You can then clone Kitten from the local mirror:

hg clone /home/palacios/kitten

Both the Kitten and Palacios clone commands should be run from the same direcotyr. This means that both
repositories should be located at the same directory level. The Kitten build process depends on this.

Important: Like Palacios, Kitten is very actively developed so source tree is frequently changing. In order to
keep up to date with the latest version, it is necessary to periodically pull the latest changes from the mirror
repository by running hg pull followed by hg update.

4 Compiling Palacios

Palacios is capable of targeting 32 and 64 bit operating systems, and includes a build process that supports
both these architectures. Furthermore, Palacios has multiple build locations, with multiple makefiles: a top
level build directory and a Palacios specific build directory. The Palacios build process first generates a
static library that includes the Palacios VMM. This static library is then linked into a host operating system.
Palacios internally supports GeekOS and can generate a complete OS image via a unified build process. To
combine Palacios with Kitten, it is necessary to first compile Palacios and then to compile Kitten externally
link it with Palacios. The output of the compilation process is a bit more complex and generates multiple
binaries, and the specifics can be found in the Makefiles.

The top level build directory provides a number of high level make targets, and is located in palacios/build/.
It supports building 32 and 64 bit versions of the Palacios library independently as well as building an
integrated version of GeekOS. The basic targets are:

• make palacios-full32 – Generates a 32 bit version of the Palacios static library

• make palacios-full64 – Generates a 64 bit version of the Palacios static library

• make geekos – Compiles the GeekOS kernel, and link it with the Palacios static library

• make geekos-iso – Generate an ISO boot disk image from the GeekOS kernel that has been
compiled

The second build directory is located at palacios/palacios/build and handles only the Palacios compilation
process. It supports a differnt set of targets and arguments:

• make ARCH=32 – iteratively compiles a 32 bit version of Palacios

• make ARCH=64 – iteratively compiles a 64 bit version of Palacios

• make ARCH=32 world – fully recompiles a 32 bit version of Palacios

• make ARCH=64 world – fully recompiles a 64 bit version of Palacios

3

Both build levels support compilation directives that control the debugging messages that are generated by
Palacios. These are specified by appending a DEBUG_<COMPONENT>=1 to the end of the make command.
The components that are currently supported are:

• DEBUG_ALL=1 – enables debugging for all the VMM components (Warning: this generates a lot of
debug information.

• DEBUG_SHADOW_PAGING=1

• DEBUG_CTRL_REGS=1

• DEBUG_INTERRUPTS=1

• DEBUG_IO=1

• DEBUG_KEYBOARD=1

• DEBUG_PIC=1

• DEBUG_PIT=1

• DEBUG_NVRAM=1

• DEBUG_GENERIC=1

• DEBUG_EMULATOR=1

• DEBUG_RAMDISK=1

• DEBUG_XED=1

• DEBUG_HALT=1

• DEBUG_DEV_MGR=1

• DEBUG_APIC=1

5 Compiling Kitten

Kitten requires a 64 bit version of Palacios, so make sure that Palacios has been correctly compiled before
compiling Kitten.

5.1 Configuration

Kitten borrows a lot of concepts from Linux, including the Linux build process. As such it must be con-
figured before it is actually compiled. The Kitten configuration process is the same as Linux, and can be
accessed via any of these make targets.

4

• make xconfig

• make config

• make menuconfig

There are some specific configuration options that should be disabled to work with Palacios. Because
Palacios is configured by default to provide a guest with direct access to the VGA console, the VGA console
device driver should be disbabled in the Kitten configuration. Similarly the VM console driver should be
disabled as well.

Furthermore, because the VGA console is not being used the Kernel Command Line Arguments must be
modified to remove the VGA device from the console list.

The guest OS that is booted as a VM is included as an ISO image in raw binary format inside Kitten’s
init task. To change the guest ISO, you must change the makefile for the init task. This is located in
user/hello world/Makefile and the syntax is well commented. On newskysaw a collection of guest ISO
images are located in /opt/vmm-tools/isos/.

5.2 Compilation

After Kitten has been configured the compilation can be done. The general process is to compile a reference
build of Kitten, followed by compiling Palacios support as a kernel module, and then doing a new full
recompilation of Kitten.

The specific compilation steps are run from the top level Kitten directory:

make
cd palacios
make -C .. M=‘pwd‘
cp built-in.o ../modules/palacios-mod.o
cd ..
make
make isoimage

This generates an ISO boot image containing Kitten, Palacios, and the guest that will be run as a VM. The
ISO image is located at ./arch/x86 64/boot/image.iso.

6 Running Palacios/Kitten

Kitten and Palacios are capable of running under Qemu, which makes debugging much simpler.

The basic form of the command to start the Qemu emulator is:

/usr/local/qemu/bin/qemu-system-x86_64 -smp 1 -m 1024 \

5

-serial file:./serial.out \
-cdrom ./arch/x86_64/boot/image.iso \
< /dev/null

The command starts up a single processor emulated machine, with 1gig of RAM and a cdrom drive loaded
with the Kitten ISO image. Furthermore all output to the serial port is written directly to a file called
serial.out. This command can be copied into a shell script for easy access.

7 Development Guidelines

There are standard requirements we have for code entering the mainline.

First and foremost, Palacios is designed to be OS indenpendent and support 32 and 64 bit architectures. This
means that developers should not include any external OS specific dependencies in any Palacios component.
Also all changes need to be tested on both 32 and 64 bit architectures to make sure that they compile as well
as run corrrectly.

Coding Style ”The use of equal negative space, as a balance to positive space, in a composition is consid-
ered by many as good design. This basic and often overlooked principle of design gives the eye a ”place to
rest,” increasing the appeal of a composition through subtle means.”

Translation: Use the spacebar, newlines, and parentheses.

Curly-brackets are not optional, even for single line conditionals.

Tabs should be 4 characters in width.

Special: If you are using XEmacs add the following to your init\el. file:

(setq c-basic-offset 4)
(c-set-offset ’case-label 4)

Bad

if(a&&b==5||c!=0) return;

Good

if (((a) && (b == 5)) ||
(c != 0)) {

return;
}

6

Fail Stop Because booting a basic linux kernel results in over 1 million VM exits catching silent errors
is next to impossible. For this reason ANY time your code has an error it should return -1, and expect the
execution to halt.

This includes unimplemented features and unhandled cases. These cases should ALWAYS return -1.

Function names Externally visible function names should be used rarely and have unique names. Cur-
rently we have several techniques for achieving this:

1. #ifdefs in the header file
When the V3 Hypervisor is compiled it defines the symbol __V3VEE__ Any function that is not
needed outside the Hypervisor context should be inside an #ifdef __V3VEE__ block, this will
make it invisible to the host environment.

2. Static Functions
Any utility functions that are only needed in the .c file where they are defined should be declared as
static and not included in the header file. You should make an effort to use static functions whenever
possible.

3. v3_ prefix
Major interface functions should be named with the prefix v3_ This xallows easy understanding of
how to interact with the subsystems. And in the case that they need to be externally visible to the host
os, make them unlikely to collide with other functions.

Debugging Output Debugging output is sent through the host os via functions in the os_hooks struc-
ture. These functions have various wrappers of the form Print*, with printf style semantics.

Two functions of note are PrintDebug and PrintError.

• PrintDebug:
Should be used for debugging output that will often be turned off selectively by the VMM configura-
tion.

• PrintError
Should be used when an error occurs, this will never be optimized out and will always print.

8 Code Submission

To commit changes to the central repository they need to be exported as a patch set that can be applied
directly to a mainline. Both Git and Mercurial contain functionality to allow developers to maintain changes
as a patch set. There are also a few options that make dealing with patches easier.

7

8.1 Palacios

Git includes support for directly exporting local repository commits as a patch set. The basic operation is
for a developer to commit a change to a local repository, and then export that change as a patch that can be
applied to another git repository. While this is functionally possible, there are a number of issues. The main
problem is that it is difficult to fully encapsulate a new feature in a single commit, and dealing with multiple
patches that often overwrite each other is not a viable option either. Furthermore, once a patch is applied to
the mainline, it will generate a conflicting commit that will become present when the developer next pulls
from the central repository. This can result in both repositories getting out of sync. It is possible to deal with
this by manually rebasing the local repository, but it is difficult and error-prone.

This approach also does not map well when patches are being revised. A normal patch will go through
multiple revisions as it is reviewed and modified by others. This often leads to synchronization issues as
well as errors with patch revisions. Ultimately it is the responsibility of the developer to generate a patch
that will apply cleanly to the mainline.

For this reason most internal developers should seriously consider stacked git. Stacked git is designed to
make patch development easier and less of a headache. The basic mode of operation is for a developer to
intialize a patch for a new feature and then continuously apply changes to the patch. Stacked Git allows
a developer to layer a series of patches on top of a local git repository, without causing the repository to
unsync due to local commits. Basically, the developer never commits changes to the repository itself but
instead commits the changes to a specific patch. The local patches are managed using stack operations
(push/pop) which allows a developer to apply and unapply patches as needed. Stacked git also manages new
changes to the underlying git repository as a result of a pull operation and prevents collisions as changes
are propagated upstream. For instance if you have a local patch that is applied to the mainline as a commit,
when the commit is pulled down the patch becomes empty because it is effectively identical to the mainline.
It also makes incorporating external revisions to a patch easier. Stacked git is installed on newskysaw in
/opt/vmm-tools/bin/

Brief command overview:

• stg init – Initialize stacked git in a given branch

• stg new – create a new patch set, an editor will open asking for a commit message that will be used
when the patch is ultimately committed.

• stg pop – pops a patch off of the source tree.

• stg push – pushes a patch back on to a source tree.

• stg export – exports a patch to a directory as a file that can then be emailed.

• stg refresh – commits local changes to the patch set at the top of the applied stack.

• stg fold – Apply a patch file to the current patch. (This is how you can manage revisions that are
made by other developers).

8

Master
(~palacios/palacios_master)

Current Version
(~palacios/palacios)

Pull

Jack

DEV Email
Patch

Push

Pull

Web Repo

Pull

Pull

External
Developer

Email
Patch

Pull

Figure 1: Development organization

You should definately look at the online documentation to better understand how stacked git works. It is
not required of course, but if you want your changes to be applied its up to you to generate a patch that is
acceptable to a core developer. Ultimately using Stacked git should be easier than going it alone.

All patches should be emailed to Jack for inclusion in the mainline. An overview of the organization is
given in Figure ??. You should assume that the first revision of a patch will not be accepted, and that you
will have to make changes. Furthermore, the final form of the patch most likely will not be exactly what you
submitted.

8.2 Kitten

Writing code for Kitten follows essentially the same process as Palacios. The difference is that the patches
need to be emailed to the Kitten developers. To send in a patch, you can just email it to the V3Vee develop-
ment list.

Also, instead of Stacked git you should use Mercurial patch queues. This feature is enabled in your .hgrc
file.

[extensions]
hgext.mq=

Mercurial queues use the same stack operations as stacked git, however it does not automatically handle the

9

synchronization with pull operations. Before you update from the central version of Kitten you need to pop
all of the patches, and then push them once the update is complete.

Basically:

hg qpop -a
hg pull
hg update
hg qpush -a

9 Networking

10 Configuring the development host’s Qemu network

Set up Tap interfaces:

/root/util/tap create tapX

Bridging tapX with eth1 will only work (work = send packet and also make packet visible on localhost) if
the IP address is set correctly (correctly = match network it is connected to e.g., network of eth1) so bring
up the network inside of the VM / QEMU as 10-net, and it should route through the eth1 rule and be visible
both on the host and in the physical network

10.1 Configuring Kitten

To enable networking in Qemu, networking needs to be enabled in the configuration.

Make sure turn on the network device driver, networking, and input kernel command ’console=serial net=rtl8139’

How to set ip address in kitten:

Kitten ip address setting is in file drivers/net/ne2k/rtl8139.c, in the code below which is located in function
rtl8139 init.

struct ip addr ipaddr = htonl(0 — 10 ¡¡ 24 — 0 ¡¡ 16 — 2 ¡¡ 8 — 16 ¡¡ 0) ; struct ip addr netmask =
htonl(0xffffff00) ; struct ip addr gw = htonl(0 — 10 ¡¡ 24 — 0 ¡¡ 16 — 2 ¡¡ 8 — 2 ¡¡ 0) ;

This sets the ip address as 10.0.2.16, netmask 255.255.255.0 and gateway address 10.0.2.2, change it as you
need.

10.2 Running with networking

Tap Interface In which, the command line:

-net tap, ifname=tap2

10

specifies Qemu to use the host’s tap0 as its network interface, then Qemu can access the host’s physical
network.

Redirection Also you can use the following command instead to redirect host’s 9555 port to Qemu’s 80
port.

-net user -net nic,model=rtl8139 -redir tcp:9555::80

In this case, you can access Qemu’s 80 port in the host like:

telnet localhost 9555

Qemu has many options to build up a virtual or real networking. See http://www.h7.dion.ne.jp/ qemu-
win/HowToNetwork-en.html for more information.

For more questions, talk to Jack or Lei.

11

