X-Git-Url: http://v3vee.org/palacios/gitweb/gitweb.cgi?a=blobdiff_plain;f=palacios%2Fsrc%2Fpalacios%2Fvmm_mem.c;h=7994cc404b3aff9d976ef92e118bcfaffee36717;hb=1d2dda0a2e9a65efed3ea09a5fabf958cba8666d;hp=05370061545fd7b0ed70c899d231e68a569c75d4;hpb=7c5eb89937c0fec5cb055fa243ec71c27b86be55;p=palacios.git diff --git a/palacios/src/palacios/vmm_mem.c b/palacios/src/palacios/vmm_mem.c index 0537006..7994cc4 100644 --- a/palacios/src/palacios/vmm_mem.c +++ b/palacios/src/palacios/vmm_mem.c @@ -20,310 +20,511 @@ #include #include #include -//#include #include +#include +#include +#include +static int mem_offset_hypercall(struct guest_info * info, uint_t hcall_id, void * private_data) { + PrintDebug("V3Vee: Memory offset hypercall (offset=%p)\n", + (void *)(info->vm_info->mem_map.base_region.host_addr)); -static inline -struct v3_shadow_region * insert_shadow_region(struct guest_info * info, - struct v3_shadow_region * region); + info->vm_regs.rbx = info->vm_info->mem_map.base_region.host_addr; + return 0; +} + +static int unhandled_err(struct guest_info * core, addr_t guest_va, addr_t guest_pa, + struct v3_mem_region * reg, pf_error_t access_info) { + PrintError("Unhandled memory access error\n"); -void v3_init_shadow_map(struct guest_info * info) { - v3_shdw_map_t * map = &(info->mem_map); + v3_print_mem_map(core->vm_info); - map->shdw_regions.rb_node = NULL; - map->hook_hva = (addr_t)V3_VAddr(V3_AllocPages(1)); + v3_print_guest_state(core); + return -1; } -void v3_delete_shadow_map(struct guest_info * info) { - struct rb_node * node = v3_rb_first(&(info->mem_map.shdw_regions)); - struct v3_shadow_region * reg; - struct rb_node * tmp_node = NULL; - - while (node) { - reg = rb_entry(node, struct v3_shadow_region, tree_node); - tmp_node = node; - node = v3_rb_next(node); +int v3_init_mem_map(struct v3_vm_info * vm) { + struct v3_mem_map * map = &(vm->mem_map); + addr_t mem_pages = vm->mem_size >> 12; - v3_delete_shadow_region(info, reg); - } -} + memset(&(map->base_region), 0, sizeof(struct v3_mem_region)); + map->mem_regions.rb_node = NULL; + // There is an underlying region that contains all of the guest memory + // PrintDebug("Mapping %d pages of memory (%u bytes)\n", (int)mem_pages, (uint_t)info->mem_size); + // 2MB page alignment needed for 2MB hardware nested paging + map->base_region.guest_start = 0; + map->base_region.guest_end = mem_pages * PAGE_SIZE_4KB; -int v3_add_shadow_mem( struct guest_info * info, - addr_t guest_addr_start, - addr_t guest_addr_end, - addr_t host_addr) -{ - struct v3_shadow_region * entry = (struct v3_shadow_region *)V3_Malloc(sizeof(struct v3_shadow_region)); - - entry->guest_start = guest_addr_start; - entry->guest_end = guest_addr_end; - entry->host_type = SHDW_REGION_ALLOCATED; - entry->host_addr = host_addr; - entry->write_hook = NULL; - entry->read_hook = NULL; - entry->priv_data = NULL; - - if (insert_shadow_region(info, entry)) { - V3_Free(entry); - return -1; - } +#ifdef CONFIG_ALIGNED_PG_ALLOC + map->base_region.host_addr = (addr_t)V3_AllocAlignedPages(mem_pages, vm->mem_align); +#else + map->base_region.host_addr = (addr_t)V3_AllocPages(mem_pages); +#endif - return 0; + map->base_region.flags.read = 1; + map->base_region.flags.write = 1; + map->base_region.flags.exec = 1; + map->base_region.flags.base = 1; + map->base_region.flags.alloced = 1; + + map->base_region.unhandled = unhandled_err; + + if ((void *)map->base_region.host_addr == NULL) { + PrintError("Could not allocate Guest memory\n"); + return -1; + } + + //memset(V3_VAddr((void *)map->base_region.host_addr), 0xffffffff, map->base_region.guest_end); + + v3_register_hypercall(vm, MEM_OFFSET_HCALL, mem_offset_hypercall, NULL); + + return 0; } +void v3_delete_mem_map(struct v3_vm_info * vm) { + struct rb_node * node = v3_rb_first(&(vm->mem_map.mem_regions)); + struct v3_mem_region * reg; + struct rb_node * tmp_node = NULL; + + while (node) { + reg = rb_entry(node, struct v3_mem_region, tree_node); + tmp_node = node; + node = v3_rb_next(node); -int v3_hook_write_mem(struct guest_info * info, addr_t guest_addr_start, addr_t guest_addr_end, - addr_t host_addr, - int (*write)(addr_t guest_addr, void * src, uint_t length, void * priv_data), - void * priv_data) { + v3_delete_mem_region(vm, reg); + } - struct v3_shadow_region * entry = (struct v3_shadow_region *)V3_Malloc(sizeof(struct v3_shadow_region)); + V3_FreePage((void *)(vm->mem_map.base_region.host_addr)); +} - entry->guest_start = guest_addr_start; - entry->guest_end = guest_addr_end; - entry->host_type = SHDW_REGION_WRITE_HOOK; - entry->host_addr = host_addr; - entry->write_hook = write; - entry->read_hook = NULL; - entry->priv_data = priv_data; +struct v3_mem_region * v3_create_mem_region(struct v3_vm_info * vm, uint16_t core_id, + addr_t guest_addr_start, addr_t guest_addr_end) { + + struct v3_mem_region * entry = (struct v3_mem_region *)V3_Malloc(sizeof(struct v3_mem_region)); + memset(entry, 0, sizeof(struct v3_mem_region)); - if (insert_shadow_region(info, entry)) { - V3_Free(entry); - return -1; - } + entry->guest_start = guest_addr_start; + entry->guest_end = guest_addr_end; + entry->core_id = core_id; + entry->unhandled = unhandled_err; - return 0; + return entry; } -int v3_hook_full_mem(struct guest_info * info, addr_t guest_addr_start, addr_t guest_addr_end, - int (*read)(addr_t guest_addr, void * dst, uint_t length, void * priv_data), - int (*write)(addr_t guest_addr, void * src, uint_t length, void * priv_data), - void * priv_data) { - - struct v3_shadow_region * entry = (struct v3_shadow_region *)V3_Malloc(sizeof(struct v3_shadow_region)); - - entry->guest_start = guest_addr_start; - entry->guest_end = guest_addr_end; - entry->host_type = SHDW_REGION_FULL_HOOK; - entry->host_addr = (addr_t)NULL; - entry->write_hook = write; - entry->read_hook = read; - entry->priv_data = priv_data; - - if (insert_shadow_region(info, entry)) { - V3_Free(entry); - return -1; - } - return 0; -} +int v3_add_shadow_mem( struct v3_vm_info * vm, uint16_t core_id, + addr_t guest_addr_start, + addr_t guest_addr_end, + addr_t host_addr) +{ + struct v3_mem_region * entry = NULL; + entry = v3_create_mem_region(vm, core_id, + guest_addr_start, + guest_addr_end); -static inline -struct v3_shadow_region * __insert_shadow_region(struct guest_info * info, - struct v3_shadow_region * region) { - struct rb_node ** p = &(info->mem_map.shdw_regions.rb_node); - struct rb_node * parent = NULL; - struct v3_shadow_region * tmp_region; - - while (*p) { - parent = *p; - tmp_region = rb_entry(parent, struct v3_shadow_region, tree_node); - - if (region->guest_end <= tmp_region->guest_start) { - p = &(*p)->rb_left; - } else if (region->guest_start >= tmp_region->guest_end) { - p = &(*p)->rb_right; - } else { - return tmp_region; + entry->host_addr = host_addr; + + + entry->flags.read = 1; + entry->flags.write = 1; + entry->flags.exec = 1; + entry->flags.alloced = 1; + + if (v3_insert_mem_region(vm, entry) == -1) { + V3_Free(entry); + return -1; } - } - rb_link_node(&(region->tree_node), parent, p); - - return NULL; + return 0; } -static inline -struct v3_shadow_region * insert_shadow_region(struct guest_info * info, - struct v3_shadow_region * region) { - struct v3_shadow_region * ret; - if ((ret = __insert_shadow_region(info, region))) { - return ret; - } - - v3_rb_insert_color(&(region->tree_node), &(info->mem_map.shdw_regions)); +static inline +struct v3_mem_region * __insert_mem_region(struct v3_vm_info * vm, + struct v3_mem_region * region) { + struct rb_node ** p = &(vm->mem_map.mem_regions.rb_node); + struct rb_node * parent = NULL; + struct v3_mem_region * tmp_region; + + while (*p) { + parent = *p; + tmp_region = rb_entry(parent, struct v3_mem_region, tree_node); + + if (region->guest_end <= tmp_region->guest_start) { + p = &(*p)->rb_left; + } else if (region->guest_start >= tmp_region->guest_end) { + p = &(*p)->rb_right; + } else { + if ((region->guest_end != tmp_region->guest_end) || + (region->guest_start != tmp_region->guest_start)) { + PrintError("Trying to map a partial overlapped core specific page...\n"); + return tmp_region; // This is ugly... + } else if (region->core_id == tmp_region->core_id) { + return tmp_region; + } else if (region->core_id < tmp_region->core_id) { + p = &(*p)->rb_left; + } else { + p = &(*p)->rb_right; + } + } + } - return NULL; + rb_link_node(&(region->tree_node), parent, p); + + return NULL; } - - +int v3_insert_mem_region(struct v3_vm_info * vm, struct v3_mem_region * region) { + struct v3_mem_region * ret; + int i = 0; + if ((ret = __insert_mem_region(vm, region))) { + return -1; + } + v3_rb_insert_color(&(region->tree_node), &(vm->mem_map.mem_regions)); + + + + for (i = 0; i < vm->num_cores; i++) { + struct guest_info * info = &(vm->cores[i]); + + // flush virtual page tables + // 3 cases shadow, shadow passthrough, and nested + + if (info->shdw_pg_mode == SHADOW_PAGING) { + v3_mem_mode_t mem_mode = v3_get_vm_mem_mode(info); + + if (mem_mode == PHYSICAL_MEM) { + addr_t cur_addr; + + for (cur_addr = region->guest_start; + cur_addr < region->guest_end; + cur_addr += PAGE_SIZE_4KB) { + v3_invalidate_passthrough_addr(info, cur_addr); + } + } else { + v3_invalidate_shadow_pts(info); + } + + } else if (info->shdw_pg_mode == NESTED_PAGING) { + addr_t cur_addr; + + for (cur_addr = region->guest_start; + cur_addr < region->guest_end; + cur_addr += PAGE_SIZE_4KB) { + + v3_invalidate_nested_addr(info, cur_addr); + } + } + } -int handle_special_page_fault(struct guest_info * info, - addr_t fault_gva, addr_t fault_gpa, - pf_error_t access_info) -{ - struct v3_shadow_region * reg = v3_get_shadow_region(info, fault_gpa); + return 0; +} + - PrintDebug("Handling Special Page Fault\n"); - switch (reg->host_type) { - case SHDW_REGION_WRITE_HOOK: - return v3_handle_mem_wr_hook(info, fault_gva, fault_gpa, reg, access_info); - case SHDW_REGION_FULL_HOOK: - return v3_handle_mem_full_hook(info, fault_gva, fault_gpa, reg, access_info); - default: - return -1; - } - return 0; +struct v3_mem_region * v3_get_mem_region(struct v3_vm_info * vm, uint16_t core_id, addr_t guest_addr) { + struct rb_node * n = vm->mem_map.mem_regions.rb_node; + struct v3_mem_region * reg = NULL; + + while (n) { + + reg = rb_entry(n, struct v3_mem_region, tree_node); + + if (guest_addr < reg->guest_start) { + n = n->rb_left; + } else if (guest_addr >= reg->guest_end) { + n = n->rb_right; + } else { + if (reg->core_id == V3_MEM_CORE_ANY) { + // found relevant region, it's available on all cores + return reg; + } else if (core_id == reg->core_id) { + // found relevant region, it's available on the indicated core + return reg; + } else if (core_id < reg->core_id) { + // go left, core too big + n = n->rb_left; + } else if (core_id > reg->core_id) { + // go right, core too small + n = n->rb_right; + } else { + PrintDebug("v3_get_mem_region: Impossible!\n"); + return NULL; + } + } + } -} -int v3_handle_mem_wr_hook(struct guest_info * info, addr_t guest_va, addr_t guest_pa, - struct v3_shadow_region * reg, pf_error_t access_info) { + // There is not registered region, so we check if its a valid address in the base region - addr_t dst_addr = (addr_t)V3_VAddr((void *)v3_get_shadow_addr(reg, guest_pa)); + if (guest_addr > vm->mem_map.base_region.guest_end) { + PrintError("Guest Address Exceeds Base Memory Size (ga=0x%p), (limit=0x%p) (core=0x%x)\n", + (void *)guest_addr, (void *)vm->mem_map.base_region.guest_end, core_id); + v3_print_mem_map(vm); - if (v3_emulate_write_op(info, guest_va, guest_pa, dst_addr, reg->write_hook, reg->priv_data) == -1) { - PrintError("Write hook emulation failed\n"); - return -1; - } + return NULL; + } - return 0; + return &(vm->mem_map.base_region); } -int v3_handle_mem_full_hook(struct guest_info * info, addr_t guest_va, addr_t guest_pa, - struct v3_shadow_region * reg, pf_error_t access_info) { - - addr_t op_addr = info->mem_map.hook_hva; - if (access_info.write == 1) { - if (v3_emulate_write_op(info, guest_va, guest_pa, op_addr, reg->write_hook, reg->priv_data) == -1) { - PrintError("Write Full Hook emulation failed\n"); - return -1; + +/* Given an address, find the successor region. If the address is within a region, return that + * region. Input is an address, because the address may not have a region associated with it. + * + * Returns a region following or touching the given address. If address is invalid, NULL is + * returned, else the base region is returned if no region exists at or after the given address. + */ +struct v3_mem_region * v3_get_next_mem_region( struct v3_vm_info * vm, uint16_t core_id, addr_t guest_addr) { + struct rb_node * current_n = vm->mem_map.mem_regions.rb_node; + struct rb_node * successor_n = NULL; /* left-most node greater than guest_addr */ + struct v3_mem_region * current_r = NULL; + + /* current_n tries to find the region containing guest_addr, going right when smaller and left when + * greater. Each time current_n becomes greater than guest_addr, update successor <- current_n. + * current_n becomes successively closer to guest_addr than the previous time it was greater + * than guest_addr. + */ + + /* | is address, ---- is region, + is intersection */ + while (current_n) { + current_r = rb_entry(current_n, struct v3_mem_region, tree_node); + if (current_r->guest_start > guest_addr) { /* | ---- */ + successor_n = current_n; + current_n = current_n->rb_left; + } else { + if (current_r->guest_end > guest_addr) { + return current_r; /* +--- or --+- */ + } + current_n = current_n->rb_right; /* ---- | */ + } } - } else { - if (v3_emulate_read_op(info, guest_va, guest_pa, op_addr, reg->read_hook, reg->write_hook, reg->priv_data) == -1) { - PrintError("Read Full Hook emulation failed\n"); - return -1; + + /* Address does not have its own region. Check if it's a valid address in the base region */ + + if (guest_addr >= vm->mem_map.base_region.guest_end) { + PrintError("%s: Guest Address Exceeds Base Memory Size (ga=%p), (limit=%p)\n", + __FUNCTION__, (void *)guest_addr, (void *)vm->mem_map.base_region.guest_end); + v3_print_mem_map(vm); + return NULL; } - } - return 0; + return &(vm->mem_map.base_region); } -struct v3_shadow_region * v3_get_shadow_region(struct guest_info * info, addr_t guest_addr) { - struct rb_node * n = info->mem_map.shdw_regions.rb_node; - struct v3_shadow_region * reg = NULL; - while (n) { - reg = rb_entry(n, struct v3_shadow_region, tree_node); +void v3_delete_mem_region(struct v3_vm_info * vm, struct v3_mem_region * reg) { + int i = 0; - if (guest_addr < reg->guest_start) { - n = n->rb_left; - } else if (guest_addr >= reg->guest_end) { - n = n->rb_right; - } else { - return reg; + if (reg == NULL) { + return; } - } - return NULL; -} + for (i = 0; i < vm->num_cores; i++) { + struct guest_info * info = &(vm->cores[i]); + + // flush virtual page tables + // 3 cases shadow, shadow passthrough, and nested + + if (info->shdw_pg_mode == SHADOW_PAGING) { + v3_mem_mode_t mem_mode = v3_get_vm_mem_mode(info); + + if (mem_mode == PHYSICAL_MEM) { + addr_t cur_addr; + + for (cur_addr = reg->guest_start; + cur_addr < reg->guest_end; + cur_addr += PAGE_SIZE_4KB) { + v3_invalidate_passthrough_addr(info, cur_addr); + } + } else { + v3_invalidate_shadow_pts(info); + } + + } else if (info->shdw_pg_mode == NESTED_PAGING) { + addr_t cur_addr; + + for (cur_addr = reg->guest_start; + cur_addr < reg->guest_end; + cur_addr += PAGE_SIZE_4KB) { + + v3_invalidate_nested_addr(info, cur_addr); + } + } + } + v3_rb_erase(&(reg->tree_node), &(vm->mem_map.mem_regions)); + V3_Free(reg); + + // flush virtual page tables + // 3 cases shadow, shadow passthrough, and nested -addr_t v3_get_shadow_addr(struct v3_shadow_region * reg, addr_t guest_addr) { - if ( (reg) && - (reg->host_type != SHDW_REGION_FULL_HOOK) && - (reg->host_type != SHDW_REGION_INVALID) ) { - return (guest_addr - reg->guest_start) + reg->host_addr; - } else { - PrintError("MEM Region Invalid\n"); - return 0; - } } +// Determine if a given address can be handled by a large page of the requested size +uint32_t v3_get_max_page_size(struct guest_info * core, addr_t fault_addr, uint32_t req_size) { + addr_t pg_start = 0UL, pg_end = 0UL; // large page containing the faulting addres + struct v3_mem_region * pg_next_reg = NULL; // next immediate mem reg after page start addr + uint32_t page_size = PAGE_SIZE_4KB; + + /* If the guest has been configured for large pages, then we must check for hooked regions of + * memory which may overlap with the large page containing the faulting address (due to + * potentially differing access policies in place for e.g. i/o devices and APIC). A large page + * can be used if a) no region overlaps the page [or b) a region does overlap but fully contains + * the page]. The [bracketed] text pertains to the #if 0'd code below, state D. TODO modify this + * note if someone decides to enable this optimization. It can be tested with the SeaStar + * mapping. + * + * Examples: (CAPS regions are returned by v3_get_next_mem_region; state A returns the base reg) + * + * |region| |region| 2MiB mapped (state A) + * |reg| |REG| 2MiB mapped (state B) + * |region| |reg| |REG| |region| |reg| 4KiB mapped (state C) + * |reg| |reg| |--REGION---| [2MiB mapped (state D)] + * |--------------------------------------------| RAM + * ^ fault addr + * |----|----|----|----|----|page|----|----|----| 2MB pages + * >>>>>>>>>>>>>>>>>>>> search space + */ + + + // guest page maps to a host page + offset (so when we shift, it aligns with a host page) + switch (req_size) { + case PAGE_SIZE_4KB: + return PAGE_SIZE_4KB; + case PAGE_SIZE_2MB: + pg_start = PAGE_ADDR_2MB(fault_addr); + pg_end = (pg_start + PAGE_SIZE_2MB); + break; + case PAGE_SIZE_4MB: + pg_start = PAGE_ADDR_4MB(fault_addr); + pg_end = (pg_start + PAGE_SIZE_4MB); + break; + case PAGE_SIZE_1GB: + pg_start = PAGE_ADDR_1GB(fault_addr); + pg_end = (pg_start + PAGE_SIZE_1GB); + break; + default: + PrintError("Invalid large page size requested.\n"); + return -1; + } + //PrintDebug("%s: page [%p,%p) contains address\n", __FUNCTION__, (void *)pg_start, (void *)pg_end); -void v3_delete_shadow_region(struct guest_info * info, struct v3_shadow_region * reg) { - if (reg != NULL) { - v3_rb_erase(&(reg->tree_node), &(info->mem_map.shdw_regions)); - - V3_Free(reg); - } -} + pg_next_reg = v3_get_next_mem_region(core->vm_info, core->cpu_id, pg_start); + if (pg_next_reg == NULL) { + PrintError("%s: Error: address not in base region, %p\n", __FUNCTION__, (void *)fault_addr); + return PAGE_SIZE_4KB; + } + if (pg_next_reg->flags.base == 1) { + page_size = req_size; // State A + //PrintDebug("%s: base region [%p,%p) contains page.\n", __FUNCTION__, + // (void *)pg_next_reg->guest_start, (void *)pg_next_reg->guest_end); + } else { +#if 0 // State B/C and D optimization + if ((pg_next_reg->guest_end >= pg_end) && + ((pg_next_reg->guest_start >= pg_end) || (pg_next_reg->guest_start <= pg_start))) { + page_size = req_size; + } + + PrintDebug("%s: region [%p,%p) %s partially overlap with page\n", __FUNCTION__, + (void *)pg_next_reg->guest_start, (void *)pg_next_reg->guest_end, + (page_size == req_size) ? "does not" : "does"); + +#else // State B/C + if (pg_next_reg->guest_start >= pg_end) { + + page_size = req_size; + } + + PrintDebug("%s: region [%p,%p) %s overlap with page\n", __FUNCTION__, + (void *)pg_next_reg->guest_start, (void *)pg_next_reg->guest_end, + (page_size == req_size) ? "does not" : "does"); + +#endif + } + return page_size; +} -void print_shadow_map(struct guest_info * info) { - struct rb_node * node = v3_rb_first(&(info->mem_map.shdw_regions)); - struct v3_shadow_region * reg; - int i = 0; +// For an address on a page of size page_size, compute the actual alignment +// of the physical page it maps to +uint32_t v3_compute_page_alignment(addr_t page_addr) +{ + if (PAGE_OFFSET_1GB(page_addr) == 0) { + return PAGE_SIZE_1GB; + } else if (PAGE_OFFSET_4MB(page_addr) == 0) { + return PAGE_SIZE_4MB; + } else if (PAGE_OFFSET_2MB(page_addr) == 0) { + return PAGE_SIZE_2MB; + } else if (PAGE_OFFSET_4KB(page_addr) == 0) { + return PAGE_SIZE_4KB; + } else { + PrintError("Non-page aligned address passed to %s.\n", __FUNCTION__); + return 0; + } +} - PrintDebug("Memory Layout:\n"); +void v3_print_mem_map(struct v3_vm_info * vm) { + struct rb_node * node = v3_rb_first(&(vm->mem_map.mem_regions)); + struct v3_mem_region * reg = &(vm->mem_map.base_region); + int i = 0; - do { - reg = rb_entry(node, struct v3_shadow_region, tree_node); + V3_Print("Memory Layout (all cores):\n"); + - PrintDebug("%d: 0x%p - 0x%p -> 0x%p\n", i, + V3_Print("Base Region (all cores): 0x%p - 0x%p -> 0x%p\n", (void *)(reg->guest_start), (void *)(reg->guest_end - 1), (void *)(reg->host_addr)); - - PrintDebug("\t(%s) (WriteHook = 0x%p) (ReadHook = 0x%p)\n", - v3_shdw_region_type_to_str(reg->host_type), - (void *)(reg->write_hook), - (void *)(reg->read_hook)); - i++; - } while ((node = v3_rb_next(node))); -} - -static const uchar_t SHDW_REGION_INVALID_STR[] = "SHDW_REGION_INVALID"; -static const uchar_t SHDW_REGION_WRITE_HOOK_STR[] = "SHDW_REGION_WRITE_HOOK"; -static const uchar_t SHDW_REGION_FULL_HOOK_STR[] = "SHDW_REGION_FULL_HOOK"; -static const uchar_t SHDW_REGION_ALLOCATED_STR[] = "SHDW_REGION_ALLOCATED"; + // If the memory map is empty, don't print it + if (node == NULL) { + return; + } + do { + reg = rb_entry(node, struct v3_mem_region, tree_node); + V3_Print("%d: 0x%p - 0x%p -> 0x%p\n", i, + (void *)(reg->guest_start), + (void *)(reg->guest_end - 1), + (void *)(reg->host_addr)); -const uchar_t * v3_shdw_region_type_to_str(v3_shdw_region_type_t type) { - switch (type) { - case SHDW_REGION_WRITE_HOOK: - return SHDW_REGION_WRITE_HOOK_STR; - case SHDW_REGION_FULL_HOOK: - return SHDW_REGION_FULL_HOOK_STR; - case SHDW_REGION_ALLOCATED: - return SHDW_REGION_ALLOCATED_STR; - default: - return SHDW_REGION_INVALID_STR; - } + V3_Print("\t(flags=0x%x) (core=0x%x) (unhandled = 0x%p)\n", + reg->flags.value, + reg->core_id, + reg->unhandled); + + i++; + } while ((node = v3_rb_next(node))); }