X-Git-Url: http://v3vee.org/palacios/gitweb/gitweb.cgi?a=blobdiff_plain;f=palacios%2Fsrc%2Fpalacios%2Fvmm_direct_paging_64.h;h=baae5d54d223b792df8f25e42b85bdfeaf574009;hb=d962f2be029772be3f21d9bd206ddf2a9f6a1d20;hp=c4c41e3122b347533855986d8bebe636161f9126;hpb=e531d13b53ac8b32bca19131dd7a2824cb17eff9;p=palacios.git diff --git a/palacios/src/palacios/vmm_direct_paging_64.h b/palacios/src/palacios/vmm_direct_paging_64.h index c4c41e3..baae5d5 100644 --- a/palacios/src/palacios/vmm_direct_paging_64.h +++ b/palacios/src/palacios/vmm_direct_paging_64.h @@ -29,9 +29,7 @@ // Reference: AMD Software Developer Manual Vol.2 Ch.5 "Page Translation and Protection" -static inline int handle_passthrough_pagefault_64(struct guest_info * info, - addr_t fault_addr, - pf_error_t error_code) { +static inline int handle_passthrough_pagefault_64(struct guest_info * core, addr_t fault_addr, pf_error_t error_code) { pml4e64_t * pml = NULL; pdpe64_t * pdpe = NULL; pde64_t * pde = NULL; @@ -44,79 +42,30 @@ static inline int handle_passthrough_pagefault_64(struct guest_info * info, int pde_index = PDE64_INDEX(fault_addr); int pte_index = PTE64_INDEX(fault_addr); - struct v3_mem_region * region = v3_get_mem_region(info->vm_info, info->cpu_id, fault_addr); - struct v3_mem_region * base_reg = &(info->vm_info->mem_map.base_region); - - /* If the guest has been configured for 2MiB pages, then we must check for hooked regions of - * memory which may overlap with the 2MiB page containing the faulting address (due to - * potentially differing access policies in place for e.g. i/o devices and APIC). A 2MiB page - * can be used if a) no region overlaps the page [or b) a region does overlap but fully contains - * the page]. The [bracketed] text pertains to the #if 0'd code below, state D. TODO modify this - * note if someone decides to enable this optimization. It can be tested with the SeaStar - * mapping. - * - * Examples: (CAPS regions are returned by v3_get_next_mem_region; state A returns the base reg) - * - * |region| |region| 2MiB mapped (state A) - * |reg| |REG| 2MiB mapped (state B) - * |region| |reg| |REG| |region| |reg| 4KiB mapped (state C) - * |reg| |reg| |--REGION---| [2MiB mapped (state D)] - * |--------------------------------------------| RAM - * ^ fault addr - * |----|----|----|----|----|page|----|----|----| 2MB pages - * >>>>>>>>>>>>>>>>>>>> search space - */ - addr_t pg_start = 0UL, pg_end = 0UL; // 2MiB page containing the faulting address - struct v3_mem_region * pg_next_reg = NULL; // next immediate mem reg after page start addr - bool use_large_page = false; + struct v3_mem_region * region = v3_get_mem_region(core->vm_info, core->cpu_id, fault_addr); + int page_size = PAGE_SIZE_4KB; if (region == NULL) { PrintError("%s: invalid region, addr=%p\n", __FUNCTION__, (void *)fault_addr); return -1; } - // set use_large_page here - if (info->vm_info->paging_size == PAGING_2MB) { - - // guest page maps to a host page + offset (so when we shift, it aligns with a host page) - pg_start = PAGE_ADDR_2MB(fault_addr); - pg_end = (pg_start + PAGE_SIZE_2MB); - - PrintDebug("%s: page [%p,%p) contains address\n", __FUNCTION__, (void *)pg_start, (void *)pg_end); - - pg_next_reg = v3_get_next_mem_region(info->vm_info, info->cpu_id, pg_start); - - if (pg_next_reg == NULL) { - PrintError("%s: Error: address not in base region, %p\n", __FUNCTION__, (void *)fault_addr); - return -1; - } - - if ((pg_next_reg->guest_start == base_reg->guest_start) && - (pg_next_reg->guest_end == base_reg->guest_end)) { // next region == base region - use_large_page = 1; // State A - } else { -#if 0 // State B/C and D optimization - use_large_page = (pg_next_reg->guest_end >= pg_end) && - ((pg_next_reg->guest_start >= pg_end) || (pg_next_reg->guest_start <= pg_start)); - PrintDebug("%s: region [%p,%p) %s partial overlap with page\n", __FUNCTION__, - (void *)pg_next_reg->guest_start, (void *)pg_next_reg->guest_end, - (use_large_page ? "does not have" : "has")); -#else // State B/C - use_large_page = (pg_next_reg->guest_start >= pg_end); - PrintDebug("%s: region [%p,%p) %s overlap with page\n", __FUNCTION__, - (void *)pg_next_reg->guest_start, (void *)pg_next_reg->guest_end, - (use_large_page ? "does not have" : "has")); -#endif - } + /* Check if: + * 1. the guest is configured to use large pages and + * 2. the memory regions can be referenced by a large page + */ + if ((core->use_large_pages == 1) || (core->use_giant_pages == 1)) { + page_size = v3_get_max_page_size(core, fault_addr, LONG); } - PrintDebug("%s: Address gets a 2MiB page? %s\n", __FUNCTION__, (use_large_page ? "yes" : "no")); + PrintDebug("Using page size of %dKB\n", page_size / 1024); + // Lookup the correct PML address based on the PAGING MODE - if (info->shdw_pg_mode == SHADOW_PAGING) { - pml = CR3_TO_PML4E64_VA(info->ctrl_regs.cr3); + if (core->shdw_pg_mode == SHADOW_PAGING) { + pml = CR3_TO_PML4E64_VA(core->ctrl_regs.cr3); } else { - pml = CR3_TO_PML4E64_VA(info->direct_map_pt); + pml = CR3_TO_PML4E64_VA(core->direct_map_pt); } //Fix up the PML entry @@ -128,7 +77,7 @@ static inline int handle_passthrough_pagefault_64(struct guest_info * info, pml[pml_index].writable = 1; pml[pml_index].user_page = 1; - pml[pml_index].pdp_base_addr = PAGE_BASE_ADDR_4KB((addr_t)V3_PAddr(pdpe)); + pml[pml_index].pdp_base_addr = PAGE_BASE_ADDR_4KB((addr_t)V3_PAddr(pdpe)); } else { pdpe = V3_VAddr((void*)BASE_TO_PAGE_ADDR_4KB(pml[pml_index].pdp_base_addr)); } @@ -142,21 +91,21 @@ static inline int handle_passthrough_pagefault_64(struct guest_info * info, pdpe[pdpe_index].writable = 1; pdpe[pdpe_index].user_page = 1; - pdpe[pdpe_index].pd_base_addr = PAGE_BASE_ADDR_4KB((addr_t)V3_PAddr(pde)); + pdpe[pdpe_index].pd_base_addr = PAGE_BASE_ADDR_4KB((addr_t)V3_PAddr(pde)); } else { pde = V3_VAddr((void*)BASE_TO_PAGE_ADDR_4KB(pdpe[pdpe_index].pd_base_addr)); } // Fix up the 2MiB PDE and exit here - if (use_large_page) { - + if (page_size == PAGE_SIZE_2MB) { pde2mb = (pde64_2MB_t *)pde; // all but these two lines are the same for PTE pde2mb[pde_index].large_page = 1; if (pde2mb[pde_index].present == 0) { pde2mb[pde_index].user_page = 1; - if ((region->flags.alloced == 1) && (region->flags.read == 1)) { + if ( (region->flags.alloced == 1) && + (region->flags.read == 1)) { // Full access pde2mb[pde_index].present = 1; @@ -166,25 +115,28 @@ static inline int handle_passthrough_pagefault_64(struct guest_info * info, pde2mb[pde_index].writable = 0; } - if (v3_gpa_to_hpa(info, fault_addr, &host_addr) == -1) { + if (v3_gpa_to_hpa(core, fault_addr, &host_addr) == -1) { PrintError("Error Could not translate fault addr (%p)\n", (void *)fault_addr); return -1; } pde2mb[pde_index].page_base_addr = PAGE_BASE_ADDR_2MB(host_addr); } else { - return region->unhandled(info, fault_addr, fault_addr, region, error_code); + return region->unhandled(core, fault_addr, fault_addr, region, error_code); } } else { - // We fix all permissions on the first pass, + // We fix all permissions on the first pass, // so we only get here if its an unhandled exception - return region->unhandled(info, fault_addr, fault_addr, region, error_code); + return region->unhandled(core, fault_addr, fault_addr, region, error_code); } - } - // Continue with the 4KiB page heirarchy + // All done + return 0; + } + // Continue with the 4KiB page heirarchy + // Fix up the PDE entry if (pde[pde_index].present == 0) { pte = (pte64_t *)create_generic_pt_page(); @@ -198,7 +150,6 @@ static inline int handle_passthrough_pagefault_64(struct guest_info * info, pte = V3_VAddr((void*)BASE_TO_PAGE_ADDR_4KB(pde[pde_index].pt_base_addr)); } - // Fix up the PTE entry if (pte[pte_index].present == 0) { pte[pte_index].user_page = 1; @@ -214,26 +165,26 @@ static inline int handle_passthrough_pagefault_64(struct guest_info * info, pte[pte_index].writable = 0; } - if (v3_gpa_to_hpa(info, fault_addr, &host_addr) == -1) { + if (v3_gpa_to_hpa(core, fault_addr, &host_addr) == -1) { PrintError("Error Could not translate fault addr (%p)\n", (void *)fault_addr); return -1; } pte[pte_index].page_base_addr = PAGE_BASE_ADDR_4KB(host_addr); } else { - return region->unhandled(info, fault_addr, fault_addr, region, error_code); + return region->unhandled(core, fault_addr, fault_addr, region, error_code); } } else { // We fix all permissions on the first pass, // so we only get here if its an unhandled exception - return region->unhandled(info, fault_addr, fault_addr, region, error_code); + return region->unhandled(core, fault_addr, fault_addr, region, error_code); } return 0; } -static inline int invalidate_addr_64(struct guest_info * info, addr_t inv_addr) { +static inline int invalidate_addr_64(struct guest_info * core, addr_t inv_addr) { pml4e64_t * pml = NULL; pdpe64_t * pdpe = NULL; pde64_t * pde = NULL; @@ -251,10 +202,10 @@ static inline int invalidate_addr_64(struct guest_info * info, addr_t inv_addr) // Lookup the correct PDE address based on the PAGING MODE - if (info->shdw_pg_mode == SHADOW_PAGING) { - pml = CR3_TO_PML4E64_VA(info->ctrl_regs.cr3); + if (core->shdw_pg_mode == SHADOW_PAGING) { + pml = CR3_TO_PML4E64_VA(core->ctrl_regs.cr3); } else { - pml = CR3_TO_PML4E64_VA(info->direct_map_pt); + pml = CR3_TO_PML4E64_VA(core->direct_map_pt); } if (pml[pml_index].present == 0) {