X-Git-Url: http://v3vee.org/palacios/gitweb/gitweb.cgi?a=blobdiff_plain;f=palacios%2Fsrc%2Fdevices%2Fide.c;h=e9a90a84342d83f286c86c9fa2efb6da31f047d3;hb=d775bbfa668ce9968bacc0e4257cf86e5ab88e90;hp=f5baf953ac83cb6921bde6f20d3e0c2134d899d6;hpb=c30d1b88a60c3a8df426ce81553675bbe4afef52;p=palacios.git diff --git a/palacios/src/devices/ide.c b/palacios/src/devices/ide.c index f5baf95..e9a90a8 100644 --- a/palacios/src/devices/ide.c +++ b/palacios/src/devices/ide.c @@ -119,7 +119,7 @@ struct ide_hd_state { * for multiple sector ops this equals mult_sector_num * for standard ops this equals 1 */ - uint32_t cur_sector_num; + uint64_t cur_sector_num; }; struct ide_drive { @@ -137,11 +137,11 @@ struct ide_drive { char model[41]; // Where we are in the data transfer - uint32_t transfer_index; + uint64_t transfer_index; // the length of a transfer // calculated for easy access - uint32_t transfer_length; + uint64_t transfer_length; uint64_t current_lba; @@ -153,13 +153,25 @@ struct ide_drive { uint32_t num_heads; uint32_t num_sectors; + + struct lba48_state { + // all start at zero + uint64_t lba; + uint16_t sector_count; // for LBA48 + uint8_t sector_count_state; // two step write to 1f2/172 (high first) + uint8_t lba41_state; // two step write to 1f3 + uint8_t lba52_state; // two step write to 1f4 + uint8_t lba63_state; // two step write to 15 + } lba48; + void * private_data; union { - uint8_t sector_count; // 0x1f2,0x172 - struct atapi_irq_flags irq_flags; + uint8_t sector_count; // 0x1f2,0x172 (ATA) + struct atapi_irq_flags irq_flags; // (ATAPI ONLY) } __attribute__((packed)); + union { uint8_t sector_num; // 0x1f3,0x173 uint8_t lba0; @@ -206,9 +218,17 @@ struct ide_channel { // Control Registers struct ide_ctrl_reg ctrl_reg; // [write] 0x3f6,0x376 - struct ide_dma_cmd_reg dma_cmd; - struct ide_dma_status_reg dma_status; - uint32_t dma_prd_addr; + union { + uint8_t dma_ports[8]; + struct { + struct ide_dma_cmd_reg dma_cmd; + uint8_t rsvd1; + struct ide_dma_status_reg dma_status; + uint8_t rsvd2; + uint32_t dma_prd_addr; + } __attribute__((packed)); + } __attribute__((packed)); + uint32_t dma_tbl_index; }; @@ -251,6 +271,18 @@ static inline uint32_t le_to_be_32(const uint32_t val) { } +static inline int is_lba28(struct ide_channel * channel) { + return channel->drive_head.lba_mode && channel->drive_head.rsvd1 && channel->drive_head.rsvd2; +} + +static inline int is_lba48(struct ide_channel * channel) { + return channel->drive_head.lba_mode && !channel->drive_head.rsvd1 && !channel->drive_head.rsvd2; +} + +static inline int is_chs(struct ide_channel * channel) { + return !channel->drive_head.lba_mode; +} + static inline int get_channel_index(ushort_t port) { if (((port & 0xfff8) == 0x1f0) || ((port & 0xfffe) == 0x3f6) || @@ -267,7 +299,12 @@ static inline int get_channel_index(ushort_t port) { static inline struct ide_channel * get_selected_channel(struct ide_internal * ide, ushort_t port) { int channel_idx = get_channel_index(port); - return &(ide->channels[channel_idx]); + if (channel_idx >= 0) { + return &(ide->channels[channel_idx]); + } else { + PrintError(VM_NONE,VCORE_NONE,"ide: Cannot Determine Selected Channel\n"); + return 0; + } } static inline struct ide_drive * get_selected_drive(struct ide_channel * channel) { @@ -275,17 +312,18 @@ static inline struct ide_drive * get_selected_drive(struct ide_channel * channel } -static inline int is_lba_enabled(struct ide_channel * channel) { - return channel->drive_head.lba_mode; -} /* Drive Commands */ static void ide_raise_irq(struct ide_internal * ide, struct ide_channel * channel) { if (channel->ctrl_reg.irq_disable == 0) { - // PrintError("Raising IDE Interrupt %d\n", channel->irq); + + PrintDebug(ide->vm,VCORE_NONE, "Raising IDE Interrupt %d\n", channel->irq); + channel->dma_status.int_gen = 1; v3_raise_irq(ide->vm, channel->irq); + } else { + PrintDebug(ide->vm,VCORE_NONE, "IDE Interrupt %d cannot be raised as irq is disabled on channel\n",channel->irq); } } @@ -294,7 +332,7 @@ static void drive_reset(struct ide_drive * drive) { drive->sector_count = 0x01; drive->sector_num = 0x01; - PrintDebug("Resetting drive %s\n", drive->model); + PrintDebug(VM_NONE,VCORE_NONE, "Resetting drive %s\n", drive->model); if (drive->drive_type == BLOCK_CDROM) { drive->cylinder = 0xeb14; @@ -321,7 +359,7 @@ static void channel_reset(struct ide_channel * channel) { channel->error_reg.val = 0x01; // clear commands - channel->cmd_reg = 0x00; + channel->cmd_reg = 0; // NOP channel->ctrl_reg.irq_disable = 0; } @@ -338,6 +376,9 @@ static void channel_reset_complete(struct ide_channel * channel) { static void ide_abort_command(struct ide_internal * ide, struct ide_channel * channel) { + + PrintDebug(VM_NONE,VCORE_NONE,"Aborting IDE Command\n"); + channel->status.val = 0x41; // Error + ready channel->error_reg.val = 0x04; // No idea... @@ -356,25 +397,25 @@ static int dma_write(struct guest_info * core, struct ide_internal * ide, struct #include "ata.h" -#ifdef V3_CONFIG_DEBUG_IDE + static void print_prd_table(struct ide_internal * ide, struct ide_channel * channel) { struct ide_dma_prd prd_entry; int index = 0; - PrintDebug("Dumping PRD table\n"); + V3_Print(VM_NONE, VCORE_NONE,"Dumping PRD table\n"); while (1) { uint32_t prd_entry_addr = channel->dma_prd_addr + (sizeof(struct ide_dma_prd) * index); - int ret; + int ret = 0; ret = v3_read_gpa_memory(&(ide->vm->cores[0]), prd_entry_addr, sizeof(struct ide_dma_prd), (void *)&prd_entry); if (ret != sizeof(struct ide_dma_prd)) { - PrintError("Could not read PRD\n"); + PrintError(VM_NONE, VCORE_NONE, "Could not read PRD\n"); return; } - PrintDebug("\tPRD Addr: %x, PRD Len: %d, EOT: %d\n", + V3_Print(VM_NONE, VCORE_NONE,"\tPRD Addr: %x, PRD Len: %d, EOT: %d\n", prd_entry.base_addr, (prd_entry.size == 0) ? 0x10000 : prd_entry.size, prd_entry.end_of_table); @@ -388,7 +429,7 @@ static void print_prd_table(struct ide_internal * ide, struct ide_channel * chan return; } -#endif + /* IO Operations */ static int dma_read(struct guest_info * core, struct ide_internal * ide, struct ide_channel * channel) { @@ -404,7 +445,7 @@ static int dma_read(struct guest_info * core, struct ide_internal * ide, struct print_prd_table(ide, channel); #endif - PrintDebug("DMA read for %d bytes\n", bytes_left); + PrintDebug(core->vm_info, core, "DMA read for %d bytes\n", bytes_left); // Loop through the disk data while (bytes_left > 0) { @@ -413,16 +454,16 @@ static int dma_read(struct guest_info * core, struct ide_internal * ide, struct uint_t prd_offset = 0; int ret; - PrintDebug("PRD table address = %x\n", channel->dma_prd_addr); + PrintDebug(core->vm_info, core, "PRD table address = %x\n", channel->dma_prd_addr); ret = v3_read_gpa_memory(core, prd_entry_addr, sizeof(struct ide_dma_prd), (void *)&prd_entry); if (ret != sizeof(struct ide_dma_prd)) { - PrintError("Could not read PRD\n"); + PrintError(core->vm_info, core, "Could not read PRD\n"); return -1; } - PrintDebug("PRD Addr: %x, PRD Len: %d, EOT: %d\n", + PrintDebug(core->vm_info, core, "PRD Addr: %x, PRD Len: %d, EOT: %d\n", prd_entry.base_addr, prd_entry.size, prd_entry.end_of_table); // loop through the PRD data.... @@ -443,7 +484,7 @@ static int dma_read(struct guest_info * core, struct ide_internal * ide, struct if (ata_read(ide, channel, drive->data_buf, 1) == -1) { - PrintError("Failed to read next disk sector\n"); + PrintError(core->vm_info, core, "Failed to read next disk sector\n"); return -1; } } else if (drive->drive_type == BLOCK_CDROM) { @@ -451,24 +492,31 @@ static int dma_read(struct guest_info * core, struct ide_internal * ide, struct bytes_to_write = (prd_bytes_left > ATAPI_BLOCK_SIZE) ? ATAPI_BLOCK_SIZE : prd_bytes_left; if (atapi_read_chunk(ide, channel) == -1) { - PrintError("Failed to read next disk sector\n"); + PrintError(core->vm_info, core, "Failed to read next disk sector\n"); return -1; } } else { /* - PrintError("DMA of command packet\n"); - PrintError("How does this work (ATAPI CMD=%x)???\n", drive->cd_state.atapi_cmd); + PrintError(core->vm_info, core, "How does this work (ATAPI CMD=%x)???\n", drive->cd_state.atapi_cmd); return -1; */ int cmd_ret = 0; + //V3_Print(core->vm_info, core, "DMA of command packet\n"); + bytes_to_write = (prd_bytes_left > bytes_left) ? bytes_left : prd_bytes_left; prd_bytes_left = bytes_to_write; + + // V3_Print(core->vm_info, core, "Writing ATAPI cmd OP DMA (cmd=%x) (len=%d)\n", drive->cd_state.atapi_cmd, prd_bytes_left); cmd_ret = v3_write_gpa_memory(core, prd_entry.base_addr + prd_offset, bytes_to_write, drive->data_buf); - // check cmd_ret + if (cmd_ret!=bytes_to_write) { + PrintError(core->vm_info, core, "Failed to write data to memory\n"); + return -1; + } + bytes_to_write = 0; @@ -490,7 +538,7 @@ static int dma_read(struct guest_info * core, struct ide_internal * ide, struct } } - PrintDebug("Writing DMA data to guest Memory ptr=%p, len=%d\n", + PrintDebug(core->vm_info, core, "Writing DMA data to guest Memory ptr=%p, len=%d\n", (void *)(addr_t)(prd_entry.base_addr + prd_offset), bytes_to_write); drive->current_lba++; @@ -498,11 +546,11 @@ static int dma_read(struct guest_info * core, struct ide_internal * ide, struct ret = v3_write_gpa_memory(core, prd_entry.base_addr + prd_offset, bytes_to_write, drive->data_buf); if (ret != bytes_to_write) { - PrintError("Failed to copy data into guest memory... (ret=%d)\n", ret); + PrintError(core->vm_info, core, "Failed to copy data into guest memory... (ret=%d)\n", ret); return -1; } - PrintDebug("\t DMA ret=%d, (prd_bytes_left=%d) (bytes_left=%d)\n", ret, prd_bytes_left, bytes_left); + PrintDebug(core->vm_info, core, "\t DMA ret=%d, (prd_bytes_left=%d) (bytes_left=%d)\n", ret, prd_bytes_left, bytes_left); drive->transfer_index += ret; prd_bytes_left -= ret; @@ -514,14 +562,14 @@ static int dma_read(struct guest_info * core, struct ide_internal * ide, struct if (drive->drive_type == BLOCK_DISK) { if (drive->transfer_index % HD_SECTOR_SIZE) { - PrintError("We currently don't handle sectors that span PRD descriptors\n"); + PrintError(core->vm_info, core, "We currently don't handle sectors that span PRD descriptors\n"); return -1; } } else if (drive->drive_type == BLOCK_CDROM) { if (atapi_cmd_is_data_op(drive->cd_state.atapi_cmd)) { if (drive->transfer_index % ATAPI_BLOCK_SIZE) { - PrintError("We currently don't handle ATAPI BLOCKS that span PRD descriptors\n"); - PrintError("transfer_index=%d, transfer_length=%d\n", + PrintError(core->vm_info, core, "We currently don't handle ATAPI BLOCKS that span PRD descriptors\n"); + PrintError(core->vm_info, core, "transfer_index=%llu, transfer_length=%llu\n", drive->transfer_index, drive->transfer_length); return -1; } @@ -530,7 +578,7 @@ static int dma_read(struct guest_info * core, struct ide_internal * ide, struct if ((prd_entry.end_of_table == 1) && (bytes_left > 0)) { - PrintError("DMA table not large enough for data transfer...\n"); + PrintError(core->vm_info, core, "DMA table not large enough for data transfer...\n"); return -1; } } @@ -570,7 +618,7 @@ static int dma_write(struct guest_info * core, struct ide_internal * ide, struct uint_t bytes_left = drive->transfer_length; - PrintDebug("DMA write from %d bytes\n", bytes_left); + PrintDebug(core->vm_info, core, "DMA write from %d bytes\n", bytes_left); // Loop through disk data while (bytes_left > 0) { @@ -579,19 +627,25 @@ static int dma_write(struct guest_info * core, struct ide_internal * ide, struct uint_t prd_offset = 0; int ret; - PrintDebug("PRD Table address = %x\n", channel->dma_prd_addr); + PrintDebug(core->vm_info, core, "PRD Table address = %x\n", channel->dma_prd_addr); ret = v3_read_gpa_memory(core, prd_entry_addr, sizeof(struct ide_dma_prd), (void *)&prd_entry); if (ret != sizeof(struct ide_dma_prd)) { - PrintError("Could not read PRD\n"); + PrintError(core->vm_info, core, "Could not read PRD\n"); return -1; } - PrintDebug("PRD Addr: %x, PRD Len: %d, EOT: %d\n", + PrintDebug(core->vm_info, core, "PRD Addr: %x, PRD Len: %d, EOT: %d\n", prd_entry.base_addr, prd_entry.size, prd_entry.end_of_table); - prd_bytes_left = prd_entry.size; + + if (prd_entry.size == 0) { + // a size of 0 means 64k + prd_bytes_left = 0x10000; + } else { + prd_bytes_left = prd_entry.size; + } while (prd_bytes_left > 0) { uint_t bytes_to_write = 0; @@ -603,15 +657,15 @@ static int dma_write(struct guest_info * core, struct ide_internal * ide, struct ret = v3_read_gpa_memory(core, prd_entry.base_addr + prd_offset, bytes_to_write, drive->data_buf); if (ret != bytes_to_write) { - PrintError("Faild to copy data from guest memory... (ret=%d)\n", ret); + PrintError(core->vm_info, core, "Faild to copy data from guest memory... (ret=%d)\n", ret); return -1; } - PrintDebug("\t DMA ret=%d (prd_bytes_left=%d) (bytes_left=%d)\n", ret, prd_bytes_left, bytes_left); + PrintDebug(core->vm_info, core, "\t DMA ret=%d (prd_bytes_left=%d) (bytes_left=%d)\n", ret, prd_bytes_left, bytes_left); if (ata_write(ide, channel, drive->data_buf, 1) == -1) { - PrintError("Failed to write data to disk\n"); + PrintError(core->vm_info, core, "Failed to write data to disk\n"); return -1; } @@ -626,12 +680,18 @@ static int dma_write(struct guest_info * core, struct ide_internal * ide, struct channel->dma_tbl_index++; if (drive->transfer_index % HD_SECTOR_SIZE) { - PrintError("We currently don't handle sectors that span PRD descriptors\n"); + PrintError(core->vm_info, core, "We currently don't handle sectors that span PRD descriptors\n"); return -1; } if ((prd_entry.end_of_table == 1) && (bytes_left > 0)) { - PrintError("DMA table not large enough for data transfer...\n"); + PrintError(core->vm_info, core, "DMA table not large enough for data transfer...\n"); + PrintError(core->vm_info, core, "\t(bytes_left=%u) (transfer_length=%llu)...\n", + bytes_left, drive->transfer_length); + PrintError(core->vm_info, core, "PRD Addr: %x, PRD Len: %d, EOT: %d\n", + prd_entry.base_addr, prd_entry.size, prd_entry.end_of_table); + + print_prd_table(ide, channel); return -1; } } @@ -663,52 +723,68 @@ static int dma_write(struct guest_info * core, struct ide_internal * ide, struct #define DMA_CHANNEL_FLAG 0x08 +/* + Note that DMA model is as follows: + + 1. Write the PRD pointer to the busmaster (DMA engine) + 2. Start the transfer on the device + 3. Tell the busmaster to start shoveling data (active DMA) +*/ + static int write_dma_port(struct guest_info * core, ushort_t port, void * src, uint_t length, void * private_data) { struct ide_internal * ide = (struct ide_internal *)private_data; uint16_t port_offset = port & (DMA_CHANNEL_FLAG - 1); uint_t channel_flag = (port & DMA_CHANNEL_FLAG) >> 3; struct ide_channel * channel = &(ide->channels[channel_flag]); - PrintDebug("IDE: Writing DMA Port %x (%s) (val=%x) (len=%d) (channel=%d)\n", + PrintDebug(core->vm_info, core, "IDE: Writing DMA Port %x (%s) (val=%x) (len=%d) (channel=%d)\n", port, dma_port_to_str(port_offset), *(uint32_t *)src, length, channel_flag); switch (port_offset) { case DMA_CMD_PORT: channel->dma_cmd.val = *(uint8_t *)src; + + PrintDebug(core->vm_info, core, "IDE: dma command write: 0x%x\n", channel->dma_cmd.val); if (channel->dma_cmd.start == 0) { channel->dma_tbl_index = 0; } else { + // Launch DMA operation, interrupt at end + channel->dma_status.active = 1; if (channel->dma_cmd.read == 1) { - // DMA Read + // DMA Read the whole thing - dma_read will raise irq if (dma_read(core, ide, channel) == -1) { - PrintError("Failed DMA Read\n"); + PrintError(core->vm_info, core, "Failed DMA Read\n"); return -1; } } else { - // DMA write + // DMA write the whole thing - dma_write will raiase irw if (dma_write(core, ide, channel) == -1) { - PrintError("Failed DMA Write\n"); + PrintError(core->vm_info, core, "Failed DMA Write\n"); return -1; } } - - channel->dma_cmd.val &= 0x09; + + // DMA complete + // Note that guest cannot abort a DMA transfer + channel->dma_cmd.start = 0; } break; case DMA_STATUS_PORT: { + // This is intended to clear status + uint8_t val = *(uint8_t *)src; if (length != 1) { - PrintError("Invalid read length for DMA status port\n"); + PrintError(core->vm_info, core, "Invalid write length for DMA status port\n"); return -1; } - // weirdness + // but preserve certain bits channel->dma_status.val = ((val & 0x60) | (channel->dma_status.val & 0x01) | (channel->dma_status.val & ~val & 0x06)); @@ -724,7 +800,7 @@ static int write_dma_port(struct guest_info * core, ushort_t port, void * src, u int i = 0; if (addr_index + length > 4) { - PrintError("DMA Port space overrun port=%x len=%d\n", port_offset, length); + PrintError(core->vm_info, core, "DMA Port space overrun port=%x len=%d\n", port_offset, length); return -1; } @@ -732,66 +808,35 @@ static int write_dma_port(struct guest_info * core, ushort_t port, void * src, u addr_buf[addr_index + i] = *((uint8_t *)src + i); } - PrintDebug("Writing PRD Port %x (val=%x)\n", port_offset, channel->dma_prd_addr); + PrintDebug(core->vm_info, core, "Writing PRD Port %x (val=%x)\n", port_offset, channel->dma_prd_addr); break; } default: - PrintError("IDE: Invalid DMA Port (%s)\n", dma_port_to_str(port_offset)); - return -1; + PrintError(core->vm_info, core, "IDE: Invalid DMA Port (%d) (%s)\n", port, dma_port_to_str(port_offset)); + break; } return length; } -static int read_dma_port(struct guest_info * core, ushort_t port, void * dst, uint_t length, void * private_data) { +static int read_dma_port(struct guest_info * core, uint16_t port, void * dst, uint_t length, void * private_data) { struct ide_internal * ide = (struct ide_internal *)private_data; uint16_t port_offset = port & (DMA_CHANNEL_FLAG - 1); uint_t channel_flag = (port & DMA_CHANNEL_FLAG) >> 3; struct ide_channel * channel = &(ide->channels[channel_flag]); - PrintDebug("Reading DMA port %d (%x) (channel=%d)\n", port, port, channel_flag); - - switch (port_offset) { - case DMA_CMD_PORT: - *(uint8_t *)dst = channel->dma_cmd.val; - break; - - case DMA_STATUS_PORT: - if (length != 1) { - PrintError("Invalid read length for DMA status port\n"); - return -1; - } - - *(uint8_t *)dst = channel->dma_status.val; - break; - - case DMA_PRD_PORT0: - case DMA_PRD_PORT1: - case DMA_PRD_PORT2: - case DMA_PRD_PORT3: { - uint_t addr_index = port_offset & 0x3; - uint8_t * addr_buf = (uint8_t *)&(channel->dma_prd_addr); - int i = 0; - - if (addr_index + length > 4) { - PrintError("DMA Port space overrun port=%x len=%d\n", port_offset, length); - return -1; - } - - for (i = 0; i < length; i++) { - *((uint8_t *)dst + i) = addr_buf[addr_index + i]; - } + PrintDebug(core->vm_info, core, "Reading DMA port %d (%x) (channel=%d)\n", port, port, channel_flag); - break; - } - default: - PrintError("IDE: Invalid DMA Port (%s)\n", dma_port_to_str(port_offset)); - return -1; + if (port_offset + length > 16) { + PrintError(core->vm_info, core, "DMA Port Read: Port overrun (port_offset=%d, length=%d)\n", port_offset, length); + return -1; } - PrintDebug("\tval=%x (len=%d)\n", *(uint32_t *)dst, length); + memcpy(dst, channel->dma_ports + port_offset, length); + + PrintDebug(core->vm_info, core, "\tval=%x (len=%d)\n", *(uint32_t *)dst, length); return length; } @@ -804,17 +849,17 @@ static int write_cmd_port(struct guest_info * core, ushort_t port, void * src, u struct ide_drive * drive = get_selected_drive(channel); if (length != 1) { - PrintError("Invalid Write Length on IDE command Port %x\n", port); + PrintError(core->vm_info, core, "Invalid Write Length on IDE command Port %x\n", port); return -1; } - PrintDebug("IDE: Writing Command Port %x (%s) (val=%x)\n", port, io_port_to_str(port), *(uint8_t *)src); + PrintDebug(core->vm_info, core, "IDE: Writing Command Port %x (%s) (val=%x)\n", port, io_port_to_str(port), *(uint8_t *)src); channel->cmd_reg = *(uint8_t *)src; switch (channel->cmd_reg) { - case 0xa1: // ATAPI Identify Device Packet + case ATA_PIDENTIFY: // ATAPI Identify Device Packet (CDROM) if (drive->drive_type != BLOCK_CDROM) { drive_reset(drive); @@ -830,7 +875,8 @@ static int write_cmd_port(struct guest_info * core, ushort_t port, void * src, u ide_raise_irq(ide, channel); } break; - case 0xec: // Identify Device + + case ATA_IDENTIFY: // Identify Device if (drive->drive_type != BLOCK_DISK) { drive_reset(drive); @@ -846,7 +892,7 @@ static int write_cmd_port(struct guest_info * core, ushort_t port, void * src, u } break; - case 0xa0: // ATAPI Command Packet + case ATA_PACKETCMD: // ATAPI Command Packet (CDROM) if (drive->drive_type != BLOCK_CDROM) { ide_abort_command(ide, channel); } @@ -864,87 +910,99 @@ static int write_cmd_port(struct guest_info * core, ushort_t port, void * src, u break; - case 0x20: // Read Sectors with Retry - case 0x21: // Read Sectors without Retry - drive->hd_state.cur_sector_num = 1; + case ATA_READ: // Read Sectors with Retry + case ATA_READ_ONCE: // Read Sectors without Retry + case ATA_MULTREAD: // Read multiple sectors per ire + case ATA_READ_EXT: // Read Sectors Extended (LBA48) + + if (channel->cmd_reg==ATA_MULTREAD) { + drive->hd_state.cur_sector_num = drive->hd_state.mult_sector_num; + } else { + drive->hd_state.cur_sector_num = 1; + } if (ata_read_sectors(ide, channel) == -1) { - PrintError("Error reading sectors\n"); - return -1; + PrintError(core->vm_info, core, "Error reading sectors\n"); + ide_abort_command(ide,channel); } break; - case 0x24: // Read Sectors Extended - drive->hd_state.cur_sector_num = 1; + case ATA_WRITE: // Write Sector with retry + case ATA_WRITE_ONCE: // Write Sector without retry + case ATA_MULTWRITE: // Write multiple sectors per irq + case ATA_WRITE_EXT: // Write Sectors Extended (LBA48) - if (ata_read_sectors_ext(ide, channel) == -1) { - PrintError("Error reading extended sectors\n"); - return -1; + if (channel->cmd_reg==ATA_MULTWRITE) { + drive->hd_state.cur_sector_num = drive->hd_state.mult_sector_num; + } else { + drive->hd_state.cur_sector_num = 1; + } + + if (ata_write_sectors(ide, channel) == -1) { + PrintError(core->vm_info, core, "Error writing sectors\n"); + ide_abort_command(ide,channel); } break; - case 0xc8: // Read DMA with retry - case 0xc9: { // Read DMA - uint32_t sect_cnt = (drive->sector_count == 0) ? 256 : drive->sector_count; + case ATA_READDMA: // Read DMA with retry + case ATA_READDMA_ONCE: // Read DMA without retry + case ATA_READDMA_EXT: { // Read DMA (LBA48) + uint64_t sect_cnt; - if (ata_get_lba(ide, channel, &(drive->current_lba)) == -1) { + if (ata_get_lba_and_size(ide, channel, &(drive->current_lba), §_cnt) == -1) { + PrintError(core->vm_info, core, "Error getting LBA for DMA READ\n"); ide_abort_command(ide, channel); - return 0; + return length; } - drive->hd_state.cur_sector_num = 1; + drive->hd_state.cur_sector_num = 1; // Not used for DMA drive->transfer_length = sect_cnt * HD_SECTOR_SIZE; drive->transfer_index = 0; - if (channel->dma_status.active == 1) { - // DMA Read - if (dma_read(core, ide, channel) == -1) { - PrintError("Failed DMA Read\n"); - return -1; - } - } + // Now we wait for the transfer to be intiated by flipping the + // bus-master start bit break; } - case 0xca: { // Write DMA - uint32_t sect_cnt = (drive->sector_count == 0) ? 256 : drive->sector_count; + case ATA_WRITEDMA: // Write DMA with retry + case ATA_WRITEDMA_ONCE: // Write DMA without retry + case ATA_WRITEDMA_EXT: { // Write DMA (LBA48) - if (ata_get_lba(ide, channel, &(drive->current_lba)) == -1) { + uint64_t sect_cnt; + + if (ata_get_lba_and_size(ide, channel, &(drive->current_lba),§_cnt) == -1) { + PrintError(core->vm_info,core,"Cannot get lba\n"); ide_abort_command(ide, channel); - return 0; + return length; } - drive->hd_state.cur_sector_num = 1; + drive->hd_state.cur_sector_num = 1; // Not used for DMA drive->transfer_length = sect_cnt * HD_SECTOR_SIZE; drive->transfer_index = 0; - if (channel->dma_status.active == 1) { - // DMA Write - if (dma_write(core, ide, channel) == -1) { - PrintError("Failed DMA Write\n"); - return -1; - } - } + // Now we wait for the transfer to be intiated by flipping the + // bus-master start bit break; } - case 0xe0: // Standby Now 1 - case 0xe1: // Set Idle Immediate - case 0xe2: // Standby - case 0xe3: // Set Idle 1 - case 0xe6: // Sleep Now 1 - case 0x94: // Standby Now 2 - case 0x95: // Idle Immediate (CFA) - case 0x96: // Standby 2 - case 0x97: // Set idle 2 - case 0x99: // Sleep Now 2 + + case ATA_STANDBYNOW1: // Standby Now 1 + case ATA_IDLEIMMEDIATE: // Set Idle Immediate + case ATA_STANDBY: // Standby + case ATA_SETIDLE1: // Set Idle 1 + case ATA_SLEEPNOW1: // Sleep Now 1 + case ATA_STANDBYNOW2: // Standby Now 2 + case ATA_IDLEIMMEDIATE2: // Idle Immediate (CFA) + case ATA_STANDBY2: // Standby 2 + case ATA_SETIDLE2: // Set idle 2 + case ATA_SLEEPNOW2: // Sleep Now 2 channel->status.val = 0; channel->status.ready = 1; ide_raise_irq(ide, channel); break; - case 0xef: // Set Features + case ATA_SETFEATURES: // Set Features // Prior to this the features register has been written to. // This command tells the drive to check if the new value is supported (the value is drive specific) // Common is that bit0=DMA enable @@ -961,24 +1019,22 @@ static int write_cmd_port(struct guest_info * core, ushort_t port, void * src, u ide_raise_irq(ide, channel); break; - case 0x91: // Initialize Drive Parameters - case 0x10: // recalibrate? + case ATA_SPECIFY: // Initialize Drive Parameters + case ATA_RECAL: // recalibrate? channel->status.error = 0; channel->status.ready = 1; channel->status.seek_complete = 1; ide_raise_irq(ide, channel); break; - case 0xc6: { // Set multiple mode (IDE Block mode) - // This makes the drive transfer multiple sectors before generating an interrupt - uint32_t tmp_sect_num = drive->sector_num; // GCC SUCKS - if (tmp_sect_num > MAX_MULT_SECTORS) { - ide_abort_command(ide, channel); - break; - } + case ATA_SETMULT: { // Set multiple mode (IDE Block mode) + // This makes the drive transfer multiple sectors before generating an interrupt if (drive->sector_count == 0) { + PrintError(core->vm_info,core,"Attempt to set multiple to zero\n"); drive->hd_state.mult_sector_num= 1; + ide_abort_command(ide,channel); + break; } else { drive->hd_state.mult_sector_num = drive->sector_count; } @@ -991,7 +1047,7 @@ static int write_cmd_port(struct guest_info * core, ushort_t port, void * src, u break; } - case 0x08: // Reset Device + case ATA_DEVICE_RESET: // Reset Device drive_reset(drive); channel->error_reg.val = 0x01; channel->status.busy = 0; @@ -1001,7 +1057,7 @@ static int write_cmd_port(struct guest_info * core, ushort_t port, void * src, u channel->status.error = 0; break; - case 0xe5: // Check power mode + case ATA_CHECKPOWERMODE1: // Check power mode drive->sector_count = 0xff; /* 0x00=standby, 0x80=idle, 0xff=active or idle */ channel->status.busy = 0; channel->status.ready = 1; @@ -1010,76 +1066,53 @@ static int write_cmd_port(struct guest_info * core, ushort_t port, void * src, u channel->status.error = 0; break; - case 0xc4: // read multiple sectors - drive->hd_state.cur_sector_num = drive->hd_state.mult_sector_num; default: - PrintError("Unimplemented IDE command (%x)\n", channel->cmd_reg); - return -1; + PrintError(core->vm_info, core, "Unimplemented IDE command (%x)\n", channel->cmd_reg); + ide_abort_command(ide, channel); + break; } return length; } -static int write_data_port(struct guest_info * core, ushort_t port, void * src, uint_t length, void * priv_data) { - struct ide_internal * ide = priv_data; - struct ide_channel * channel = get_selected_channel(ide, port); - struct ide_drive * drive = get_selected_drive(channel); - // PrintDebug("IDE: Writing Data Port %x (val=%x, len=%d)\n", - // port, *(uint32_t *)src, length); - - memcpy(drive->data_buf + drive->transfer_index, src, length); - drive->transfer_index += length; - - // Transfer is complete, dispatch the command - if (drive->transfer_index >= drive->transfer_length) { - switch (channel->cmd_reg) { - case 0x30: // Write Sectors - PrintError("Writing Data not yet implemented\n"); - return -1; - - case 0xa0: // ATAPI packet command - if (atapi_handle_packet(core, ide, channel) == -1) { - PrintError("Error handling ATAPI packet\n"); - return -1; - } - break; - default: - PrintError("Unhandld IDE Command %x\n", channel->cmd_reg); - return -1; - } - } - return length; -} - - -static int read_hd_data(uint8_t * dst, uint_t length, struct ide_internal * ide, struct ide_channel * channel) { +static int read_hd_data(uint8_t * dst, uint64_t length, struct ide_internal * ide, struct ide_channel * channel) { struct ide_drive * drive = get_selected_drive(channel); - int data_offset = drive->transfer_index % HD_SECTOR_SIZE; + uint64_t data_offset = drive->transfer_index % HD_SECTOR_SIZE; + PrintDebug(VM_NONE,VCORE_NONE, "Read HD data: transfer_index %llu transfer length %llu current sector numer %llu\n", + drive->transfer_index, drive->transfer_length, + drive->hd_state.cur_sector_num); - if (drive->transfer_index >= drive->transfer_length) { - PrintError("Buffer overrun... (xfer_len=%d) (cur_idx=%x) (post_idx=%d)\n", + if (drive->transfer_index >= drive->transfer_length && drive->transfer_index>=DATA_BUFFER_SIZE) { + PrintError(VM_NONE, VCORE_NONE, "Buffer overrun... (xfer_len=%llu) (cur_idx=%llu) (post_idx=%llu)\n", drive->transfer_length, drive->transfer_index, drive->transfer_index + length); return -1; } - + + if (data_offset + length > HD_SECTOR_SIZE) { + PrintError(VM_NONE,VCORE_NONE,"Read spans sectors (data_offset=%llu length=%llu)!\n",data_offset,length); + } + + // For index==0, the read has been done in ata_read_sectors if ((data_offset == 0) && (drive->transfer_index > 0)) { + // advance to next sector and read it + drive->current_lba++; if (ata_read(ide, channel, drive->data_buf, 1) == -1) { - PrintError("Could not read next disk sector\n"); + PrintError(VM_NONE, VCORE_NONE, "Could not read next disk sector\n"); return -1; } } /* - PrintDebug("Reading HD Data (Val=%x), (len=%d) (offset=%d)\n", + PrintDebug(VM_NONE, VCORE_NONE, "Reading HD Data (Val=%x), (len=%d) (offset=%d)\n", *(uint32_t *)(drive->data_buf + data_offset), length, data_offset); */ @@ -1098,22 +1131,15 @@ static int read_hd_data(uint8_t * dst, uint_t length, struct ide_internal * ide, (drive->transfer_index == drive->transfer_length)) { if (drive->transfer_index < drive->transfer_length) { // An increment is complete, but there is still more data to be transferred... - PrintDebug("Integral Complete, still transferring more sectors\n"); + PrintDebug(VM_NONE, VCORE_NONE, "Increment Complete, still transferring more sectors\n"); channel->status.data_req = 1; - - drive->irq_flags.c_d = 0; } else { - PrintDebug("Final Sector Transferred\n"); + PrintDebug(VM_NONE, VCORE_NONE, "Final Sector Transferred\n"); // This was the final read of the request channel->status.data_req = 0; - - - drive->irq_flags.c_d = 1; - drive->irq_flags.rel = 0; } channel->status.ready = 1; - drive->irq_flags.io_dir = 1; channel->status.busy = 0; ide_raise_irq(ide, channel); @@ -1123,22 +1149,88 @@ static int read_hd_data(uint8_t * dst, uint_t length, struct ide_internal * ide, return length; } +static int write_hd_data(uint8_t * src, uint64_t length, struct ide_internal * ide, struct ide_channel * channel) { + struct ide_drive * drive = get_selected_drive(channel); + uint64_t data_offset = drive->transfer_index % HD_SECTOR_SIZE; + + + PrintDebug(VM_NONE,VCORE_NONE, "Write HD data: transfer_index %llu transfer length %llu current sector numer %llu\n", + drive->transfer_index, drive->transfer_length, + drive->hd_state.cur_sector_num); + + if (drive->transfer_index >= drive->transfer_length) { + PrintError(VM_NONE, VCORE_NONE, "Buffer overrun... (xfer_len=%llu) (cur_idx=%llu) (post_idx=%llu)\n", + drive->transfer_length, drive->transfer_index, + drive->transfer_index + length); + return -1; + } + + if (data_offset + length > HD_SECTOR_SIZE) { + PrintError(VM_NONE,VCORE_NONE,"Write spans sectors (data_offset=%llu length=%llu)!\n",data_offset,length); + } + + // Copy data into our buffer - there will be room due to + // (a) the ata_write test below is flushing sectors + // (b) if we somehow get a sector-stradling write (an error), this will + // be OK since the buffer itself is >1 sector in memory + memcpy(drive->data_buf + data_offset, src, length); + + drive->transfer_index += length; + + if ((data_offset+length) >= HD_SECTOR_SIZE) { + // Write out the sector we just finished + if (ata_write(ide, channel, drive->data_buf, 1) == -1) { + PrintError(VM_NONE, VCORE_NONE, "Could not write next disk sector\n"); + return -1; + } + + // go onto next sector + drive->current_lba++; + } + + /* This is the trigger for interrupt injection. + * For write single sector commands we interrupt after every sector + * For multi sector reads we interrupt only at end of the cluster size (mult_sector_num) + * cur_sector_num is configured depending on the operation we are currently running + * We also trigger an interrupt if this is the last byte to transfer, regardless of sector count + */ + if (((drive->transfer_index % (HD_SECTOR_SIZE * drive->hd_state.cur_sector_num)) == 0) || + (drive->transfer_index == drive->transfer_length)) { + if (drive->transfer_index < drive->transfer_length) { + // An increment is complete, but there is still more data to be transferred... + PrintDebug(VM_NONE, VCORE_NONE, "Increment Complete, still transferring more sectors\n"); + channel->status.data_req = 1; + } else { + PrintDebug(VM_NONE, VCORE_NONE, "Final Sector Transferred\n"); + // This was the final read of the request + channel->status.data_req = 0; + } + + channel->status.ready = 1; + channel->status.busy = 0; + + ide_raise_irq(ide, channel); + } + + return length; +} + -static int read_cd_data(uint8_t * dst, uint_t length, struct ide_internal * ide, struct ide_channel * channel) { +static int read_cd_data(uint8_t * dst, uint64_t length, struct ide_internal * ide, struct ide_channel * channel) { struct ide_drive * drive = get_selected_drive(channel); - int data_offset = drive->transfer_index % ATAPI_BLOCK_SIZE; + uint64_t data_offset = drive->transfer_index % ATAPI_BLOCK_SIZE; // int req_offset = drive->transfer_index % drive->req_len; if (drive->cd_state.atapi_cmd != 0x28) { - PrintDebug("IDE: Reading CD Data (len=%d) (req_len=%d)\n", length, drive->req_len); - PrintDebug("IDE: transfer len=%d, transfer idx=%d\n", drive->transfer_length, drive->transfer_index); + PrintDebug(VM_NONE, VCORE_NONE, "IDE: Reading CD Data (len=%llu) (req_len=%u)\n", length, drive->req_len); + PrintDebug(VM_NONE, VCORE_NONE, "IDE: transfer len=%llu, transfer idx=%llu\n", drive->transfer_length, drive->transfer_index); } - if (drive->transfer_index >= drive->transfer_length) { - PrintError("Buffer Overrun... (xfer_len=%d) (cur_idx=%d) (post_idx=%d)\n", + if (drive->transfer_index >= drive->transfer_length && drive->transfer_index>=DATA_BUFFER_SIZE) { + PrintError(VM_NONE, VCORE_NONE, "Buffer Overrun... (xfer_len=%llu) (cur_idx=%llu) (post_idx=%llu)\n", drive->transfer_length, drive->transfer_index, drive->transfer_index + length); return -1; @@ -1147,7 +1239,7 @@ static int read_cd_data(uint8_t * dst, uint_t length, struct ide_internal * ide, if ((data_offset == 0) && (drive->transfer_index > 0)) { if (atapi_update_data_buf(ide, channel) == -1) { - PrintError("Could not update CDROM data buffer\n"); + PrintError(VM_NONE, VCORE_NONE, "Could not update CDROM data buffer\n"); return -1; } } @@ -1168,7 +1260,7 @@ static int read_cd_data(uint8_t * dst, uint_t length, struct ide_internal * ide, // Update the request length in the cylinder regs if (atapi_update_req_len(ide, channel, drive->transfer_length - drive->transfer_index) == -1) { - PrintError("Could not update request length after completed increment\n"); + PrintError(VM_NONE, VCORE_NONE, "Could not update request length after completed increment\n"); return -1; } } else { @@ -1214,26 +1306,27 @@ static int read_drive_id( uint8_t * dst, uint_t length, struct ide_internal * id } -static int ide_read_data_port(struct guest_info * core, ushort_t port, void * dst, uint_t length, void * priv_data) { + +static int read_data_port(struct guest_info * core, ushort_t port, void * dst, uint_t length, void * priv_data) { struct ide_internal * ide = priv_data; struct ide_channel * channel = get_selected_channel(ide, port); struct ide_drive * drive = get_selected_drive(channel); - // PrintDebug("IDE: Reading Data Port %x (len=%d)\n", port, length); + //PrintDebug(core->vm_info, core, "IDE: Reading Data Port %x (len=%d)\n", port, length); - if ((channel->cmd_reg == 0xec) || - (channel->cmd_reg == 0xa1)) { + if ((channel->cmd_reg == ATA_IDENTIFY) || + (channel->cmd_reg == ATA_PIDENTIFY)) { return read_drive_id((uint8_t *)dst, length, ide, channel); } if (drive->drive_type == BLOCK_CDROM) { if (read_cd_data((uint8_t *)dst, length, ide, channel) == -1) { - PrintError("IDE: Could not read CD Data (atapi cmd=%x)\n", drive->cd_state.atapi_cmd); + PrintError(core->vm_info, core, "IDE: Could not read CD Data (atapi cmd=%x)\n", drive->cd_state.atapi_cmd); return -1; } } else if (drive->drive_type == BLOCK_DISK) { if (read_hd_data((uint8_t *)dst, length, ide, channel) == -1) { - PrintError("IDE: Could not read HD Data\n"); + PrintError(core->vm_info, core, "IDE: Could not read HD Data\n"); return -1; } } else { @@ -1243,17 +1336,55 @@ static int ide_read_data_port(struct guest_info * core, ushort_t port, void * ds return length; } +// For the write side, we care both about +// direct PIO writes to a drive as well as +// writes that pass a packet through to an CD +static int write_data_port(struct guest_info * core, ushort_t port, void * src, uint_t length, void * priv_data) { + struct ide_internal * ide = priv_data; + struct ide_channel * channel = get_selected_channel(ide, port); + struct ide_drive * drive = get_selected_drive(channel); + + PrintDebug(core->vm_info, core, "IDE: Writing Data Port %x (val=%x, len=%d)\n", + port, *(uint32_t *)src, length); + + if (drive->drive_type == BLOCK_CDROM) { + if (channel->cmd_reg == ATA_PACKETCMD) { + // short command packet - no check for space... + memcpy(drive->data_buf + drive->transfer_index, src, length); + drive->transfer_index += length; + if (drive->transfer_index >= drive->transfer_length) { + if (atapi_handle_packet(core, ide, channel) == -1) { + PrintError(core->vm_info, core, "Error handling ATAPI packet\n"); + return -1; + } + } + } else { + PrintError(core->vm_info,core,"Unknown command %x on CD ROM\n",channel->cmd_reg); + return -1; + } + } else if (drive->drive_type == BLOCK_DISK) { + if (write_hd_data((uint8_t *)src, length, ide, channel) == -1) { + PrintError(core->vm_info, core, "IDE: Could not write HD Data\n"); + return -1; + } + } else { + // nothing ... do not support writable cd + } + + return length; +} + static int write_port_std(struct guest_info * core, ushort_t port, void * src, uint_t length, void * priv_data) { struct ide_internal * ide = priv_data; struct ide_channel * channel = get_selected_channel(ide, port); struct ide_drive * drive = get_selected_drive(channel); if (length != 1) { - PrintError("Invalid Write length on IDE port %x\n", port); + PrintError(core->vm_info, core, "Invalid Write length on IDE port %x\n", port); return -1; } - PrintDebug("IDE: Writing Standard Port %x (%s) (val=%x)\n", port, io_port_to_str(port), *(uint8_t *)src); + PrintDebug(core->vm_info, core, "IDE: Writing Standard Port %x (%s) (val=%x)\n", port, io_port_to_str(port), *(uint8_t *)src); switch (port) { // reset and interrupt enable @@ -1278,40 +1409,129 @@ static int write_port_std(struct guest_info * core, ushort_t port, void * src, u case PRI_SECT_CNT_PORT: case SEC_SECT_CNT_PORT: + // update CHS and LBA28 state channel->drives[0].sector_count = *(uint8_t *)src; channel->drives[1].sector_count = *(uint8_t *)src; + + // update LBA48 state + if (is_lba48(channel)) { + uint16_t val = *(uint8_t*)src; // top bits zero; + if (!channel->drives[0].lba48.sector_count_state) { + channel->drives[0].lba48.sector_count = val<<8; + } else { + channel->drives[0].lba48.sector_count |= val; + } + channel->drives[0].lba48.sector_count_state ^= 1; + if (!channel->drives[1].lba48.sector_count_state) { + channel->drives[1].lba48.sector_count = val<<8; + } else { + channel->drives[1].lba48.sector_count |= val; + } + channel->drives[0].lba48.sector_count_state ^= 1; + } + break; case PRI_SECT_NUM_PORT: case SEC_SECT_NUM_PORT: + // update CHS and LBA28 state channel->drives[0].sector_num = *(uint8_t *)src; channel->drives[1].sector_num = *(uint8_t *)src; + + // update LBA48 state + if (is_lba48(channel)) { + uint64_t val = *(uint8_t *)src; // lob off top 7 bytes; + if (!channel->drives[0].lba48.lba41_state) { + channel->drives[0].lba48.lba |= val<<24; + } else { + channel->drives[0].lba48.lba |= val; + } + channel->drives[0].lba48.lba41_state ^= 1; + if (!channel->drives[1].lba48.lba41_state) { + channel->drives[1].lba48.lba |= val<<24; + } else { + channel->drives[1].lba48.lba |= val; + } + channel->drives[1].lba48.lba41_state ^= 1; + } + break; case PRI_CYL_LOW_PORT: case SEC_CYL_LOW_PORT: + // update CHS and LBA28 state channel->drives[0].cylinder_low = *(uint8_t *)src; channel->drives[1].cylinder_low = *(uint8_t *)src; + + // update LBA48 state + if (is_lba48(channel)) { + uint64_t val = *(uint8_t *)src; // lob off top 7 bytes; + if (!channel->drives[0].lba48.lba52_state) { + channel->drives[0].lba48.lba |= val<<32; + } else { + channel->drives[0].lba48.lba |= val<<8; + } + channel->drives[0].lba48.lba52_state ^= 1; + if (!channel->drives[1].lba48.lba52_state) { + channel->drives[1].lba48.lba |= val<<32; + } else { + channel->drives[1].lba48.lba |= val<<8; + } + channel->drives[1].lba48.lba52_state ^= 1; + } + break; case PRI_CYL_HIGH_PORT: case SEC_CYL_HIGH_PORT: + // update CHS and LBA28 state channel->drives[0].cylinder_high = *(uint8_t *)src; channel->drives[1].cylinder_high = *(uint8_t *)src; + + // update LBA48 state + if (is_lba48(channel)) { + uint64_t val = *(uint8_t *)src; // lob off top 7 bytes; + if (!channel->drives[0].lba48.lba63_state) { + channel->drives[0].lba48.lba |= val<<40; + } else { + channel->drives[0].lba48.lba |= val<<16; + } + channel->drives[0].lba48.lba63_state ^= 1; + if (!channel->drives[1].lba48.lba63_state) { + channel->drives[1].lba48.lba |= val<<40; + } else { + channel->drives[1].lba48.lba |= val<<16; + } + channel->drives[1].lba48.lba63_state ^= 1; + } + break; case PRI_DRV_SEL_PORT: case SEC_DRV_SEL_PORT: { - channel->drive_head.val = *(uint8_t *)src; + struct ide_drive_head_reg nh, oh; + + oh.val = channel->drive_head.val; + channel->drive_head.val = nh.val = *(uint8_t *)src; + + // has LBA flipped? + if ((oh.val & 0xe0) != (nh.val & 0xe0)) { + // reset LBA48 state + channel->drives[0].lba48.sector_count_state=0; + channel->drives[0].lba48.lba41_state=0; + channel->drives[0].lba48.lba52_state=0; + channel->drives[0].lba48.lba63_state=0; + channel->drives[1].lba48.sector_count_state=0; + channel->drives[1].lba48.lba41_state=0; + channel->drives[1].lba48.lba52_state=0; + channel->drives[1].lba48.lba63_state=0; + } - // make sure the reserved bits are ok.. - // JRL TODO: check with new ramdisk to make sure this is right... - channel->drive_head.val |= 0xa0; drive = get_selected_drive(channel); // Selecting a non-present device is a no-no if (drive->drive_type == BLOCK_NONE) { - PrintDebug("Attempting to select a non-present drive\n"); + PrintDebug(core->vm_info, core, "Attempting to select a non-present drive\n"); channel->error_reg.abort = 1; channel->status.error = 1; } else { @@ -1328,7 +1548,7 @@ static int write_port_std(struct guest_info * core, ushort_t port, void * src, u break; } default: - PrintError("IDE: Write to unknown Port %x\n", port); + PrintError(core->vm_info, core, "IDE: Write to unknown Port %x\n", port); return -1; } return length; @@ -1341,11 +1561,11 @@ static int read_port_std(struct guest_info * core, ushort_t port, void * dst, ui struct ide_drive * drive = get_selected_drive(channel); if (length != 1) { - PrintError("Invalid Read length on IDE port %x\n", port); + PrintError(core->vm_info, core, "Invalid Read length on IDE port %x\n", port); return -1; } - PrintDebug("IDE: Reading Standard Port %x (%s)\n", port, io_port_to_str(port)); + PrintDebug(core->vm_info, core, "IDE: Reading Standard Port %x (%s)\n", port, io_port_to_str(port)); if ((port == PRI_ADDR_REG_PORT) || (port == SEC_ADDR_REG_PORT)) { @@ -1410,11 +1630,11 @@ static int read_port_std(struct guest_info * core, ushort_t port, void * dst, ui break; default: - PrintError("Invalid Port: %x\n", port); + PrintError(core->vm_info, core, "Invalid Port: %x\n", port); return -1; } - PrintDebug("\tVal=%x\n", *(uint8_t *)dst); + PrintDebug(core->vm_info, core, "\tVal=%x\n", *(uint8_t *)dst); return length; } @@ -1448,12 +1668,14 @@ static void init_channel(struct ide_channel * channel) { int i = 0; channel->error_reg.val = 0x01; + + //** channel->features = 0x0; + channel->drive_head.val = 0x00; channel->status.val = 0x00; channel->cmd_reg = 0x00; channel->ctrl_reg.val = 0x08; - channel->dma_cmd.val = 0; channel->dma_status.val = 0; channel->dma_prd_addr = 0; @@ -1466,30 +1688,28 @@ static void init_channel(struct ide_channel * channel) { } -static int pci_config_update(uint_t reg_num, void * src, uint_t length, void * private_data) { - PrintDebug("PCI Config Update\n"); +static int pci_config_update(struct pci_device * pci_dev, uint32_t reg_num, void * src, uint_t length, void * private_data) { + PrintDebug(VM_NONE, VCORE_NONE, "PCI Config Update\n"); /* struct ide_internal * ide = (struct ide_internal *)(private_data); - PrintDebug("\t\tInterupt register (Dev=%s), irq=%d\n", ide->ide_pci->name, ide->ide_pci->config_header.intr_line); + PrintDebug(VM_NONE, VCORE_NONE, info, "\t\tInterupt register (Dev=%s), irq=%d\n", ide->ide_pci->name, ide->ide_pci->config_header.intr_line); */ return 0; } static int init_ide_state(struct ide_internal * ide) { - int i; /* * Check if the PIIX 3 actually represents both IDE channels in a single PCI entry */ - for (i = 0; i < 1; i++) { - init_channel(&(ide->channels[i])); + init_channel(&(ide->channels[0])); + ide->channels[0].irq = PRI_DEFAULT_IRQ ; - // JRL: this is a terrible hack... - ide->channels[i].irq = PRI_DEFAULT_IRQ + i; - } + init_channel(&(ide->channels[1])); + ide->channels[1].irq = SEC_DEFAULT_IRQ ; return 0; @@ -1510,130 +1730,219 @@ static int ide_free(struct ide_internal * ide) { #ifdef V3_CONFIG_CHECKPOINT #include -static int ide_save(struct v3_chkpt_ctx * ctx, void * private_data) { + +static int ide_save_extended(struct v3_chkpt *chkpt, char *id, void * private_data) { struct ide_internal * ide = (struct ide_internal *)private_data; + struct v3_chkpt_ctx *ctx=0; int ch_num = 0; int drive_num = 0; char buf[128]; + ctx=v3_chkpt_open_ctx(chkpt,id); + + if (!ctx) { + PrintError(VM_NONE, VCORE_NONE, "Failed to open context for save\n"); + goto savefailout; + } + + // nothing saved yet + + v3_chkpt_close_ctx(ctx);ctx=0; + + for (ch_num = 0; ch_num < 2; ch_num++) { - struct v3_chkpt_ctx * ch_ctx = NULL; struct ide_channel * ch = &(ide->channels[ch_num]); - snprintf(buf, 128, "channel-%d", ch_num); - ch_ctx = v3_chkpt_open_ctx(ctx->chkpt, ctx, buf); + snprintf(buf, 128, "%s-%d", id, ch_num); - v3_chkpt_save_8(ch_ctx, "ERROR", &(ch->error_reg.val)); - v3_chkpt_save_8(ch_ctx, "FEATURES", &(ch->features.val)); - v3_chkpt_save_8(ch_ctx, "DRIVE_HEAD", &(ch->drive_head.val)); - v3_chkpt_save_8(ch_ctx, "STATUS", &(ch->status.val)); - v3_chkpt_save_8(ch_ctx, "CMD_REG", &(ch->cmd_reg)); - v3_chkpt_save_8(ch_ctx, "CTRL_REG", &(ch->ctrl_reg.val)); - v3_chkpt_save_8(ch_ctx, "DMA_CMD", &(ch->dma_cmd.val)); - v3_chkpt_save_8(ch_ctx, "DMA_STATUS", &(ch->dma_status.val)); - v3_chkpt_save_32(ch_ctx, "PRD_ADDR", &(ch->dma_prd_addr)); - v3_chkpt_save_32(ch_ctx, "DMA_TBL_IDX", &(ch->dma_tbl_index)); + ctx = v3_chkpt_open_ctx(chkpt, buf); + + if (!ctx) { + PrintError(VM_NONE, VCORE_NONE, "Unable to open context to save channel %d\n",ch_num); + goto savefailout; + } + V3_CHKPT_SAVE(ctx, "ERROR", ch->error_reg.val, savefailout); + V3_CHKPT_SAVE(ctx, "FEATURES", ch->features.val, savefailout); + V3_CHKPT_SAVE(ctx, "DRIVE_HEAD", ch->drive_head.val, savefailout); + V3_CHKPT_SAVE(ctx, "STATUS", ch->status.val, savefailout); + V3_CHKPT_SAVE(ctx, "CMD_REG", ch->cmd_reg, savefailout); + V3_CHKPT_SAVE(ctx, "CTRL_REG", ch->ctrl_reg.val, savefailout); + V3_CHKPT_SAVE(ctx, "DMA_CMD", ch->dma_cmd.val, savefailout); + V3_CHKPT_SAVE(ctx, "DMA_STATUS", ch->dma_status.val, savefailout); + V3_CHKPT_SAVE(ctx, "PRD_ADDR", ch->dma_prd_addr, savefailout); + V3_CHKPT_SAVE(ctx, "DMA_TBL_IDX", ch->dma_tbl_index, savefailout); + + + + v3_chkpt_close_ctx(ctx); ctx=0; for (drive_num = 0; drive_num < 2; drive_num++) { - struct v3_chkpt_ctx * drive_ctx = NULL; struct ide_drive * drive = &(ch->drives[drive_num]); - snprintf(buf, 128, "drive-%d-%d", ch_num, drive_num); - drive_ctx = v3_chkpt_open_ctx(ctx->chkpt, ch_ctx, buf); + snprintf(buf, 128, "%s-%d-%d", id, ch_num, drive_num); + + ctx = v3_chkpt_open_ctx(chkpt, buf); - v3_chkpt_save_8(drive_ctx, "DRIVE_TYPE", &(drive->drive_type)); - v3_chkpt_save_8(drive_ctx, "SECTOR_COUNT", &(drive->sector_count)); - v3_chkpt_save_8(drive_ctx, "SECTOR_NUM", &(drive->sector_num)); - v3_chkpt_save_16(drive_ctx, "CYLINDER", &(drive->cylinder)); + if (!ctx) { + PrintError(VM_NONE, VCORE_NONE, "Unable to open context to save drive %d\n",drive_num); + goto savefailout; + } + + V3_CHKPT_SAVE(ctx, "DRIVE_TYPE", drive->drive_type, savefailout); + V3_CHKPT_SAVE(ctx, "SECTOR_COUNT", drive->sector_count, savefailout); + V3_CHKPT_SAVE(ctx, "SECTOR_NUM", drive->sector_num, savefailout); + V3_CHKPT_SAVE(ctx, "CYLINDER", drive->cylinder,savefailout); - v3_chkpt_save_64(drive_ctx, "CURRENT_LBA", &(drive->current_lba)); - v3_chkpt_save_32(drive_ctx, "TRANSFER_LENGTH", &(drive->transfer_length)); - v3_chkpt_save_32(drive_ctx, "TRANSFER_INDEX", &(drive->transfer_index)); + V3_CHKPT_SAVE(ctx, "CURRENT_LBA", drive->current_lba, savefailout); + V3_CHKPT_SAVE(ctx, "TRANSFER_LENGTH", drive->transfer_length, savefailout); + V3_CHKPT_SAVE(ctx, "TRANSFER_INDEX", drive->transfer_index, savefailout); - v3_chkpt_save(drive_ctx, "DATA_BUF", DATA_BUFFER_SIZE, drive->data_buf); + V3_CHKPT_SAVE(ctx, "DATA_BUF", drive->data_buf, savefailout); /* For now we'll just pack the type specific data at the end... */ /* We should probably add a new context here in the future... */ if (drive->drive_type == BLOCK_CDROM) { - v3_chkpt_save(drive_ctx, "ATAPI_SENSE_DATA", 18, drive->cd_state.sense.buf); - v3_chkpt_save_8(drive_ctx, "ATAPI_CMD", &(drive->cd_state.atapi_cmd)); - v3_chkpt_save(drive_ctx, "ATAPI_ERR_RECOVERY", 12, drive->cd_state.err_recovery.buf); + V3_CHKPT_SAVE(ctx, "ATAPI_SENSE_DATA", drive->cd_state.sense.buf, savefailout); + V3_CHKPT_SAVE(ctx, "ATAPI_CMD", drive->cd_state.atapi_cmd, savefailout); + V3_CHKPT_SAVE(ctx, "ATAPI_ERR_RECOVERY", drive->cd_state.err_recovery.buf, savefailout); } else if (drive->drive_type == BLOCK_DISK) { - v3_chkpt_save_32(drive_ctx, "ACCESSED", &(drive->hd_state.accessed)); - v3_chkpt_save_32(drive_ctx, "MULT_SECT_NUM", &(drive->hd_state.mult_sector_num)); - v3_chkpt_save_32(drive_ctx, "CUR_SECT_NUM", &(drive->hd_state.cur_sector_num)); + V3_CHKPT_SAVE(ctx, "ACCESSED", drive->hd_state.accessed, savefailout); + V3_CHKPT_SAVE(ctx, "MULT_SECT_NUM", drive->hd_state.mult_sector_num, savefailout); + V3_CHKPT_SAVE(ctx, "CUR_SECT_NUM", drive->hd_state.cur_sector_num, savefailout); + } else if (drive->drive_type == BLOCK_NONE) { + // no drive connected, so no data + } else { + PrintError(VM_NONE, VCORE_NONE, "Invalid drive type %d\n",drive->drive_type); + goto savefailout; } + + V3_CHKPT_SAVE(ctx, "LBA48_LBA", drive->lba48.lba, savefailout); + V3_CHKPT_SAVE(ctx, "LBA48_SECTOR_COUNT", drive->lba48.sector_count, savefailout); + V3_CHKPT_SAVE(ctx, "LBA48_SECTOR_COUNT_STATE", drive->lba48.sector_count_state, savefailout); + V3_CHKPT_SAVE(ctx, "LBA48_LBA41_STATE", drive->lba48.lba41_state, savefailout); + V3_CHKPT_SAVE(ctx, "LBA48_LBA52_STATE", drive->lba48.lba52_state, savefailout); + V3_CHKPT_SAVE(ctx, "LBA48_LBA63_STATE", drive->lba48.lba63_state, savefailout); + + v3_chkpt_close_ctx(ctx); ctx=0; } } +// goodout: return 0; + + savefailout: + PrintError(VM_NONE, VCORE_NONE, "Failed to save IDE\n"); + if (ctx) {v3_chkpt_close_ctx(ctx); } + return -1; } -static int ide_load(struct v3_chkpt_ctx * ctx, void * private_data) { +static int ide_load_extended(struct v3_chkpt *chkpt, char *id, void * private_data) { struct ide_internal * ide = (struct ide_internal *)private_data; + struct v3_chkpt_ctx *ctx=0; int ch_num = 0; int drive_num = 0; char buf[128]; + ctx=v3_chkpt_open_ctx(chkpt,id); + + if (!ctx) { + PrintError(VM_NONE, VCORE_NONE, "Failed to open context for load\n"); + goto loadfailout; + } + + // nothing saved yet + + v3_chkpt_close_ctx(ctx);ctx=0; + for (ch_num = 0; ch_num < 2; ch_num++) { - struct v3_chkpt_ctx * ch_ctx = NULL; struct ide_channel * ch = &(ide->channels[ch_num]); - snprintf(buf, 128, "channel-%d", ch_num); - ch_ctx = v3_chkpt_open_ctx(ctx->chkpt, ctx, buf); + snprintf(buf, 128, "%s-%d", id, ch_num); + + ctx = v3_chkpt_open_ctx(chkpt, buf); + + if (!ctx) { + PrintError(VM_NONE, VCORE_NONE, "Unable to open context to load channel %d\n",ch_num); + goto loadfailout; + } - v3_chkpt_load_8(ch_ctx, "ERROR", &(ch->error_reg.val)); - v3_chkpt_load_8(ch_ctx, "FEATURES", &(ch->features.val)); - v3_chkpt_load_8(ch_ctx, "DRIVE_HEAD", &(ch->drive_head.val)); - v3_chkpt_load_8(ch_ctx, "STATUS", &(ch->status.val)); - v3_chkpt_load_8(ch_ctx, "CMD_REG", &(ch->cmd_reg)); - v3_chkpt_load_8(ch_ctx, "CTRL_REG", &(ch->ctrl_reg.val)); - v3_chkpt_load_8(ch_ctx, "DMA_CMD", &(ch->dma_cmd.val)); - v3_chkpt_load_8(ch_ctx, "DMA_STATUS", &(ch->dma_status.val)); - v3_chkpt_load_32(ch_ctx, "PRD_ADDR", &(ch->dma_prd_addr)); - v3_chkpt_load_32(ch_ctx, "DMA_TBL_IDX", &(ch->dma_tbl_index)); + V3_CHKPT_LOAD(ctx, "ERROR", ch->error_reg.val, loadfailout); + V3_CHKPT_LOAD(ctx, "FEATURES", ch->features.val, loadfailout); + V3_CHKPT_LOAD(ctx, "DRIVE_HEAD", ch->drive_head.val, loadfailout); + V3_CHKPT_LOAD(ctx, "STATUS", ch->status.val, loadfailout); + V3_CHKPT_LOAD(ctx, "CMD_REG", ch->cmd_reg, loadfailout); + V3_CHKPT_LOAD(ctx, "CTRL_REG", ch->ctrl_reg.val, loadfailout); + V3_CHKPT_LOAD(ctx, "DMA_CMD", ch->dma_cmd.val, loadfailout); + V3_CHKPT_LOAD(ctx, "DMA_STATUS", ch->dma_status.val, loadfailout); + V3_CHKPT_LOAD(ctx, "PRD_ADDR", ch->dma_prd_addr, loadfailout); + V3_CHKPT_LOAD(ctx, "DMA_TBL_IDX", ch->dma_tbl_index, loadfailout); + v3_chkpt_close_ctx(ctx); ctx=0; for (drive_num = 0; drive_num < 2; drive_num++) { - struct v3_chkpt_ctx * drive_ctx = NULL; struct ide_drive * drive = &(ch->drives[drive_num]); - snprintf(buf, 128, "drive-%d-%d", ch_num, drive_num); - drive_ctx = v3_chkpt_open_ctx(ctx->chkpt, ch_ctx, buf); + snprintf(buf, 128, "%s-%d-%d", id, ch_num, drive_num); + + ctx = v3_chkpt_open_ctx(chkpt, buf); - v3_chkpt_load_8(drive_ctx, "DRIVE_TYPE", &(drive->drive_type)); - v3_chkpt_load_8(drive_ctx, "SECTOR_COUNT", &(drive->sector_count)); - v3_chkpt_load_8(drive_ctx, "SECTOR_NUM", &(drive->sector_num)); - v3_chkpt_load_16(drive_ctx, "CYLINDER", &(drive->cylinder)); + if (!ctx) { + PrintError(VM_NONE, VCORE_NONE, "Unable to open context to load drive %d\n",drive_num); + goto loadfailout; + } - v3_chkpt_load_64(drive_ctx, "CURRENT_LBA", &(drive->current_lba)); - v3_chkpt_load_32(drive_ctx, "TRANSFER_LENGTH", &(drive->transfer_length)); - v3_chkpt_load_32(drive_ctx, "TRANSFER_INDEX", &(drive->transfer_index)); + V3_CHKPT_LOAD(ctx, "DRIVE_TYPE", drive->drive_type, loadfailout); + V3_CHKPT_LOAD(ctx, "SECTOR_COUNT", drive->sector_count, loadfailout); + V3_CHKPT_LOAD(ctx, "SECTOR_NUM", drive->sector_num, loadfailout); + V3_CHKPT_LOAD(ctx, "CYLINDER", drive->cylinder,loadfailout); - v3_chkpt_load(drive_ctx, "DATA_BUF", DATA_BUFFER_SIZE, drive->data_buf); + V3_CHKPT_LOAD(ctx, "CURRENT_LBA", drive->current_lba, loadfailout); + V3_CHKPT_LOAD(ctx, "TRANSFER_LENGTH", drive->transfer_length, loadfailout); + V3_CHKPT_LOAD(ctx, "TRANSFER_INDEX", drive->transfer_index, loadfailout); + V3_CHKPT_LOAD(ctx, "DATA_BUF", drive->data_buf, loadfailout); + /* For now we'll just pack the type specific data at the end... */ /* We should probably add a new context here in the future... */ if (drive->drive_type == BLOCK_CDROM) { - v3_chkpt_load(drive_ctx, "ATAPI_SENSE_DATA", 18, drive->cd_state.sense.buf); - v3_chkpt_load_8(drive_ctx, "ATAPI_CMD", &(drive->cd_state.atapi_cmd)); - v3_chkpt_load(drive_ctx, "ATAPI_ERR_RECOVERY", 12, drive->cd_state.err_recovery.buf); + V3_CHKPT_LOAD(ctx, "ATAPI_SENSE_DATA", drive->cd_state.sense.buf, loadfailout); + V3_CHKPT_LOAD(ctx, "ATAPI_CMD", drive->cd_state.atapi_cmd, loadfailout); + V3_CHKPT_LOAD(ctx, "ATAPI_ERR_RECOVERY", drive->cd_state.err_recovery.buf, loadfailout); } else if (drive->drive_type == BLOCK_DISK) { - v3_chkpt_load_32(drive_ctx, "ACCESSED", &(drive->hd_state.accessed)); - v3_chkpt_load_32(drive_ctx, "MULT_SECT_NUM", &(drive->hd_state.mult_sector_num)); - v3_chkpt_load_32(drive_ctx, "CUR_SECT_NUM", &(drive->hd_state.cur_sector_num)); + V3_CHKPT_LOAD(ctx, "ACCESSED", drive->hd_state.accessed, loadfailout); + V3_CHKPT_LOAD(ctx, "MULT_SECT_NUM", drive->hd_state.mult_sector_num, loadfailout); + V3_CHKPT_LOAD(ctx, "CUR_SECT_NUM", drive->hd_state.cur_sector_num, loadfailout); + } else if (drive->drive_type == BLOCK_NONE) { + // no drive connected, so no data + } else { + PrintError(VM_NONE, VCORE_NONE, "Invalid drive type %d\n",drive->drive_type); + goto loadfailout; } + + V3_CHKPT_LOAD(ctx, "LBA48_LBA", drive->lba48.lba, loadfailout); + V3_CHKPT_LOAD(ctx, "LBA48_SECTOR_COUNT", drive->lba48.sector_count, loadfailout); + V3_CHKPT_LOAD(ctx, "LBA48_SECTOR_COUNT_STATE", drive->lba48.sector_count_state, loadfailout); + V3_CHKPT_LOAD(ctx, "LBA48_LBA41_STATE", drive->lba48.lba41_state, loadfailout); + V3_CHKPT_LOAD(ctx, "LBA48_LBA52_STATE", drive->lba48.lba52_state, loadfailout); + V3_CHKPT_LOAD(ctx, "LBA48_LBA63_STATE", drive->lba48.lba63_state, loadfailout); + } } - +// goodout: return 0; + + loadfailout: + PrintError(VM_NONE, VCORE_NONE, "Failed to load IDE\n"); + if (ctx) {v3_chkpt_close_ctx(ctx); } + return -1; + } @@ -1644,10 +1953,9 @@ static int ide_load(struct v3_chkpt_ctx * ctx, void * private_data) { static struct v3_device_ops dev_ops = { .free = (int (*)(void *))ide_free, #ifdef V3_CONFIG_CHECKPOINT - .save = ide_save, - .load = ide_load + .save_extended = ide_save_extended, + .load_extended = ide_load_extended #endif - }; @@ -1671,7 +1979,7 @@ static int connect_fn(struct v3_vm_info * vm, if ((!type_str) || (!drive_str) || (!bus_str)) { - PrintError("Incomplete IDE Configuration\n"); + PrintError(vm, VCORE_NONE, "Incomplete IDE Configuration\n"); return -1; } @@ -1682,12 +1990,13 @@ static int connect_fn(struct v3_vm_info * vm, drive = &(channel->drives[drive_num]); if (drive->drive_type != BLOCK_NONE) { - PrintError("Device slot (bus=%d, drive=%d) already occupied\n", bus_num, drive_num); + PrintError(vm, VCORE_NONE, "Device slot (bus=%d, drive=%d) already occupied\n", bus_num, drive_num); return -1; } if (model_str != NULL) { - strncpy(drive->model, model_str, sizeof(drive->model) - 1); + strncpy(drive->model, model_str, sizeof(drive->model)); + drive->model[sizeof(drive->model)-1] = 0; } if (strcasecmp(type_str, "cdrom") == 0) { @@ -1707,7 +2016,7 @@ static int connect_fn(struct v3_vm_info * vm, drive->num_heads = 16; drive->num_cylinders = (ops->get_capacity(private_data) / HD_SECTOR_SIZE) / (drive->num_sectors * drive->num_heads); } else { - PrintError("invalid IDE drive type\n"); + PrintError(vm, VCORE_NONE, "invalid IDE drive type\n"); return -1; } @@ -1731,12 +2040,12 @@ static int ide_init(struct v3_vm_info * vm, v3_cfg_tree_t * cfg) { char * dev_id = v3_cfg_val(cfg, "ID"); int ret = 0; - PrintDebug("IDE: Initializing IDE\n"); + PrintDebug(vm, VCORE_NONE, "IDE: Initializing IDE\n"); ide = (struct ide_internal *)V3_Malloc(sizeof(struct ide_internal)); if (ide == NULL) { - PrintError("Error allocating IDE state\n"); + PrintError(vm, VCORE_NONE, "Error allocating IDE state\n"); return -1; } @@ -1749,34 +2058,36 @@ static int ide_init(struct v3_vm_info * vm, v3_cfg_tree_t * cfg) { struct vm_device * southbridge = v3_find_dev(vm, v3_cfg_val(cfg, "controller")); if (!southbridge) { - PrintError("Could not find southbridge\n"); + PrintError(vm, VCORE_NONE, "Could not find southbridge\n"); V3_Free(ide); return -1; } ide->southbridge = (struct v3_southbridge *)(southbridge->private_data); + } else { + PrintError(vm,VCORE_NONE,"Strange - you don't have a PCI bus\n"); } - PrintDebug("IDE: Creating IDE bus x 2\n"); + PrintDebug(vm, VCORE_NONE, "IDE: Creating IDE bus x 2\n"); struct vm_device * dev = v3_add_device(vm, dev_id, &dev_ops, ide); if (dev == NULL) { - PrintError("Could not attach device %s\n", dev_id); + PrintError(vm, VCORE_NONE, "Could not attach device %s\n", dev_id); V3_Free(ide); return -1; } if (init_ide_state(ide) == -1) { - PrintError("Failed to initialize IDE state\n"); + PrintError(vm, VCORE_NONE, "Failed to initialize IDE state\n"); v3_remove_device(dev); return -1; } - PrintDebug("Connecting to IDE IO ports\n"); + PrintDebug(vm, VCORE_NONE, "Connecting to IDE IO ports\n"); ret |= v3_dev_hook_io(dev, PRI_DATA_PORT, - &ide_read_data_port, &write_data_port); + &read_data_port, &write_data_port); ret |= v3_dev_hook_io(dev, PRI_FEATURES_PORT, &read_port_std, &write_port_std); ret |= v3_dev_hook_io(dev, PRI_SECT_CNT_PORT, @@ -1793,7 +2104,7 @@ static int ide_init(struct v3_vm_info * vm, v3_cfg_tree_t * cfg) { &read_port_std, &write_cmd_port); ret |= v3_dev_hook_io(dev, SEC_DATA_PORT, - &ide_read_data_port, &write_data_port); + &read_data_port, &write_data_port); ret |= v3_dev_hook_io(dev, SEC_FEATURES_PORT, &read_port_std, &write_port_std); ret |= v3_dev_hook_io(dev, SEC_SECT_CNT_PORT, @@ -1825,7 +2136,7 @@ static int ide_init(struct v3_vm_info * vm, v3_cfg_tree_t * cfg) { if (ret != 0) { - PrintError("Error hooking IDE IO port\n"); + PrintError(vm, VCORE_NONE, "Error hooking IDE IO port\n"); v3_remove_device(dev); return -1; } @@ -1838,7 +2149,7 @@ static int ide_init(struct v3_vm_info * vm, v3_cfg_tree_t * cfg) { struct pci_device * pci_dev = NULL; int i; - PrintDebug("Connecting IDE to PCI bus\n"); + V3_Print(vm, VCORE_NONE, "Connecting IDE to PCI bus\n"); for (i = 0; i < 6; i++) { bars[i].type = PCI_BAR_NONE; @@ -1855,10 +2166,10 @@ static int ide_init(struct v3_vm_info * vm, v3_cfg_tree_t * cfg) { pci_dev = v3_pci_register_device(ide->pci_bus, PCI_STD_DEVICE, 0, sb_pci->dev_num, 1, "PIIX3_IDE", bars, - pci_config_update, NULL, NULL, ide); + pci_config_update, NULL, NULL, NULL, ide); if (pci_dev == NULL) { - PrintError("Failed to register IDE BUS %d with PCI\n", i); + PrintError(vm, VCORE_NONE, "Failed to register IDE BUS %d with PCI\n", i); v3_remove_device(dev); return -1; } @@ -1886,13 +2197,13 @@ static int ide_init(struct v3_vm_info * vm, v3_cfg_tree_t * cfg) { } if (v3_dev_add_blk_frontend(vm, dev_id, connect_fn, (void *)ide) == -1) { - PrintError("Could not register %s as frontend\n", dev_id); + PrintError(vm, VCORE_NONE, "Could not register %s as frontend\n", dev_id); v3_remove_device(dev); return -1; } - PrintDebug("IDE Initialized\n"); + PrintDebug(vm, VCORE_NONE, "IDE Initialized\n"); return 0; }