X-Git-Url: http://v3vee.org/palacios/gitweb/gitweb.cgi?a=blobdiff_plain;f=palacios%2Fsrc%2Fdevices%2Fide.c;h=e9a90a84342d83f286c86c9fa2efb6da31f047d3;hb=d775bbfa668ce9968bacc0e4257cf86e5ab88e90;hp=67a892827c774843bbbe23ea27ecd3a63ad0517c;hpb=0c31bb41ac41d04a891a6eeff5bae398fa89b419;p=palacios.git diff --git a/palacios/src/devices/ide.c b/palacios/src/devices/ide.c index 67a8928..e9a90a8 100644 --- a/palacios/src/devices/ide.c +++ b/palacios/src/devices/ide.c @@ -26,7 +26,7 @@ #include "ide-types.h" #include "atapi-types.h" -#ifndef CONFIG_DEBUG_IDE +#ifndef V3_CONFIG_DEBUG_IDE #undef PrintDebug #define PrintDebug(fmt, args...) #endif @@ -110,16 +110,16 @@ struct ide_cd_state { }; struct ide_hd_state { - int accessed; + uint32_t accessed; /* this is the multiple sector transfer size as configured for read/write multiple sectors*/ - uint_t mult_sector_num; + uint32_t mult_sector_num; /* This is the current op sector size: * for multiple sector ops this equals mult_sector_num * for standard ops this equals 1 */ - uint_t cur_sector_num; + uint64_t cur_sector_num; }; struct ide_drive { @@ -137,11 +137,11 @@ struct ide_drive { char model[41]; // Where we are in the data transfer - uint_t transfer_index; + uint64_t transfer_index; // the length of a transfer // calculated for easy access - uint_t transfer_length; + uint64_t transfer_length; uint64_t current_lba; @@ -153,13 +153,25 @@ struct ide_drive { uint32_t num_heads; uint32_t num_sectors; + + struct lba48_state { + // all start at zero + uint64_t lba; + uint16_t sector_count; // for LBA48 + uint8_t sector_count_state; // two step write to 1f2/172 (high first) + uint8_t lba41_state; // two step write to 1f3 + uint8_t lba52_state; // two step write to 1f4 + uint8_t lba63_state; // two step write to 15 + } lba48; + void * private_data; union { - uint8_t sector_count; // 0x1f2,0x172 - struct atapi_irq_flags irq_flags; + uint8_t sector_count; // 0x1f2,0x172 (ATA) + struct atapi_irq_flags irq_flags; // (ATAPI ONLY) } __attribute__((packed)); + union { uint8_t sector_num; // 0x1f3,0x173 uint8_t lba0; @@ -206,10 +218,18 @@ struct ide_channel { // Control Registers struct ide_ctrl_reg ctrl_reg; // [write] 0x3f6,0x376 - struct ide_dma_cmd_reg dma_cmd; - struct ide_dma_status_reg dma_status; - uint32_t dma_prd_addr; - uint_t dma_tbl_index; + union { + uint8_t dma_ports[8]; + struct { + struct ide_dma_cmd_reg dma_cmd; + uint8_t rsvd1; + struct ide_dma_status_reg dma_status; + uint8_t rsvd2; + uint32_t dma_prd_addr; + } __attribute__((packed)); + } __attribute__((packed)); + + uint32_t dma_tbl_index; }; @@ -221,6 +241,8 @@ struct ide_internal { struct vm_device * pci_bus; struct pci_device * ide_pci; + + struct v3_vm_info * vm; }; @@ -249,6 +271,18 @@ static inline uint32_t le_to_be_32(const uint32_t val) { } +static inline int is_lba28(struct ide_channel * channel) { + return channel->drive_head.lba_mode && channel->drive_head.rsvd1 && channel->drive_head.rsvd2; +} + +static inline int is_lba48(struct ide_channel * channel) { + return channel->drive_head.lba_mode && !channel->drive_head.rsvd1 && !channel->drive_head.rsvd2; +} + +static inline int is_chs(struct ide_channel * channel) { + return !channel->drive_head.lba_mode; +} + static inline int get_channel_index(ushort_t port) { if (((port & 0xfff8) == 0x1f0) || ((port & 0xfffe) == 0x3f6) || @@ -265,7 +299,12 @@ static inline int get_channel_index(ushort_t port) { static inline struct ide_channel * get_selected_channel(struct ide_internal * ide, ushort_t port) { int channel_idx = get_channel_index(port); - return &(ide->channels[channel_idx]); + if (channel_idx >= 0) { + return &(ide->channels[channel_idx]); + } else { + PrintError(VM_NONE,VCORE_NONE,"ide: Cannot Determine Selected Channel\n"); + return 0; + } } static inline struct ide_drive * get_selected_drive(struct ide_channel * channel) { @@ -273,17 +312,18 @@ static inline struct ide_drive * get_selected_drive(struct ide_channel * channel } -static inline int is_lba_enabled(struct ide_channel * channel) { - return channel->drive_head.lba_mode; -} /* Drive Commands */ -static void ide_raise_irq(struct vm_device * dev, struct ide_channel * channel) { +static void ide_raise_irq(struct ide_internal * ide, struct ide_channel * channel) { if (channel->ctrl_reg.irq_disable == 0) { - // PrintError("Raising IDE Interrupt %d\n", channel->irq); + + PrintDebug(ide->vm,VCORE_NONE, "Raising IDE Interrupt %d\n", channel->irq); + channel->dma_status.int_gen = 1; - v3_raise_irq(dev->vm, channel->irq); + v3_raise_irq(ide->vm, channel->irq); + } else { + PrintDebug(ide->vm,VCORE_NONE, "IDE Interrupt %d cannot be raised as irq is disabled on channel\n",channel->irq); } } @@ -292,7 +332,7 @@ static void drive_reset(struct ide_drive * drive) { drive->sector_count = 0x01; drive->sector_num = 0x01; - PrintDebug("Resetting drive %s\n", drive->model); + PrintDebug(VM_NONE,VCORE_NONE, "Resetting drive %s\n", drive->model); if (drive->drive_type == BLOCK_CDROM) { drive->cylinder = 0xeb14; @@ -319,7 +359,7 @@ static void channel_reset(struct ide_channel * channel) { channel->error_reg.val = 0x01; // clear commands - channel->cmd_reg = 0x00; + channel->cmd_reg = 0; // NOP channel->ctrl_reg.irq_disable = 0; } @@ -335,16 +375,19 @@ static void channel_reset_complete(struct ide_channel * channel) { } -static void ide_abort_command(struct vm_device * dev, struct ide_channel * channel) { +static void ide_abort_command(struct ide_internal * ide, struct ide_channel * channel) { + + PrintDebug(VM_NONE,VCORE_NONE,"Aborting IDE Command\n"); + channel->status.val = 0x41; // Error + ready channel->error_reg.val = 0x04; // No idea... - ide_raise_irq(dev, channel); + ide_raise_irq(ide, channel); } -static int dma_read(struct guest_info * core, struct vm_device * dev, struct ide_channel * channel); -static int dma_write(struct guest_info * core, struct vm_device * dev, struct ide_channel * channel); +static int dma_read(struct guest_info * core, struct ide_internal * ide, struct ide_channel * channel); +static int dma_write(struct guest_info * core, struct ide_internal * ide, struct ide_channel * channel); /* ATAPI functions */ @@ -354,26 +397,28 @@ static int dma_write(struct guest_info * core, struct vm_device * dev, struct id #include "ata.h" -#ifdef CONFIG_DEBUG_IDE -static void print_prd_table(struct vm_device * dev, struct ide_channel * channel) { + +static void print_prd_table(struct ide_internal * ide, struct ide_channel * channel) { struct ide_dma_prd prd_entry; int index = 0; - PrintDebug("Dumping PRD table\n"); + V3_Print(VM_NONE, VCORE_NONE,"Dumping PRD table\n"); while (1) { uint32_t prd_entry_addr = channel->dma_prd_addr + (sizeof(struct ide_dma_prd) * index); - int ret; + int ret = 0; - ret = v3_read_gpa_memory(&(dev->vm->cores[0]), prd_entry_addr, sizeof(struct ide_dma_prd), (void *)&prd_entry); + ret = v3_read_gpa_memory(&(ide->vm->cores[0]), prd_entry_addr, sizeof(struct ide_dma_prd), (void *)&prd_entry); if (ret != sizeof(struct ide_dma_prd)) { - PrintError("Could not read PRD\n"); + PrintError(VM_NONE, VCORE_NONE, "Could not read PRD\n"); return; } - PrintDebug("\tPRD Addr: %x, PRD Len: %d, EOT: %d\n", - prd_entry.base_addr, prd_entry.size, prd_entry.end_of_table); + V3_Print(VM_NONE, VCORE_NONE,"\tPRD Addr: %x, PRD Len: %d, EOT: %d\n", + prd_entry.base_addr, + (prd_entry.size == 0) ? 0x10000 : prd_entry.size, + prd_entry.end_of_table); if (prd_entry.end_of_table) { break; @@ -384,23 +429,23 @@ static void print_prd_table(struct vm_device * dev, struct ide_channel * channel return; } -#endif + /* IO Operations */ -static int dma_read(struct guest_info * core, struct vm_device * dev, struct ide_channel * channel) { +static int dma_read(struct guest_info * core, struct ide_internal * ide, struct ide_channel * channel) { struct ide_drive * drive = get_selected_drive(channel); // This is at top level scope to do the EOT test at the end - struct ide_dma_prd prd_entry; + struct ide_dma_prd prd_entry = {}; uint_t bytes_left = drive->transfer_length; // Read in the data buffer.... // Read a sector/block at a time until the prd entry is full. -#ifdef CONFIG_DEBUG_IDE - print_prd_table(dev, channel); +#ifdef V3_CONFIG_DEBUG_IDE + print_prd_table(ide, channel); #endif - PrintDebug("DMA read for %d bytes\n", bytes_left); + PrintDebug(core->vm_info, core, "DMA read for %d bytes\n", bytes_left); // Loop through the disk data while (bytes_left > 0) { @@ -409,21 +454,26 @@ static int dma_read(struct guest_info * core, struct vm_device * dev, struct ide uint_t prd_offset = 0; int ret; - PrintDebug("PRD table address = %x\n", channel->dma_prd_addr); + PrintDebug(core->vm_info, core, "PRD table address = %x\n", channel->dma_prd_addr); ret = v3_read_gpa_memory(core, prd_entry_addr, sizeof(struct ide_dma_prd), (void *)&prd_entry); if (ret != sizeof(struct ide_dma_prd)) { - PrintError("Could not read PRD\n"); + PrintError(core->vm_info, core, "Could not read PRD\n"); return -1; } - PrintDebug("PRD Addr: %x, PRD Len: %d, EOT: %d\n", + PrintDebug(core->vm_info, core, "PRD Addr: %x, PRD Len: %d, EOT: %d\n", prd_entry.base_addr, prd_entry.size, prd_entry.end_of_table); // loop through the PRD data.... - prd_bytes_left = prd_entry.size; + if (prd_entry.size == 0) { + // a size of 0 means 64k + prd_bytes_left = 0x10000; + } else { + prd_bytes_left = prd_entry.size; + } while (prd_bytes_left > 0) { @@ -433,28 +483,62 @@ static int dma_read(struct guest_info * core, struct vm_device * dev, struct ide bytes_to_write = (prd_bytes_left > HD_SECTOR_SIZE) ? HD_SECTOR_SIZE : prd_bytes_left; - if (ata_read(dev, channel, drive->data_buf, 1) == -1) { - PrintError("Failed to read next disk sector\n"); + if (ata_read(ide, channel, drive->data_buf, 1) == -1) { + PrintError(core->vm_info, core, "Failed to read next disk sector\n"); return -1; } } else if (drive->drive_type == BLOCK_CDROM) { if (atapi_cmd_is_data_op(drive->cd_state.atapi_cmd)) { bytes_to_write = (prd_bytes_left > ATAPI_BLOCK_SIZE) ? ATAPI_BLOCK_SIZE : prd_bytes_left; - if (atapi_read_chunk(dev, channel) == -1) { - PrintError("Failed to read next disk sector\n"); + if (atapi_read_chunk(ide, channel) == -1) { + PrintError(core->vm_info, core, "Failed to read next disk sector\n"); return -1; } } else { - PrintDebug("DMA of command packet\n"); - PrintError("How does this work???\n"); + /* + PrintError(core->vm_info, core, "How does this work (ATAPI CMD=%x)???\n", drive->cd_state.atapi_cmd); return -1; + */ + int cmd_ret = 0; + + //V3_Print(core->vm_info, core, "DMA of command packet\n"); + bytes_to_write = (prd_bytes_left > bytes_left) ? bytes_left : prd_bytes_left; prd_bytes_left = bytes_to_write; + + + // V3_Print(core->vm_info, core, "Writing ATAPI cmd OP DMA (cmd=%x) (len=%d)\n", drive->cd_state.atapi_cmd, prd_bytes_left); + cmd_ret = v3_write_gpa_memory(core, prd_entry.base_addr + prd_offset, + bytes_to_write, drive->data_buf); + + if (cmd_ret!=bytes_to_write) { + PrintError(core->vm_info, core, "Failed to write data to memory\n"); + return -1; + } + + + + bytes_to_write = 0; + prd_bytes_left = 0; + drive->transfer_index += bytes_to_write; + + channel->status.busy = 0; + channel->status.ready = 1; + channel->status.data_req = 0; + channel->status.error = 0; + channel->status.seek_complete = 1; + + channel->dma_status.active = 0; + channel->dma_status.err = 0; + + ide_raise_irq(ide, channel); + + return 0; } } - PrintDebug("Writing DMA data to guest Memory ptr=%p, len=%d\n", + PrintDebug(core->vm_info, core, "Writing DMA data to guest Memory ptr=%p, len=%d\n", (void *)(addr_t)(prd_entry.base_addr + prd_offset), bytes_to_write); drive->current_lba++; @@ -462,11 +546,11 @@ static int dma_read(struct guest_info * core, struct vm_device * dev, struct ide ret = v3_write_gpa_memory(core, prd_entry.base_addr + prd_offset, bytes_to_write, drive->data_buf); if (ret != bytes_to_write) { - PrintError("Failed to copy data into guest memory... (ret=%d)\n", ret); + PrintError(core->vm_info, core, "Failed to copy data into guest memory... (ret=%d)\n", ret); return -1; } - PrintDebug("\t DMA ret=%d, (prd_bytes_left=%d) (bytes_left=%d)\n", ret, prd_bytes_left, bytes_left); + PrintDebug(core->vm_info, core, "\t DMA ret=%d, (prd_bytes_left=%d) (bytes_left=%d)\n", ret, prd_bytes_left, bytes_left); drive->transfer_index += ret; prd_bytes_left -= ret; @@ -478,14 +562,14 @@ static int dma_read(struct guest_info * core, struct vm_device * dev, struct ide if (drive->drive_type == BLOCK_DISK) { if (drive->transfer_index % HD_SECTOR_SIZE) { - PrintError("We currently don't handle sectors that span PRD descriptors\n"); + PrintError(core->vm_info, core, "We currently don't handle sectors that span PRD descriptors\n"); return -1; } } else if (drive->drive_type == BLOCK_CDROM) { if (atapi_cmd_is_data_op(drive->cd_state.atapi_cmd)) { if (drive->transfer_index % ATAPI_BLOCK_SIZE) { - PrintError("We currently don't handle ATAPI BLOCKS that span PRD descriptors\n"); - PrintError("transfer_index=%d, transfer_length=%d\n", + PrintError(core->vm_info, core, "We currently don't handle ATAPI BLOCKS that span PRD descriptors\n"); + PrintError(core->vm_info, core, "transfer_index=%llu, transfer_length=%llu\n", drive->transfer_index, drive->transfer_length); return -1; } @@ -494,7 +578,7 @@ static int dma_read(struct guest_info * core, struct vm_device * dev, struct ide if ((prd_entry.end_of_table == 1) && (bytes_left > 0)) { - PrintError("DMA table not large enough for data transfer...\n"); + PrintError(core->vm_info, core, "DMA table not large enough for data transfer...\n"); return -1; } } @@ -521,20 +605,20 @@ static int dma_read(struct guest_info * core, struct vm_device * dev, struct ide channel->dma_status.err = 0; } - ide_raise_irq(dev, channel); + ide_raise_irq(ide, channel); return 0; } -static int dma_write(struct guest_info * core, struct vm_device * dev, struct ide_channel * channel) { +static int dma_write(struct guest_info * core, struct ide_internal * ide, struct ide_channel * channel) { struct ide_drive * drive = get_selected_drive(channel); // This is at top level scope to do the EOT test at the end - struct ide_dma_prd prd_entry; + struct ide_dma_prd prd_entry = {}; uint_t bytes_left = drive->transfer_length; - PrintDebug("DMA write from %d bytes\n", bytes_left); + PrintDebug(core->vm_info, core, "DMA write from %d bytes\n", bytes_left); // Loop through disk data while (bytes_left > 0) { @@ -543,19 +627,25 @@ static int dma_write(struct guest_info * core, struct vm_device * dev, struct id uint_t prd_offset = 0; int ret; - PrintDebug("PRD Table address = %x\n", channel->dma_prd_addr); + PrintDebug(core->vm_info, core, "PRD Table address = %x\n", channel->dma_prd_addr); ret = v3_read_gpa_memory(core, prd_entry_addr, sizeof(struct ide_dma_prd), (void *)&prd_entry); if (ret != sizeof(struct ide_dma_prd)) { - PrintError("Could not read PRD\n"); + PrintError(core->vm_info, core, "Could not read PRD\n"); return -1; } - PrintDebug("PRD Addr: %x, PRD Len: %d, EOT: %d\n", + PrintDebug(core->vm_info, core, "PRD Addr: %x, PRD Len: %d, EOT: %d\n", prd_entry.base_addr, prd_entry.size, prd_entry.end_of_table); - prd_bytes_left = prd_entry.size; + + if (prd_entry.size == 0) { + // a size of 0 means 64k + prd_bytes_left = 0x10000; + } else { + prd_bytes_left = prd_entry.size; + } while (prd_bytes_left > 0) { uint_t bytes_to_write = 0; @@ -567,15 +657,15 @@ static int dma_write(struct guest_info * core, struct vm_device * dev, struct id ret = v3_read_gpa_memory(core, prd_entry.base_addr + prd_offset, bytes_to_write, drive->data_buf); if (ret != bytes_to_write) { - PrintError("Faild to copy data from guest memory... (ret=%d)\n", ret); + PrintError(core->vm_info, core, "Faild to copy data from guest memory... (ret=%d)\n", ret); return -1; } - PrintDebug("\t DMA ret=%d (prd_bytes_left=%d) (bytes_left=%d)\n", ret, prd_bytes_left, bytes_left); + PrintDebug(core->vm_info, core, "\t DMA ret=%d (prd_bytes_left=%d) (bytes_left=%d)\n", ret, prd_bytes_left, bytes_left); - if (ata_write(dev, channel, drive->data_buf, 1) == -1) { - PrintError("Failed to write data to disk\n"); + if (ata_write(ide, channel, drive->data_buf, 1) == -1) { + PrintError(core->vm_info, core, "Failed to write data to disk\n"); return -1; } @@ -590,12 +680,18 @@ static int dma_write(struct guest_info * core, struct vm_device * dev, struct id channel->dma_tbl_index++; if (drive->transfer_index % HD_SECTOR_SIZE) { - PrintError("We currently don't handle sectors that span PRD descriptors\n"); + PrintError(core->vm_info, core, "We currently don't handle sectors that span PRD descriptors\n"); return -1; } if ((prd_entry.end_of_table == 1) && (bytes_left > 0)) { - PrintError("DMA table not large enough for data transfer...\n"); + PrintError(core->vm_info, core, "DMA table not large enough for data transfer...\n"); + PrintError(core->vm_info, core, "\t(bytes_left=%u) (transfer_length=%llu)...\n", + bytes_left, drive->transfer_length); + PrintError(core->vm_info, core, "PRD Addr: %x, PRD Len: %d, EOT: %d\n", + prd_entry.base_addr, prd_entry.size, prd_entry.end_of_table); + + print_prd_table(ide, channel); return -1; } } @@ -611,7 +707,7 @@ static int dma_write(struct guest_info * core, struct vm_device * dev, struct id channel->dma_status.err = 0; } - ide_raise_irq(dev, channel); + ide_raise_irq(ide, channel); return 0; } @@ -627,53 +723,68 @@ static int dma_write(struct guest_info * core, struct vm_device * dev, struct id #define DMA_CHANNEL_FLAG 0x08 +/* + Note that DMA model is as follows: + + 1. Write the PRD pointer to the busmaster (DMA engine) + 2. Start the transfer on the device + 3. Tell the busmaster to start shoveling data (active DMA) +*/ + static int write_dma_port(struct guest_info * core, ushort_t port, void * src, uint_t length, void * private_data) { - struct vm_device * dev = (struct vm_device *)private_data; - struct ide_internal * ide = (struct ide_internal *)(dev->private_data); + struct ide_internal * ide = (struct ide_internal *)private_data; uint16_t port_offset = port & (DMA_CHANNEL_FLAG - 1); uint_t channel_flag = (port & DMA_CHANNEL_FLAG) >> 3; struct ide_channel * channel = &(ide->channels[channel_flag]); - PrintDebug("IDE: Writing DMA Port %x (%s) (val=%x) (len=%d) (channel=%d)\n", + PrintDebug(core->vm_info, core, "IDE: Writing DMA Port %x (%s) (val=%x) (len=%d) (channel=%d)\n", port, dma_port_to_str(port_offset), *(uint32_t *)src, length, channel_flag); switch (port_offset) { case DMA_CMD_PORT: channel->dma_cmd.val = *(uint8_t *)src; + + PrintDebug(core->vm_info, core, "IDE: dma command write: 0x%x\n", channel->dma_cmd.val); if (channel->dma_cmd.start == 0) { channel->dma_tbl_index = 0; } else { + // Launch DMA operation, interrupt at end + channel->dma_status.active = 1; if (channel->dma_cmd.read == 1) { - // DMA Read - if (dma_read(core, dev, channel) == -1) { - PrintError("Failed DMA Read\n"); + // DMA Read the whole thing - dma_read will raise irq + if (dma_read(core, ide, channel) == -1) { + PrintError(core->vm_info, core, "Failed DMA Read\n"); return -1; } } else { - // DMA write - if (dma_write(core, dev, channel) == -1) { - PrintError("Failed DMA Write\n"); + // DMA write the whole thing - dma_write will raiase irw + if (dma_write(core, ide, channel) == -1) { + PrintError(core->vm_info, core, "Failed DMA Write\n"); return -1; } } - - channel->dma_cmd.val &= 0x09; + + // DMA complete + // Note that guest cannot abort a DMA transfer + channel->dma_cmd.start = 0; } break; case DMA_STATUS_PORT: { + // This is intended to clear status + uint8_t val = *(uint8_t *)src; if (length != 1) { - PrintError("Invalid read length for DMA status port\n"); + PrintError(core->vm_info, core, "Invalid write length for DMA status port\n"); return -1; } - // weirdness + // but preserve certain bits channel->dma_status.val = ((val & 0x60) | (channel->dma_status.val & 0x01) | (channel->dma_status.val & ~val & 0x06)); @@ -689,7 +800,7 @@ static int write_dma_port(struct guest_info * core, ushort_t port, void * src, u int i = 0; if (addr_index + length > 4) { - PrintError("DMA Port space overrun port=%x len=%d\n", port_offset, length); + PrintError(core->vm_info, core, "DMA Port space overrun port=%x len=%d\n", port_offset, length); return -1; } @@ -697,95 +808,63 @@ static int write_dma_port(struct guest_info * core, ushort_t port, void * src, u addr_buf[addr_index + i] = *((uint8_t *)src + i); } - PrintDebug("Writing PRD Port %x (val=%x)\n", port_offset, channel->dma_prd_addr); + PrintDebug(core->vm_info, core, "Writing PRD Port %x (val=%x)\n", port_offset, channel->dma_prd_addr); break; } default: - PrintError("IDE: Invalid DMA Port (%s)\n", dma_port_to_str(port_offset)); - return -1; + PrintError(core->vm_info, core, "IDE: Invalid DMA Port (%d) (%s)\n", port, dma_port_to_str(port_offset)); + break; } return length; } -static int read_dma_port(struct guest_info * core, ushort_t port, void * dst, uint_t length, void * private_data) { - struct vm_device * dev = (struct vm_device *)private_data; - struct ide_internal * ide = (struct ide_internal *)(dev->private_data); +static int read_dma_port(struct guest_info * core, uint16_t port, void * dst, uint_t length, void * private_data) { + struct ide_internal * ide = (struct ide_internal *)private_data; uint16_t port_offset = port & (DMA_CHANNEL_FLAG - 1); uint_t channel_flag = (port & DMA_CHANNEL_FLAG) >> 3; struct ide_channel * channel = &(ide->channels[channel_flag]); - PrintDebug("Reading DMA port %d (%x) (channel=%d)\n", port, port, channel_flag); + PrintDebug(core->vm_info, core, "Reading DMA port %d (%x) (channel=%d)\n", port, port, channel_flag); - switch (port_offset) { - case DMA_CMD_PORT: - *(uint8_t *)dst = channel->dma_cmd.val; - break; - - case DMA_STATUS_PORT: - if (length != 1) { - PrintError("Invalid read length for DMA status port\n"); - return -1; - } - - *(uint8_t *)dst = channel->dma_status.val; - break; - - case DMA_PRD_PORT0: - case DMA_PRD_PORT1: - case DMA_PRD_PORT2: - case DMA_PRD_PORT3: { - uint_t addr_index = port_offset & 0x3; - uint8_t * addr_buf = (uint8_t *)&(channel->dma_prd_addr); - int i = 0; - - if (addr_index + length > 4) { - PrintError("DMA Port space overrun port=%x len=%d\n", port_offset, length); - return -1; - } - - for (i = 0; i < length; i++) { - *((uint8_t *)dst + i) = addr_buf[addr_index + i]; - } - - break; - } - default: - PrintError("IDE: Invalid DMA Port (%s)\n", dma_port_to_str(port_offset)); - return -1; + if (port_offset + length > 16) { + PrintError(core->vm_info, core, "DMA Port Read: Port overrun (port_offset=%d, length=%d)\n", port_offset, length); + return -1; } - PrintDebug("\tval=%x (len=%d)\n", *(uint32_t *)dst, length); + memcpy(dst, channel->dma_ports + port_offset, length); + + PrintDebug(core->vm_info, core, "\tval=%x (len=%d)\n", *(uint32_t *)dst, length); return length; } -static int write_cmd_port(struct guest_info * core, ushort_t port, void * src, uint_t length, struct vm_device * dev) { - struct ide_internal * ide = (struct ide_internal *)(dev->private_data); +static int write_cmd_port(struct guest_info * core, ushort_t port, void * src, uint_t length, void * priv_data) { + struct ide_internal * ide = priv_data; struct ide_channel * channel = get_selected_channel(ide, port); struct ide_drive * drive = get_selected_drive(channel); if (length != 1) { - PrintError("Invalid Write Length on IDE command Port %x\n", port); + PrintError(core->vm_info, core, "Invalid Write Length on IDE command Port %x\n", port); return -1; } - PrintDebug("IDE: Writing Command Port %x (%s) (val=%x)\n", port, io_port_to_str(port), *(uint8_t *)src); + PrintDebug(core->vm_info, core, "IDE: Writing Command Port %x (%s) (val=%x)\n", port, io_port_to_str(port), *(uint8_t *)src); channel->cmd_reg = *(uint8_t *)src; switch (channel->cmd_reg) { - case 0xa1: // ATAPI Identify Device Packet + case ATA_PIDENTIFY: // ATAPI Identify Device Packet (CDROM) if (drive->drive_type != BLOCK_CDROM) { drive_reset(drive); // JRL: Should we abort here? - ide_abort_command(dev, channel); + ide_abort_command(ide, channel); } else { atapi_identify_device(drive); @@ -793,28 +872,29 @@ static int write_cmd_port(struct guest_info * core, ushort_t port, void * src, u channel->error_reg.val = 0; channel->status.val = 0x58; // ready, data_req, seek_complete - ide_raise_irq(dev, channel); + ide_raise_irq(ide, channel); } break; - case 0xec: // Identify Device + + case ATA_IDENTIFY: // Identify Device if (drive->drive_type != BLOCK_DISK) { drive_reset(drive); // JRL: Should we abort here? - ide_abort_command(dev, channel); + ide_abort_command(ide, channel); } else { ata_identify_device(drive); channel->error_reg.val = 0; channel->status.val = 0x58; - ide_raise_irq(dev, channel); + ide_raise_irq(ide, channel); } break; - case 0xa0: // ATAPI Command Packet + case ATA_PACKETCMD: // ATAPI Command Packet (CDROM) if (drive->drive_type != BLOCK_CDROM) { - ide_abort_command(dev, channel); + ide_abort_command(ide, channel); } drive->sector_count = 1; @@ -830,87 +910,99 @@ static int write_cmd_port(struct guest_info * core, ushort_t port, void * src, u break; - case 0x20: // Read Sectors with Retry - case 0x21: // Read Sectors without Retry - drive->hd_state.cur_sector_num = 1; + case ATA_READ: // Read Sectors with Retry + case ATA_READ_ONCE: // Read Sectors without Retry + case ATA_MULTREAD: // Read multiple sectors per ire + case ATA_READ_EXT: // Read Sectors Extended (LBA48) - if (ata_read_sectors(dev, channel) == -1) { - PrintError("Error reading sectors\n"); - return -1; + if (channel->cmd_reg==ATA_MULTREAD) { + drive->hd_state.cur_sector_num = drive->hd_state.mult_sector_num; + } else { + drive->hd_state.cur_sector_num = 1; + } + + if (ata_read_sectors(ide, channel) == -1) { + PrintError(core->vm_info, core, "Error reading sectors\n"); + ide_abort_command(ide,channel); } break; - case 0x24: // Read Sectors Extended - drive->hd_state.cur_sector_num = 1; + case ATA_WRITE: // Write Sector with retry + case ATA_WRITE_ONCE: // Write Sector without retry + case ATA_MULTWRITE: // Write multiple sectors per irq + case ATA_WRITE_EXT: // Write Sectors Extended (LBA48) - if (ata_read_sectors_ext(dev, channel) == -1) { - PrintError("Error reading extended sectors\n"); - return -1; + if (channel->cmd_reg==ATA_MULTWRITE) { + drive->hd_state.cur_sector_num = drive->hd_state.mult_sector_num; + } else { + drive->hd_state.cur_sector_num = 1; + } + + if (ata_write_sectors(ide, channel) == -1) { + PrintError(core->vm_info, core, "Error writing sectors\n"); + ide_abort_command(ide,channel); } break; - case 0xc8: // Read DMA with retry - case 0xc9: { // Read DMA - uint32_t sect_cnt = (drive->sector_count == 0) ? 256 : drive->sector_count; + case ATA_READDMA: // Read DMA with retry + case ATA_READDMA_ONCE: // Read DMA without retry + case ATA_READDMA_EXT: { // Read DMA (LBA48) + uint64_t sect_cnt; - if (ata_get_lba(dev, channel, &(drive->current_lba)) == -1) { - ide_abort_command(dev, channel); - return 0; + if (ata_get_lba_and_size(ide, channel, &(drive->current_lba), §_cnt) == -1) { + PrintError(core->vm_info, core, "Error getting LBA for DMA READ\n"); + ide_abort_command(ide, channel); + return length; } - drive->hd_state.cur_sector_num = 1; + drive->hd_state.cur_sector_num = 1; // Not used for DMA drive->transfer_length = sect_cnt * HD_SECTOR_SIZE; drive->transfer_index = 0; - if (channel->dma_status.active == 1) { - // DMA Read - if (dma_read(core, dev, channel) == -1) { - PrintError("Failed DMA Read\n"); - return -1; - } - } + // Now we wait for the transfer to be intiated by flipping the + // bus-master start bit break; } - case 0xca: { // Write DMA - uint32_t sect_cnt = (drive->sector_count == 0) ? 256 : drive->sector_count; + case ATA_WRITEDMA: // Write DMA with retry + case ATA_WRITEDMA_ONCE: // Write DMA without retry + case ATA_WRITEDMA_EXT: { // Write DMA (LBA48) + + uint64_t sect_cnt; - if (ata_get_lba(dev, channel, &(drive->current_lba)) == -1) { - ide_abort_command(dev, channel); - return 0; + if (ata_get_lba_and_size(ide, channel, &(drive->current_lba),§_cnt) == -1) { + PrintError(core->vm_info,core,"Cannot get lba\n"); + ide_abort_command(ide, channel); + return length; } - drive->hd_state.cur_sector_num = 1; + drive->hd_state.cur_sector_num = 1; // Not used for DMA drive->transfer_length = sect_cnt * HD_SECTOR_SIZE; drive->transfer_index = 0; - if (channel->dma_status.active == 1) { - // DMA Write - if (dma_write(core, dev, channel) == -1) { - PrintError("Failed DMA Write\n"); - return -1; - } - } + // Now we wait for the transfer to be intiated by flipping the + // bus-master start bit break; } - case 0xe0: // Standby Now 1 - case 0xe1: // Set Idle Immediate - case 0xe2: // Standby - case 0xe3: // Set Idle 1 - case 0xe6: // Sleep Now 1 - case 0x94: // Standby Now 2 - case 0x95: // Idle Immediate (CFA) - case 0x96: // Standby 2 - case 0x97: // Set idle 2 - case 0x99: // Sleep Now 2 + + case ATA_STANDBYNOW1: // Standby Now 1 + case ATA_IDLEIMMEDIATE: // Set Idle Immediate + case ATA_STANDBY: // Standby + case ATA_SETIDLE1: // Set Idle 1 + case ATA_SLEEPNOW1: // Sleep Now 1 + case ATA_STANDBYNOW2: // Standby Now 2 + case ATA_IDLEIMMEDIATE2: // Idle Immediate (CFA) + case ATA_STANDBY2: // Standby 2 + case ATA_SETIDLE2: // Set idle 2 + case ATA_SLEEPNOW2: // Sleep Now 2 channel->status.val = 0; channel->status.ready = 1; - ide_raise_irq(dev, channel); + ide_raise_irq(ide, channel); break; - case 0xef: // Set Features + case ATA_SETFEATURES: // Set Features // Prior to this the features register has been written to. // This command tells the drive to check if the new value is supported (the value is drive specific) // Common is that bit0=DMA enable @@ -924,27 +1016,25 @@ static int write_cmd_port(struct guest_info * core, ushort_t port, void * src, u channel->status.ready = 1; channel->status.seek_complete = 1; - ide_raise_irq(dev, channel); + ide_raise_irq(ide, channel); break; - case 0x91: // Initialize Drive Parameters - case 0x10: // recalibrate? + case ATA_SPECIFY: // Initialize Drive Parameters + case ATA_RECAL: // recalibrate? channel->status.error = 0; channel->status.ready = 1; channel->status.seek_complete = 1; - ide_raise_irq(dev, channel); + ide_raise_irq(ide, channel); break; - case 0xc6: { // Set multiple mode (IDE Block mode) - // This makes the drive transfer multiple sectors before generating an interrupt - uint32_t tmp_sect_num = drive->sector_num; // GCC SUCKS - if (tmp_sect_num > MAX_MULT_SECTORS) { - ide_abort_command(dev, channel); - break; - } + case ATA_SETMULT: { // Set multiple mode (IDE Block mode) + // This makes the drive transfer multiple sectors before generating an interrupt if (drive->sector_count == 0) { + PrintError(core->vm_info,core,"Attempt to set multiple to zero\n"); drive->hd_state.mult_sector_num= 1; + ide_abort_command(ide,channel); + break; } else { drive->hd_state.mult_sector_num = drive->sector_count; } @@ -952,80 +1042,77 @@ static int write_cmd_port(struct guest_info * core, ushort_t port, void * src, u channel->status.ready = 1; channel->status.error = 0; - ide_raise_irq(dev, channel); + ide_raise_irq(ide, channel); break; } - case 0xc4: // read multiple sectors - drive->hd_state.cur_sector_num = drive->hd_state.mult_sector_num; + + case ATA_DEVICE_RESET: // Reset Device + drive_reset(drive); + channel->error_reg.val = 0x01; + channel->status.busy = 0; + channel->status.ready = 1; + channel->status.seek_complete = 1; + channel->status.write_fault = 0; + channel->status.error = 0; + break; + + case ATA_CHECKPOWERMODE1: // Check power mode + drive->sector_count = 0xff; /* 0x00=standby, 0x80=idle, 0xff=active or idle */ + channel->status.busy = 0; + channel->status.ready = 1; + channel->status.write_fault = 0; + channel->status.data_req = 0; + channel->status.error = 0; + break; + default: - PrintError("Unimplemented IDE command (%x)\n", channel->cmd_reg); - return -1; + PrintError(core->vm_info, core, "Unimplemented IDE command (%x)\n", channel->cmd_reg); + ide_abort_command(ide, channel); + break; } return length; } -static int write_data_port(struct guest_info * core, ushort_t port, void * src, uint_t length, struct vm_device * dev) { - struct ide_internal * ide = (struct ide_internal *)(dev->private_data); - struct ide_channel * channel = get_selected_channel(ide, port); - struct ide_drive * drive = get_selected_drive(channel); - - // PrintDebug("IDE: Writing Data Port %x (val=%x, len=%d)\n", - // port, *(uint32_t *)src, length); - - memcpy(drive->data_buf + drive->transfer_index, src, length); - drive->transfer_index += length; - - // Transfer is complete, dispatch the command - if (drive->transfer_index >= drive->transfer_length) { - switch (channel->cmd_reg) { - case 0x30: // Write Sectors - PrintError("Writing Data not yet implemented\n"); - return -1; - - case 0xa0: // ATAPI packet command - if (atapi_handle_packet(core, dev, channel) == -1) { - PrintError("Error handling ATAPI packet\n"); - return -1; - } - break; - default: - PrintError("Unhandld IDE Command %x\n", channel->cmd_reg); - return -1; - } - } - - return length; -} -static int read_hd_data(uint8_t * dst, uint_t length, struct vm_device * dev, struct ide_channel * channel) { +static int read_hd_data(uint8_t * dst, uint64_t length, struct ide_internal * ide, struct ide_channel * channel) { struct ide_drive * drive = get_selected_drive(channel); - int data_offset = drive->transfer_index % HD_SECTOR_SIZE; + uint64_t data_offset = drive->transfer_index % HD_SECTOR_SIZE; + PrintDebug(VM_NONE,VCORE_NONE, "Read HD data: transfer_index %llu transfer length %llu current sector numer %llu\n", + drive->transfer_index, drive->transfer_length, + drive->hd_state.cur_sector_num); - if (drive->transfer_index >= drive->transfer_length) { - PrintError("Buffer overrun... (xfer_len=%d) (cur_idx=%x) (post_idx=%d)\n", + if (drive->transfer_index >= drive->transfer_length && drive->transfer_index>=DATA_BUFFER_SIZE) { + PrintError(VM_NONE, VCORE_NONE, "Buffer overrun... (xfer_len=%llu) (cur_idx=%llu) (post_idx=%llu)\n", drive->transfer_length, drive->transfer_index, drive->transfer_index + length); return -1; } - + + if (data_offset + length > HD_SECTOR_SIZE) { + PrintError(VM_NONE,VCORE_NONE,"Read spans sectors (data_offset=%llu length=%llu)!\n",data_offset,length); + } + + // For index==0, the read has been done in ata_read_sectors if ((data_offset == 0) && (drive->transfer_index > 0)) { + // advance to next sector and read it + drive->current_lba++; - if (ata_read(dev, channel, drive->data_buf, 1) == -1) { - PrintError("Could not read next disk sector\n"); + if (ata_read(ide, channel, drive->data_buf, 1) == -1) { + PrintError(VM_NONE, VCORE_NONE, "Could not read next disk sector\n"); return -1; } } /* - PrintDebug("Reading HD Data (Val=%x), (len=%d) (offset=%d)\n", + PrintDebug(VM_NONE, VCORE_NONE, "Reading HD Data (Val=%x), (len=%d) (offset=%d)\n", *(uint32_t *)(drive->data_buf + data_offset), length, data_offset); */ @@ -1044,44 +1131,106 @@ static int read_hd_data(uint8_t * dst, uint_t length, struct vm_device * dev, st (drive->transfer_index == drive->transfer_length)) { if (drive->transfer_index < drive->transfer_length) { // An increment is complete, but there is still more data to be transferred... - PrintDebug("Integral Complete, still transferring more sectors\n"); + PrintDebug(VM_NONE, VCORE_NONE, "Increment Complete, still transferring more sectors\n"); channel->status.data_req = 1; - - drive->irq_flags.c_d = 0; } else { - PrintDebug("Final Sector Transferred\n"); + PrintDebug(VM_NONE, VCORE_NONE, "Final Sector Transferred\n"); // This was the final read of the request channel->status.data_req = 0; - - - drive->irq_flags.c_d = 1; - drive->irq_flags.rel = 0; } channel->status.ready = 1; - drive->irq_flags.io_dir = 1; channel->status.busy = 0; - ide_raise_irq(dev, channel); + ide_raise_irq(ide, channel); } return length; } +static int write_hd_data(uint8_t * src, uint64_t length, struct ide_internal * ide, struct ide_channel * channel) { + struct ide_drive * drive = get_selected_drive(channel); + uint64_t data_offset = drive->transfer_index % HD_SECTOR_SIZE; + + PrintDebug(VM_NONE,VCORE_NONE, "Write HD data: transfer_index %llu transfer length %llu current sector numer %llu\n", + drive->transfer_index, drive->transfer_length, + drive->hd_state.cur_sector_num); -static int read_cd_data(uint8_t * dst, uint_t length, struct vm_device * dev, struct ide_channel * channel) { + if (drive->transfer_index >= drive->transfer_length) { + PrintError(VM_NONE, VCORE_NONE, "Buffer overrun... (xfer_len=%llu) (cur_idx=%llu) (post_idx=%llu)\n", + drive->transfer_length, drive->transfer_index, + drive->transfer_index + length); + return -1; + } + + if (data_offset + length > HD_SECTOR_SIZE) { + PrintError(VM_NONE,VCORE_NONE,"Write spans sectors (data_offset=%llu length=%llu)!\n",data_offset,length); + } + + // Copy data into our buffer - there will be room due to + // (a) the ata_write test below is flushing sectors + // (b) if we somehow get a sector-stradling write (an error), this will + // be OK since the buffer itself is >1 sector in memory + memcpy(drive->data_buf + data_offset, src, length); + + drive->transfer_index += length; + + if ((data_offset+length) >= HD_SECTOR_SIZE) { + // Write out the sector we just finished + if (ata_write(ide, channel, drive->data_buf, 1) == -1) { + PrintError(VM_NONE, VCORE_NONE, "Could not write next disk sector\n"); + return -1; + } + + // go onto next sector + drive->current_lba++; + } + + /* This is the trigger for interrupt injection. + * For write single sector commands we interrupt after every sector + * For multi sector reads we interrupt only at end of the cluster size (mult_sector_num) + * cur_sector_num is configured depending on the operation we are currently running + * We also trigger an interrupt if this is the last byte to transfer, regardless of sector count + */ + if (((drive->transfer_index % (HD_SECTOR_SIZE * drive->hd_state.cur_sector_num)) == 0) || + (drive->transfer_index == drive->transfer_length)) { + if (drive->transfer_index < drive->transfer_length) { + // An increment is complete, but there is still more data to be transferred... + PrintDebug(VM_NONE, VCORE_NONE, "Increment Complete, still transferring more sectors\n"); + channel->status.data_req = 1; + } else { + PrintDebug(VM_NONE, VCORE_NONE, "Final Sector Transferred\n"); + // This was the final read of the request + channel->status.data_req = 0; + } + + channel->status.ready = 1; + channel->status.busy = 0; + + ide_raise_irq(ide, channel); + } + + return length; +} + + + +static int read_cd_data(uint8_t * dst, uint64_t length, struct ide_internal * ide, struct ide_channel * channel) { struct ide_drive * drive = get_selected_drive(channel); - int data_offset = drive->transfer_index % ATAPI_BLOCK_SIZE; - int req_offset = drive->transfer_index % drive->req_len; + uint64_t data_offset = drive->transfer_index % ATAPI_BLOCK_SIZE; + // int req_offset = drive->transfer_index % drive->req_len; if (drive->cd_state.atapi_cmd != 0x28) { - PrintDebug("IDE: Reading CD Data (len=%d) (req_len=%d)\n", length, drive->req_len); + PrintDebug(VM_NONE, VCORE_NONE, "IDE: Reading CD Data (len=%llu) (req_len=%u)\n", length, drive->req_len); + PrintDebug(VM_NONE, VCORE_NONE, "IDE: transfer len=%llu, transfer idx=%llu\n", drive->transfer_length, drive->transfer_index); } - if (drive->transfer_index >= drive->transfer_length) { - PrintError("Buffer Overrun... (xfer_len=%d) (cur_idx=%d) (post_idx=%d)\n", + + + if (drive->transfer_index >= drive->transfer_length && drive->transfer_index>=DATA_BUFFER_SIZE) { + PrintError(VM_NONE, VCORE_NONE, "Buffer Overrun... (xfer_len=%llu) (cur_idx=%llu) (post_idx=%llu)\n", drive->transfer_length, drive->transfer_index, drive->transfer_index + length); return -1; @@ -1089,8 +1238,8 @@ static int read_cd_data(uint8_t * dst, uint_t length, struct vm_device * dev, st if ((data_offset == 0) && (drive->transfer_index > 0)) { - if (atapi_update_data_buf(dev, channel) == -1) { - PrintError("Could not update CDROM data buffer\n"); + if (atapi_update_data_buf(ide, channel) == -1) { + PrintError(VM_NONE, VCORE_NONE, "Could not update CDROM data buffer\n"); return -1; } } @@ -1101,7 +1250,7 @@ static int read_cd_data(uint8_t * dst, uint_t length, struct vm_device * dev, st // Should the req_offset be recalculated here????? - if ((req_offset == 0) && (drive->transfer_index > 0)) { + if (/*(req_offset == 0) &&*/ (drive->transfer_index > 0)) { if (drive->transfer_index < drive->transfer_length) { // An increment is complete, but there is still more data to be transferred... @@ -1110,12 +1259,14 @@ static int read_cd_data(uint8_t * dst, uint_t length, struct vm_device * dev, st drive->irq_flags.c_d = 0; // Update the request length in the cylinder regs - if (atapi_update_req_len(dev, channel, drive->transfer_length - drive->transfer_index) == -1) { - PrintError("Could not update request length after completed increment\n"); + if (atapi_update_req_len(ide, channel, drive->transfer_length - drive->transfer_index) == -1) { + PrintError(VM_NONE, VCORE_NONE, "Could not update request length after completed increment\n"); return -1; } } else { // This was the final read of the request + + drive->req_len = 0; channel->status.data_req = 0; channel->status.ready = 1; @@ -1126,14 +1277,14 @@ static int read_cd_data(uint8_t * dst, uint_t length, struct vm_device * dev, st drive->irq_flags.io_dir = 1; channel->status.busy = 0; - ide_raise_irq(dev, channel); + ide_raise_irq(ide, channel); } return length; } -static int read_drive_id( uint8_t * dst, uint_t length, struct vm_device * dev, struct ide_channel * channel) { +static int read_drive_id( uint8_t * dst, uint_t length, struct ide_internal * ide, struct ide_channel * channel) { struct ide_drive * drive = get_selected_drive(channel); channel->status.busy = 0; @@ -1155,26 +1306,27 @@ static int read_drive_id( uint8_t * dst, uint_t length, struct vm_device * dev, } -static int ide_read_data_port(struct guest_info * core, ushort_t port, void * dst, uint_t length, struct vm_device * dev) { - struct ide_internal * ide = (struct ide_internal *)(dev->private_data); + +static int read_data_port(struct guest_info * core, ushort_t port, void * dst, uint_t length, void * priv_data) { + struct ide_internal * ide = priv_data; struct ide_channel * channel = get_selected_channel(ide, port); struct ide_drive * drive = get_selected_drive(channel); - PrintDebug("IDE: Reading Data Port %x (len=%d)\n", port, length); + //PrintDebug(core->vm_info, core, "IDE: Reading Data Port %x (len=%d)\n", port, length); - if ((channel->cmd_reg == 0xec) || - (channel->cmd_reg == 0xa1)) { - return read_drive_id((uint8_t *)dst, length, dev, channel); + if ((channel->cmd_reg == ATA_IDENTIFY) || + (channel->cmd_reg == ATA_PIDENTIFY)) { + return read_drive_id((uint8_t *)dst, length, ide, channel); } if (drive->drive_type == BLOCK_CDROM) { - if (read_cd_data((uint8_t *)dst, length, dev, channel) == -1) { - PrintError("IDE: Could not read CD Data\n"); + if (read_cd_data((uint8_t *)dst, length, ide, channel) == -1) { + PrintError(core->vm_info, core, "IDE: Could not read CD Data (atapi cmd=%x)\n", drive->cd_state.atapi_cmd); return -1; } } else if (drive->drive_type == BLOCK_DISK) { - if (read_hd_data((uint8_t *)dst, length, dev, channel) == -1) { - PrintError("IDE: Could not read HD Data\n"); + if (read_hd_data((uint8_t *)dst, length, ide, channel) == -1) { + PrintError(core->vm_info, core, "IDE: Could not read HD Data\n"); return -1; } } else { @@ -1184,17 +1336,55 @@ static int ide_read_data_port(struct guest_info * core, ushort_t port, void * ds return length; } -static int write_port_std(struct guest_info * core, ushort_t port, void * src, uint_t length, struct vm_device * dev) { - struct ide_internal * ide = (struct ide_internal *)(dev->private_data); +// For the write side, we care both about +// direct PIO writes to a drive as well as +// writes that pass a packet through to an CD +static int write_data_port(struct guest_info * core, ushort_t port, void * src, uint_t length, void * priv_data) { + struct ide_internal * ide = priv_data; + struct ide_channel * channel = get_selected_channel(ide, port); + struct ide_drive * drive = get_selected_drive(channel); + + PrintDebug(core->vm_info, core, "IDE: Writing Data Port %x (val=%x, len=%d)\n", + port, *(uint32_t *)src, length); + + if (drive->drive_type == BLOCK_CDROM) { + if (channel->cmd_reg == ATA_PACKETCMD) { + // short command packet - no check for space... + memcpy(drive->data_buf + drive->transfer_index, src, length); + drive->transfer_index += length; + if (drive->transfer_index >= drive->transfer_length) { + if (atapi_handle_packet(core, ide, channel) == -1) { + PrintError(core->vm_info, core, "Error handling ATAPI packet\n"); + return -1; + } + } + } else { + PrintError(core->vm_info,core,"Unknown command %x on CD ROM\n",channel->cmd_reg); + return -1; + } + } else if (drive->drive_type == BLOCK_DISK) { + if (write_hd_data((uint8_t *)src, length, ide, channel) == -1) { + PrintError(core->vm_info, core, "IDE: Could not write HD Data\n"); + return -1; + } + } else { + // nothing ... do not support writable cd + } + + return length; +} + +static int write_port_std(struct guest_info * core, ushort_t port, void * src, uint_t length, void * priv_data) { + struct ide_internal * ide = priv_data; struct ide_channel * channel = get_selected_channel(ide, port); struct ide_drive * drive = get_selected_drive(channel); if (length != 1) { - PrintError("Invalid Write length on IDE port %x\n", port); + PrintError(core->vm_info, core, "Invalid Write length on IDE port %x\n", port); return -1; } - PrintDebug("IDE: Writing Standard Port %x (%s) (val=%x)\n", port, io_port_to_str(port), *(uint8_t *)src); + PrintDebug(core->vm_info, core, "IDE: Writing Standard Port %x (%s) (val=%x)\n", port, io_port_to_str(port), *(uint8_t *)src); switch (port) { // reset and interrupt enable @@ -1219,65 +1409,163 @@ static int write_port_std(struct guest_info * core, ushort_t port, void * src, u case PRI_SECT_CNT_PORT: case SEC_SECT_CNT_PORT: + // update CHS and LBA28 state channel->drives[0].sector_count = *(uint8_t *)src; channel->drives[1].sector_count = *(uint8_t *)src; + + // update LBA48 state + if (is_lba48(channel)) { + uint16_t val = *(uint8_t*)src; // top bits zero; + if (!channel->drives[0].lba48.sector_count_state) { + channel->drives[0].lba48.sector_count = val<<8; + } else { + channel->drives[0].lba48.sector_count |= val; + } + channel->drives[0].lba48.sector_count_state ^= 1; + if (!channel->drives[1].lba48.sector_count_state) { + channel->drives[1].lba48.sector_count = val<<8; + } else { + channel->drives[1].lba48.sector_count |= val; + } + channel->drives[0].lba48.sector_count_state ^= 1; + } + break; case PRI_SECT_NUM_PORT: case SEC_SECT_NUM_PORT: + // update CHS and LBA28 state channel->drives[0].sector_num = *(uint8_t *)src; channel->drives[1].sector_num = *(uint8_t *)src; + + // update LBA48 state + if (is_lba48(channel)) { + uint64_t val = *(uint8_t *)src; // lob off top 7 bytes; + if (!channel->drives[0].lba48.lba41_state) { + channel->drives[0].lba48.lba |= val<<24; + } else { + channel->drives[0].lba48.lba |= val; + } + channel->drives[0].lba48.lba41_state ^= 1; + if (!channel->drives[1].lba48.lba41_state) { + channel->drives[1].lba48.lba |= val<<24; + } else { + channel->drives[1].lba48.lba |= val; + } + channel->drives[1].lba48.lba41_state ^= 1; + } + break; case PRI_CYL_LOW_PORT: case SEC_CYL_LOW_PORT: + // update CHS and LBA28 state channel->drives[0].cylinder_low = *(uint8_t *)src; channel->drives[1].cylinder_low = *(uint8_t *)src; + + // update LBA48 state + if (is_lba48(channel)) { + uint64_t val = *(uint8_t *)src; // lob off top 7 bytes; + if (!channel->drives[0].lba48.lba52_state) { + channel->drives[0].lba48.lba |= val<<32; + } else { + channel->drives[0].lba48.lba |= val<<8; + } + channel->drives[0].lba48.lba52_state ^= 1; + if (!channel->drives[1].lba48.lba52_state) { + channel->drives[1].lba48.lba |= val<<32; + } else { + channel->drives[1].lba48.lba |= val<<8; + } + channel->drives[1].lba48.lba52_state ^= 1; + } + break; case PRI_CYL_HIGH_PORT: case SEC_CYL_HIGH_PORT: + // update CHS and LBA28 state channel->drives[0].cylinder_high = *(uint8_t *)src; channel->drives[1].cylinder_high = *(uint8_t *)src; + + // update LBA48 state + if (is_lba48(channel)) { + uint64_t val = *(uint8_t *)src; // lob off top 7 bytes; + if (!channel->drives[0].lba48.lba63_state) { + channel->drives[0].lba48.lba |= val<<40; + } else { + channel->drives[0].lba48.lba |= val<<16; + } + channel->drives[0].lba48.lba63_state ^= 1; + if (!channel->drives[1].lba48.lba63_state) { + channel->drives[1].lba48.lba |= val<<40; + } else { + channel->drives[1].lba48.lba |= val<<16; + } + channel->drives[1].lba48.lba63_state ^= 1; + } + break; case PRI_DRV_SEL_PORT: case SEC_DRV_SEL_PORT: { - channel->drive_head.val = *(uint8_t *)src; + struct ide_drive_head_reg nh, oh; + + oh.val = channel->drive_head.val; + channel->drive_head.val = nh.val = *(uint8_t *)src; + + // has LBA flipped? + if ((oh.val & 0xe0) != (nh.val & 0xe0)) { + // reset LBA48 state + channel->drives[0].lba48.sector_count_state=0; + channel->drives[0].lba48.lba41_state=0; + channel->drives[0].lba48.lba52_state=0; + channel->drives[0].lba48.lba63_state=0; + channel->drives[1].lba48.sector_count_state=0; + channel->drives[1].lba48.lba41_state=0; + channel->drives[1].lba48.lba52_state=0; + channel->drives[1].lba48.lba63_state=0; + } - // make sure the reserved bits are ok.. - // JRL TODO: check with new ramdisk to make sure this is right... - channel->drive_head.val |= 0xa0; drive = get_selected_drive(channel); // Selecting a non-present device is a no-no if (drive->drive_type == BLOCK_NONE) { - PrintDebug("Attempting to select a non-present drive\n"); + PrintDebug(core->vm_info, core, "Attempting to select a non-present drive\n"); channel->error_reg.abort = 1; channel->status.error = 1; + } else { + channel->status.busy = 0; + channel->status.ready = 1; + channel->status.data_req = 0; + channel->status.error = 0; + channel->status.seek_complete = 1; + + channel->dma_status.active = 0; + channel->dma_status.err = 0; } break; } default: - PrintError("IDE: Write to unknown Port %x\n", port); + PrintError(core->vm_info, core, "IDE: Write to unknown Port %x\n", port); return -1; } return length; } -static int read_port_std(struct guest_info * core, ushort_t port, void * dst, uint_t length, struct vm_device * dev) { - struct ide_internal * ide = (struct ide_internal *)(dev->private_data); +static int read_port_std(struct guest_info * core, ushort_t port, void * dst, uint_t length, void * priv_data) { + struct ide_internal * ide = priv_data; struct ide_channel * channel = get_selected_channel(ide, port); struct ide_drive * drive = get_selected_drive(channel); if (length != 1) { - PrintError("Invalid Read length on IDE port %x\n", port); + PrintError(core->vm_info, core, "Invalid Read length on IDE port %x\n", port); return -1; } - PrintDebug("IDE: Reading Standard Port %x (%s)\n", port, io_port_to_str(port)); + PrintDebug(core->vm_info, core, "IDE: Reading Standard Port %x (%s)\n", port, io_port_to_str(port)); if ((port == PRI_ADDR_REG_PORT) || (port == SEC_ADDR_REG_PORT)) { @@ -1342,11 +1630,11 @@ static int read_port_std(struct guest_info * core, ushort_t port, void * dst, ui break; default: - PrintError("Invalid Port: %x\n", port); + PrintError(core->vm_info, core, "Invalid Port: %x\n", port); return -1; } - PrintDebug("\tVal=%x\n", *(uint8_t *)dst); + PrintDebug(core->vm_info, core, "\tVal=%x\n", *(uint8_t *)dst); return length; } @@ -1380,12 +1668,14 @@ static void init_channel(struct ide_channel * channel) { int i = 0; channel->error_reg.val = 0x01; + + //** channel->features = 0x0; + channel->drive_head.val = 0x00; channel->status.val = 0x00; channel->cmd_reg = 0x00; channel->ctrl_reg.val = 0x08; - channel->dma_cmd.val = 0; channel->dma_status.val = 0; channel->dma_prd_addr = 0; @@ -1398,31 +1688,28 @@ static void init_channel(struct ide_channel * channel) { } -static int pci_config_update(uint_t reg_num, void * src, uint_t length, void * private_data) { - PrintDebug("PCI Config Update\n"); - /* struct vm_device * dev = (struct vm_device *)private_data; - struct ide_internal * ide = (struct ide_internal *)(dev->private_data); +static int pci_config_update(struct pci_device * pci_dev, uint32_t reg_num, void * src, uint_t length, void * private_data) { + PrintDebug(VM_NONE, VCORE_NONE, "PCI Config Update\n"); + /* + struct ide_internal * ide = (struct ide_internal *)(private_data); - PrintDebug("\t\tInterupt register (Dev=%s), irq=%d\n", ide->ide_pci->name, ide->ide_pci->config_header.intr_line); + PrintDebug(VM_NONE, VCORE_NONE, info, "\t\tInterupt register (Dev=%s), irq=%d\n", ide->ide_pci->name, ide->ide_pci->config_header.intr_line); */ return 0; } -static int init_ide_state(struct vm_device * dev) { - struct ide_internal * ide = (struct ide_internal *)(dev->private_data); - int i; +static int init_ide_state(struct ide_internal * ide) { /* * Check if the PIIX 3 actually represents both IDE channels in a single PCI entry */ - for (i = 0; i < 1; i++) { - init_channel(&(ide->channels[i])); + init_channel(&(ide->channels[0])); + ide->channels[0].irq = PRI_DEFAULT_IRQ ; - // JRL: this is a terrible hack... - ide->channels[i].irq = PRI_DEFAULT_IRQ + i; - } + init_channel(&(ide->channels[1])); + ide->channels[1].irq = SEC_DEFAULT_IRQ ; return 0; @@ -1431,18 +1718,244 @@ static int init_ide_state(struct vm_device * dev) { -static int ide_free(struct vm_device * dev) { - // unhook io ports.... +static int ide_free(struct ide_internal * ide) { + // deregister from PCI? + + V3_Free(ide); + return 0; } +#ifdef V3_CONFIG_CHECKPOINT + +#include + +static int ide_save_extended(struct v3_chkpt *chkpt, char *id, void * private_data) { + struct ide_internal * ide = (struct ide_internal *)private_data; + struct v3_chkpt_ctx *ctx=0; + int ch_num = 0; + int drive_num = 0; + char buf[128]; + + + ctx=v3_chkpt_open_ctx(chkpt,id); + + if (!ctx) { + PrintError(VM_NONE, VCORE_NONE, "Failed to open context for save\n"); + goto savefailout; + } + + // nothing saved yet + + v3_chkpt_close_ctx(ctx);ctx=0; + + + for (ch_num = 0; ch_num < 2; ch_num++) { + struct ide_channel * ch = &(ide->channels[ch_num]); + + snprintf(buf, 128, "%s-%d", id, ch_num); + + ctx = v3_chkpt_open_ctx(chkpt, buf); + + if (!ctx) { + PrintError(VM_NONE, VCORE_NONE, "Unable to open context to save channel %d\n",ch_num); + goto savefailout; + } + + V3_CHKPT_SAVE(ctx, "ERROR", ch->error_reg.val, savefailout); + V3_CHKPT_SAVE(ctx, "FEATURES", ch->features.val, savefailout); + V3_CHKPT_SAVE(ctx, "DRIVE_HEAD", ch->drive_head.val, savefailout); + V3_CHKPT_SAVE(ctx, "STATUS", ch->status.val, savefailout); + V3_CHKPT_SAVE(ctx, "CMD_REG", ch->cmd_reg, savefailout); + V3_CHKPT_SAVE(ctx, "CTRL_REG", ch->ctrl_reg.val, savefailout); + V3_CHKPT_SAVE(ctx, "DMA_CMD", ch->dma_cmd.val, savefailout); + V3_CHKPT_SAVE(ctx, "DMA_STATUS", ch->dma_status.val, savefailout); + V3_CHKPT_SAVE(ctx, "PRD_ADDR", ch->dma_prd_addr, savefailout); + V3_CHKPT_SAVE(ctx, "DMA_TBL_IDX", ch->dma_tbl_index, savefailout); + + + + v3_chkpt_close_ctx(ctx); ctx=0; + + for (drive_num = 0; drive_num < 2; drive_num++) { + struct ide_drive * drive = &(ch->drives[drive_num]); + + snprintf(buf, 128, "%s-%d-%d", id, ch_num, drive_num); + + ctx = v3_chkpt_open_ctx(chkpt, buf); + + if (!ctx) { + PrintError(VM_NONE, VCORE_NONE, "Unable to open context to save drive %d\n",drive_num); + goto savefailout; + } + + V3_CHKPT_SAVE(ctx, "DRIVE_TYPE", drive->drive_type, savefailout); + V3_CHKPT_SAVE(ctx, "SECTOR_COUNT", drive->sector_count, savefailout); + V3_CHKPT_SAVE(ctx, "SECTOR_NUM", drive->sector_num, savefailout); + V3_CHKPT_SAVE(ctx, "CYLINDER", drive->cylinder,savefailout); + + V3_CHKPT_SAVE(ctx, "CURRENT_LBA", drive->current_lba, savefailout); + V3_CHKPT_SAVE(ctx, "TRANSFER_LENGTH", drive->transfer_length, savefailout); + V3_CHKPT_SAVE(ctx, "TRANSFER_INDEX", drive->transfer_index, savefailout); + + V3_CHKPT_SAVE(ctx, "DATA_BUF", drive->data_buf, savefailout); + + + /* For now we'll just pack the type specific data at the end... */ + /* We should probably add a new context here in the future... */ + if (drive->drive_type == BLOCK_CDROM) { + V3_CHKPT_SAVE(ctx, "ATAPI_SENSE_DATA", drive->cd_state.sense.buf, savefailout); + V3_CHKPT_SAVE(ctx, "ATAPI_CMD", drive->cd_state.atapi_cmd, savefailout); + V3_CHKPT_SAVE(ctx, "ATAPI_ERR_RECOVERY", drive->cd_state.err_recovery.buf, savefailout); + } else if (drive->drive_type == BLOCK_DISK) { + V3_CHKPT_SAVE(ctx, "ACCESSED", drive->hd_state.accessed, savefailout); + V3_CHKPT_SAVE(ctx, "MULT_SECT_NUM", drive->hd_state.mult_sector_num, savefailout); + V3_CHKPT_SAVE(ctx, "CUR_SECT_NUM", drive->hd_state.cur_sector_num, savefailout); + } else if (drive->drive_type == BLOCK_NONE) { + // no drive connected, so no data + } else { + PrintError(VM_NONE, VCORE_NONE, "Invalid drive type %d\n",drive->drive_type); + goto savefailout; + } + + V3_CHKPT_SAVE(ctx, "LBA48_LBA", drive->lba48.lba, savefailout); + V3_CHKPT_SAVE(ctx, "LBA48_SECTOR_COUNT", drive->lba48.sector_count, savefailout); + V3_CHKPT_SAVE(ctx, "LBA48_SECTOR_COUNT_STATE", drive->lba48.sector_count_state, savefailout); + V3_CHKPT_SAVE(ctx, "LBA48_LBA41_STATE", drive->lba48.lba41_state, savefailout); + V3_CHKPT_SAVE(ctx, "LBA48_LBA52_STATE", drive->lba48.lba52_state, savefailout); + V3_CHKPT_SAVE(ctx, "LBA48_LBA63_STATE", drive->lba48.lba63_state, savefailout); + + v3_chkpt_close_ctx(ctx); ctx=0; + } + } + +// goodout: + return 0; + + savefailout: + PrintError(VM_NONE, VCORE_NONE, "Failed to save IDE\n"); + if (ctx) {v3_chkpt_close_ctx(ctx); } + return -1; +} + + + +static int ide_load_extended(struct v3_chkpt *chkpt, char *id, void * private_data) { + struct ide_internal * ide = (struct ide_internal *)private_data; + struct v3_chkpt_ctx *ctx=0; + int ch_num = 0; + int drive_num = 0; + char buf[128]; + + ctx=v3_chkpt_open_ctx(chkpt,id); + + if (!ctx) { + PrintError(VM_NONE, VCORE_NONE, "Failed to open context for load\n"); + goto loadfailout; + } + + // nothing saved yet + + v3_chkpt_close_ctx(ctx);ctx=0; + + + for (ch_num = 0; ch_num < 2; ch_num++) { + struct ide_channel * ch = &(ide->channels[ch_num]); + + snprintf(buf, 128, "%s-%d", id, ch_num); + + ctx = v3_chkpt_open_ctx(chkpt, buf); + + if (!ctx) { + PrintError(VM_NONE, VCORE_NONE, "Unable to open context to load channel %d\n",ch_num); + goto loadfailout; + } + + V3_CHKPT_LOAD(ctx, "ERROR", ch->error_reg.val, loadfailout); + V3_CHKPT_LOAD(ctx, "FEATURES", ch->features.val, loadfailout); + V3_CHKPT_LOAD(ctx, "DRIVE_HEAD", ch->drive_head.val, loadfailout); + V3_CHKPT_LOAD(ctx, "STATUS", ch->status.val, loadfailout); + V3_CHKPT_LOAD(ctx, "CMD_REG", ch->cmd_reg, loadfailout); + V3_CHKPT_LOAD(ctx, "CTRL_REG", ch->ctrl_reg.val, loadfailout); + V3_CHKPT_LOAD(ctx, "DMA_CMD", ch->dma_cmd.val, loadfailout); + V3_CHKPT_LOAD(ctx, "DMA_STATUS", ch->dma_status.val, loadfailout); + V3_CHKPT_LOAD(ctx, "PRD_ADDR", ch->dma_prd_addr, loadfailout); + V3_CHKPT_LOAD(ctx, "DMA_TBL_IDX", ch->dma_tbl_index, loadfailout); + + v3_chkpt_close_ctx(ctx); ctx=0; + + for (drive_num = 0; drive_num < 2; drive_num++) { + struct ide_drive * drive = &(ch->drives[drive_num]); + + snprintf(buf, 128, "%s-%d-%d", id, ch_num, drive_num); + + ctx = v3_chkpt_open_ctx(chkpt, buf); + + if (!ctx) { + PrintError(VM_NONE, VCORE_NONE, "Unable to open context to load drive %d\n",drive_num); + goto loadfailout; + } + + V3_CHKPT_LOAD(ctx, "DRIVE_TYPE", drive->drive_type, loadfailout); + V3_CHKPT_LOAD(ctx, "SECTOR_COUNT", drive->sector_count, loadfailout); + V3_CHKPT_LOAD(ctx, "SECTOR_NUM", drive->sector_num, loadfailout); + V3_CHKPT_LOAD(ctx, "CYLINDER", drive->cylinder,loadfailout); + + V3_CHKPT_LOAD(ctx, "CURRENT_LBA", drive->current_lba, loadfailout); + V3_CHKPT_LOAD(ctx, "TRANSFER_LENGTH", drive->transfer_length, loadfailout); + V3_CHKPT_LOAD(ctx, "TRANSFER_INDEX", drive->transfer_index, loadfailout); + + V3_CHKPT_LOAD(ctx, "DATA_BUF", drive->data_buf, loadfailout); + + + /* For now we'll just pack the type specific data at the end... */ + /* We should probably add a new context here in the future... */ + if (drive->drive_type == BLOCK_CDROM) { + V3_CHKPT_LOAD(ctx, "ATAPI_SENSE_DATA", drive->cd_state.sense.buf, loadfailout); + V3_CHKPT_LOAD(ctx, "ATAPI_CMD", drive->cd_state.atapi_cmd, loadfailout); + V3_CHKPT_LOAD(ctx, "ATAPI_ERR_RECOVERY", drive->cd_state.err_recovery.buf, loadfailout); + } else if (drive->drive_type == BLOCK_DISK) { + V3_CHKPT_LOAD(ctx, "ACCESSED", drive->hd_state.accessed, loadfailout); + V3_CHKPT_LOAD(ctx, "MULT_SECT_NUM", drive->hd_state.mult_sector_num, loadfailout); + V3_CHKPT_LOAD(ctx, "CUR_SECT_NUM", drive->hd_state.cur_sector_num, loadfailout); + } else if (drive->drive_type == BLOCK_NONE) { + // no drive connected, so no data + } else { + PrintError(VM_NONE, VCORE_NONE, "Invalid drive type %d\n",drive->drive_type); + goto loadfailout; + } + + V3_CHKPT_LOAD(ctx, "LBA48_LBA", drive->lba48.lba, loadfailout); + V3_CHKPT_LOAD(ctx, "LBA48_SECTOR_COUNT", drive->lba48.sector_count, loadfailout); + V3_CHKPT_LOAD(ctx, "LBA48_SECTOR_COUNT_STATE", drive->lba48.sector_count_state, loadfailout); + V3_CHKPT_LOAD(ctx, "LBA48_LBA41_STATE", drive->lba48.lba41_state, loadfailout); + V3_CHKPT_LOAD(ctx, "LBA48_LBA52_STATE", drive->lba48.lba52_state, loadfailout); + V3_CHKPT_LOAD(ctx, "LBA48_LBA63_STATE", drive->lba48.lba63_state, loadfailout); + + } + } +// goodout: + return 0; + + loadfailout: + PrintError(VM_NONE, VCORE_NONE, "Failed to load IDE\n"); + if (ctx) {v3_chkpt_close_ctx(ctx); } + return -1; + +} + + + +#endif + static struct v3_device_ops dev_ops = { - .free = ide_free, - .reset = NULL, - .start = NULL, - .stop = NULL, + .free = (int (*)(void *))ide_free, +#ifdef V3_CONFIG_CHECKPOINT + .save_extended = ide_save_extended, + .load_extended = ide_load_extended +#endif }; @@ -1466,7 +1979,7 @@ static int connect_fn(struct v3_vm_info * vm, if ((!type_str) || (!drive_str) || (!bus_str)) { - PrintError("Incomplete IDE Configuration\n"); + PrintError(vm, VCORE_NONE, "Incomplete IDE Configuration\n"); return -1; } @@ -1477,12 +1990,15 @@ static int connect_fn(struct v3_vm_info * vm, drive = &(channel->drives[drive_num]); if (drive->drive_type != BLOCK_NONE) { - PrintError("Device slot (bus=%d, drive=%d) already occupied\n", bus_num, drive_num); + PrintError(vm, VCORE_NONE, "Device slot (bus=%d, drive=%d) already occupied\n", bus_num, drive_num); return -1; } - strncpy(drive->model, model_str, sizeof(drive->model) - 1); - + if (model_str != NULL) { + strncpy(drive->model, model_str, sizeof(drive->model)); + drive->model[sizeof(drive->model)-1] = 0; + } + if (strcasecmp(type_str, "cdrom") == 0) { drive->drive_type = BLOCK_CDROM; @@ -1500,7 +2016,7 @@ static int connect_fn(struct v3_vm_info * vm, drive->num_heads = 16; drive->num_cylinders = (ops->get_capacity(private_data) / HD_SECTOR_SIZE) / (drive->num_sectors * drive->num_heads); } else { - PrintError("invalid IDE drive type\n"); + PrintError(vm, VCORE_NONE, "invalid IDE drive type\n"); return -1; } @@ -1520,91 +2036,110 @@ static int connect_fn(struct v3_vm_info * vm, static int ide_init(struct v3_vm_info * vm, v3_cfg_tree_t * cfg) { - struct ide_internal * ide = (struct ide_internal *)V3_Malloc(sizeof(struct ide_internal)); - char * name = v3_cfg_val(cfg, "name"); + struct ide_internal * ide = NULL; + char * dev_id = v3_cfg_val(cfg, "ID"); + int ret = 0; - PrintDebug("IDE: Initializing IDE\n"); - memset(ide, 0, sizeof(struct ide_internal)); + PrintDebug(vm, VCORE_NONE, "IDE: Initializing IDE\n"); + ide = (struct ide_internal *)V3_Malloc(sizeof(struct ide_internal)); + if (ide == NULL) { + PrintError(vm, VCORE_NONE, "Error allocating IDE state\n"); + return -1; + } + + memset(ide, 0, sizeof(struct ide_internal)); + + ide->vm = vm; ide->pci_bus = v3_find_dev(vm, v3_cfg_val(cfg, "bus")); if (ide->pci_bus != NULL) { struct vm_device * southbridge = v3_find_dev(vm, v3_cfg_val(cfg, "controller")); if (!southbridge) { - PrintError("Could not find southbridge\n"); + PrintError(vm, VCORE_NONE, "Could not find southbridge\n"); + V3_Free(ide); return -1; } ide->southbridge = (struct v3_southbridge *)(southbridge->private_data); + } else { + PrintError(vm,VCORE_NONE,"Strange - you don't have a PCI bus\n"); } - PrintDebug("IDE: Creating IDE bus x 2\n"); + PrintDebug(vm, VCORE_NONE, "IDE: Creating IDE bus x 2\n"); - struct vm_device * dev = v3_allocate_device(name, &dev_ops, ide); + struct vm_device * dev = v3_add_device(vm, dev_id, &dev_ops, ide); - if (v3_attach_device(vm, dev) == -1) { - PrintError("Could not attach device %s\n", name); + if (dev == NULL) { + PrintError(vm, VCORE_NONE, "Could not attach device %s\n", dev_id); + V3_Free(ide); return -1; } - if (init_ide_state(dev) == -1) { - PrintError("Failed to initialize IDE state\n"); + if (init_ide_state(ide) == -1) { + PrintError(vm, VCORE_NONE, "Failed to initialize IDE state\n"); + v3_remove_device(dev); return -1; } - PrintDebug("Connecting to IDE IO ports\n"); - - v3_dev_hook_io(dev, PRI_DATA_PORT, - &ide_read_data_port, &write_data_port); - v3_dev_hook_io(dev, PRI_FEATURES_PORT, - &read_port_std, &write_port_std); - v3_dev_hook_io(dev, PRI_SECT_CNT_PORT, - &read_port_std, &write_port_std); - v3_dev_hook_io(dev, PRI_SECT_NUM_PORT, - &read_port_std, &write_port_std); - v3_dev_hook_io(dev, PRI_CYL_LOW_PORT, - &read_port_std, &write_port_std); - v3_dev_hook_io(dev, PRI_CYL_HIGH_PORT, - &read_port_std, &write_port_std); - v3_dev_hook_io(dev, PRI_DRV_SEL_PORT, - &read_port_std, &write_port_std); - v3_dev_hook_io(dev, PRI_CMD_PORT, - &read_port_std, &write_cmd_port); - - v3_dev_hook_io(dev, SEC_DATA_PORT, - &ide_read_data_port, &write_data_port); - v3_dev_hook_io(dev, SEC_FEATURES_PORT, - &read_port_std, &write_port_std); - v3_dev_hook_io(dev, SEC_SECT_CNT_PORT, - &read_port_std, &write_port_std); - v3_dev_hook_io(dev, SEC_SECT_NUM_PORT, - &read_port_std, &write_port_std); - v3_dev_hook_io(dev, SEC_CYL_LOW_PORT, - &read_port_std, &write_port_std); - v3_dev_hook_io(dev, SEC_CYL_HIGH_PORT, - &read_port_std, &write_port_std); - v3_dev_hook_io(dev, SEC_DRV_SEL_PORT, - &read_port_std, &write_port_std); - v3_dev_hook_io(dev, SEC_CMD_PORT, - &read_port_std, &write_cmd_port); + PrintDebug(vm, VCORE_NONE, "Connecting to IDE IO ports\n"); + + ret |= v3_dev_hook_io(dev, PRI_DATA_PORT, + &read_data_port, &write_data_port); + ret |= v3_dev_hook_io(dev, PRI_FEATURES_PORT, + &read_port_std, &write_port_std); + ret |= v3_dev_hook_io(dev, PRI_SECT_CNT_PORT, + &read_port_std, &write_port_std); + ret |= v3_dev_hook_io(dev, PRI_SECT_NUM_PORT, + &read_port_std, &write_port_std); + ret |= v3_dev_hook_io(dev, PRI_CYL_LOW_PORT, + &read_port_std, &write_port_std); + ret |= v3_dev_hook_io(dev, PRI_CYL_HIGH_PORT, + &read_port_std, &write_port_std); + ret |= v3_dev_hook_io(dev, PRI_DRV_SEL_PORT, + &read_port_std, &write_port_std); + ret |= v3_dev_hook_io(dev, PRI_CMD_PORT, + &read_port_std, &write_cmd_port); + + ret |= v3_dev_hook_io(dev, SEC_DATA_PORT, + &read_data_port, &write_data_port); + ret |= v3_dev_hook_io(dev, SEC_FEATURES_PORT, + &read_port_std, &write_port_std); + ret |= v3_dev_hook_io(dev, SEC_SECT_CNT_PORT, + &read_port_std, &write_port_std); + ret |= v3_dev_hook_io(dev, SEC_SECT_NUM_PORT, + &read_port_std, &write_port_std); + ret |= v3_dev_hook_io(dev, SEC_CYL_LOW_PORT, + &read_port_std, &write_port_std); + ret |= v3_dev_hook_io(dev, SEC_CYL_HIGH_PORT, + &read_port_std, &write_port_std); + ret |= v3_dev_hook_io(dev, SEC_DRV_SEL_PORT, + &read_port_std, &write_port_std); + ret |= v3_dev_hook_io(dev, SEC_CMD_PORT, + &read_port_std, &write_cmd_port); - v3_dev_hook_io(dev, PRI_CTRL_PORT, - &read_port_std, &write_port_std); + ret |= v3_dev_hook_io(dev, PRI_CTRL_PORT, + &read_port_std, &write_port_std); - v3_dev_hook_io(dev, SEC_CTRL_PORT, - &read_port_std, &write_port_std); + ret |= v3_dev_hook_io(dev, SEC_CTRL_PORT, + &read_port_std, &write_port_std); - v3_dev_hook_io(dev, SEC_ADDR_REG_PORT, - &read_port_std, &write_port_std); + ret |= v3_dev_hook_io(dev, SEC_ADDR_REG_PORT, + &read_port_std, &write_port_std); - v3_dev_hook_io(dev, PRI_ADDR_REG_PORT, - &read_port_std, &write_port_std); + ret |= v3_dev_hook_io(dev, PRI_ADDR_REG_PORT, + &read_port_std, &write_port_std); + if (ret != 0) { + PrintError(vm, VCORE_NONE, "Error hooking IDE IO port\n"); + v3_remove_device(dev); + return -1; + } if (ide->pci_bus) { @@ -1614,7 +2149,7 @@ static int ide_init(struct v3_vm_info * vm, v3_cfg_tree_t * cfg) { struct pci_device * pci_dev = NULL; int i; - PrintDebug("Connecting IDE to PCI bus\n"); + V3_Print(vm, VCORE_NONE, "Connecting IDE to PCI bus\n"); for (i = 0; i < 6; i++) { bars[i].type = PCI_BAR_NONE; @@ -1627,14 +2162,15 @@ static int ide_init(struct v3_vm_info * vm, v3_cfg_tree_t * cfg) { bars[4].io_read = read_dma_port; bars[4].io_write = write_dma_port; - bars[4].private_data = dev; + bars[4].private_data = ide; pci_dev = v3_pci_register_device(ide->pci_bus, PCI_STD_DEVICE, 0, sb_pci->dev_num, 1, "PIIX3_IDE", bars, - pci_config_update, NULL, NULL, dev); + pci_config_update, NULL, NULL, NULL, ide); if (pci_dev == NULL) { - PrintError("Failed to register IDE BUS %d with PCI\n", i); + PrintError(vm, VCORE_NONE, "Failed to register IDE BUS %d with PCI\n", i); + v3_remove_device(dev); return -1; } @@ -1660,13 +2196,14 @@ static int ide_init(struct v3_vm_info * vm, v3_cfg_tree_t * cfg) { } - if (v3_dev_add_blk_frontend(vm, name, connect_fn, (void *)ide) == -1) { - PrintError("Could not register %s as frontend\n", name); + if (v3_dev_add_blk_frontend(vm, dev_id, connect_fn, (void *)ide) == -1) { + PrintError(vm, VCORE_NONE, "Could not register %s as frontend\n", dev_id); + v3_remove_device(dev); return -1; } - PrintDebug("IDE Initialized\n"); + PrintDebug(vm, VCORE_NONE, "IDE Initialized\n"); return 0; } @@ -1677,10 +2214,10 @@ device_register("IDE", ide_init) -int v3_ide_get_geometry(struct vm_device * ide_dev, int channel_num, int drive_num, +int v3_ide_get_geometry(void * ide_data, int channel_num, int drive_num, uint32_t * cylinders, uint32_t * heads, uint32_t * sectors) { - struct ide_internal * ide = (struct ide_internal *)(ide_dev->private_data); + struct ide_internal * ide = ide_data; struct ide_channel * channel = &(ide->channels[channel_num]); struct ide_drive * drive = &(channel->drives[drive_num]); @@ -1694,6 +2231,3 @@ int v3_ide_get_geometry(struct vm_device * ide_dev, int channel_num, int drive_n return 0; } - - -