/* * lwk/mm/bootmem.c * * Copyright (C) 1999 Ingo Molnar * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 * * simple boot-time physical memory area allocator and * free memory collector. It's used to deal with reserved * system memory and memory holes as well. */ #include #include #include #include #include #include #include #include #include /** * Set to true once bootmem allocator has been destroyed. */ static bool bootmem_destoyed = false; /** * Access to this subsystem has to be serialized externally. * (this is true for the boot process anyway) */ /** * Amount of system memory to reserve for use by the kernel. The first * kmem_size bytes of system memory [0, kmem_size) will be added to the * kernel memory pool. The remainder of system memory is left untouched by * the kernel and is available for use by applications. */ static unsigned long kmem_size = (1024 * 1024 * 8); /* default is first 8 MB */ param(kmem_size, ulong); /** * */ static bootmem_data_t __initdata bootmem_data; /** * List of bootmem_data structures, each describing a section of * physical memory. */ static LIST_HEAD(bdata_list); /** * Returns the number of _pages_ that will be allocated for the boot bitmap. */ unsigned long __init bootmem_bootmap_pages(unsigned long pages) { unsigned long mapsize; mapsize = (pages+7)/8; mapsize = (mapsize + ~PAGE_MASK) & PAGE_MASK; mapsize >>= PAGE_SHIFT; return mapsize; } /** * Links a newly created bootmem_data structure to the bdata_list. */ static void __init link_bootmem(bootmem_data_t *bdata) { bootmem_data_t *ent; if (list_empty(&bdata_list)) { list_add(&bdata->list, &bdata_list); return; } /* insert in order */ list_for_each_entry(ent, &bdata_list, list) { if (bdata->node_boot_start < ent->node_boot_start) { list_add_tail(&bdata->list, &ent->list); return; } } list_add_tail(&bdata->list, &bdata_list); return; } /** * Called once to set up the allocator itself. */ static unsigned long __init init_bootmem_core( bootmem_data_t *bdata, unsigned long mapstart, unsigned long start, unsigned long end ) { unsigned long mapsize = ((end - start)+7)/8; mapsize = ALIGN(mapsize, sizeof(long)); bdata->node_bootmem_map = phys_to_virt(mapstart << PAGE_SHIFT); bdata->node_boot_start = (start << PAGE_SHIFT); bdata->node_low_pfn = end; link_bootmem(bdata); /* * Initially all pages are reserved - setup_arch() has to * register free RAM areas explicitly. */ memset(bdata->node_bootmem_map, 0xff, mapsize); return mapsize; } /** * Marks a particular physical memory range as unallocatable. Usable RAM * might be used for boot-time allocations - or it might get added * to the free page pool later on. */ static void __init reserve_bootmem_core( bootmem_data_t *bdata, unsigned long addr, unsigned long size ) { unsigned long sidx, eidx; unsigned long i; /* * round up, partially reserved pages are considered * fully reserved. */ BUG_ON(!size); BUG_ON(PFN_DOWN(addr) >= bdata->node_low_pfn); BUG_ON(PFN_UP(addr + size) > bdata->node_low_pfn); sidx = PFN_DOWN(addr - bdata->node_boot_start); eidx = PFN_UP(addr + size - bdata->node_boot_start); for (i = sidx; i < eidx; i++) { if (test_and_set_bit(i, bdata->node_bootmem_map)) { #ifdef CONFIG_DEBUG_BOOTMEM printk("hm, page %08lx reserved twice.\n", i*PAGE_SIZE); #endif } } } /** * Frees a section of bootmemory. */ static void __init free_bootmem_core( bootmem_data_t *bdata, unsigned long addr, unsigned long size ) { unsigned long i; unsigned long start; /* * round down end of usable mem, partially free pages are * considered reserved. */ unsigned long sidx; unsigned long eidx = (addr + size - bdata->node_boot_start)/PAGE_SIZE; unsigned long end = (addr + size)/PAGE_SIZE; BUG_ON(!size); BUG_ON(end > bdata->node_low_pfn); if (addr < bdata->last_success) bdata->last_success = addr; /* * Round up the beginning of the address. */ start = (addr + PAGE_SIZE-1) / PAGE_SIZE; sidx = start - (bdata->node_boot_start/PAGE_SIZE); for (i = sidx; i < eidx; i++) { if (unlikely(!test_and_clear_bit(i, bdata->node_bootmem_map))) BUG(); } } /** * We 'merge' subsequent allocations to save space. We might 'lose' * some fraction of a page if allocations cannot be satisfied due to * size constraints on boxes where there is physical RAM space * fragmentation - in these cases (mostly large memory boxes) this * is not a problem. * * On low memory boxes we get it right in 100% of the cases. * * alignment has to be a power of 2 value. * * NOTE: This function is _not_ reentrant. */ void * __init __alloc_bootmem_core( struct bootmem_data *bdata, unsigned long size, unsigned long align, unsigned long goal, unsigned long limit ) { unsigned long offset, remaining_size, areasize, preferred; unsigned long i, start = 0, incr, eidx, end_pfn = bdata->node_low_pfn; void *ret; if (bootmem_destoyed) panic("The bootmem allocator has been destroyed."); if(!size) { printk("__alloc_bootmem_core(): zero-sized request\n"); BUG(); } BUG_ON(align & (align-1)); if (limit && bdata->node_boot_start >= limit) return NULL; limit >>=PAGE_SHIFT; if (limit && end_pfn > limit) end_pfn = limit; eidx = end_pfn - (bdata->node_boot_start >> PAGE_SHIFT); offset = 0; if (align && (bdata->node_boot_start & (align - 1UL)) != 0) offset = (align - (bdata->node_boot_start & (align - 1UL))); offset >>= PAGE_SHIFT; /* * We try to allocate bootmem pages above 'goal' * first, then we try to allocate lower pages. */ if (goal && (goal >= bdata->node_boot_start) && ((goal >> PAGE_SHIFT) < end_pfn)) { preferred = goal - bdata->node_boot_start; if (bdata->last_success >= preferred) if (!limit || (limit && limit > bdata->last_success)) preferred = bdata->last_success; } else preferred = 0; preferred = ALIGN(preferred, align) >> PAGE_SHIFT; preferred += offset; areasize = (size+PAGE_SIZE-1)/PAGE_SIZE; incr = align >> PAGE_SHIFT ? : 1; restart_scan: for (i = preferred; i < eidx; i += incr) { unsigned long j; i = find_next_zero_bit(bdata->node_bootmem_map, eidx, i); i = ALIGN(i, incr); if (i >= eidx) break; if (test_bit(i, bdata->node_bootmem_map)) continue; for (j = i + 1; j < i + areasize; ++j) { if (j >= eidx) goto fail_block; if (test_bit (j, bdata->node_bootmem_map)) goto fail_block; } start = i; goto found; fail_block: i = ALIGN(j, incr); } if (preferred > offset) { preferred = offset; goto restart_scan; } return NULL; found: bdata->last_success = start << PAGE_SHIFT; BUG_ON(start >= eidx); /* * Is the next page of the previous allocation-end the start * of this allocation's buffer? If yes then we can 'merge' * the previous partial page with this allocation. */ if (align < PAGE_SIZE && bdata->last_offset && bdata->last_pos+1 == start) { offset = ALIGN(bdata->last_offset, align); BUG_ON(offset > PAGE_SIZE); remaining_size = PAGE_SIZE-offset; if (size < remaining_size) { areasize = 0; /* last_pos unchanged */ bdata->last_offset = offset+size; ret = phys_to_virt(bdata->last_pos*PAGE_SIZE + offset + bdata->node_boot_start); } else { remaining_size = size - remaining_size; areasize = (remaining_size+PAGE_SIZE-1)/PAGE_SIZE; ret = phys_to_virt(bdata->last_pos*PAGE_SIZE + offset + bdata->node_boot_start); bdata->last_pos = start+areasize-1; bdata->last_offset = remaining_size; } bdata->last_offset &= ~PAGE_MASK; } else { bdata->last_pos = start + areasize - 1; bdata->last_offset = size & ~PAGE_MASK; ret = phys_to_virt(start * PAGE_SIZE + bdata->node_boot_start); } /* * Reserve the area now: */ for (i = start; i < start+areasize; i++) if (unlikely(test_and_set_bit(i, bdata->node_bootmem_map))) BUG(); memset(ret, 0, size); return ret; } static void __init free_all_bootmem_core(struct bootmem_data *bdata) { unsigned long pfn; unsigned long vaddr; unsigned long i, m, count; unsigned long bootmem_total=0, kmem_total=0, umem_total=0; unsigned long kmem_max_idx, max_idx; unsigned long *map; struct pmem_region rgn; BUG_ON(!bdata->node_bootmem_map); kmem_max_idx = (kmem_size >> PAGE_SHIFT) - (bdata->node_boot_start >> PAGE_SHIFT); max_idx = bdata->node_low_pfn - (bdata->node_boot_start >> PAGE_SHIFT); BUG_ON(kmem_max_idx > max_idx); /* Create the initial kernel managed memory pool (kmem) */ count = 0; pfn = bdata->node_boot_start >> PAGE_SHIFT; /* first extant page of node */ map = bdata->node_bootmem_map; for (i = 0; i < kmem_max_idx; ) { unsigned long v = ~map[i / BITS_PER_LONG]; if (v) { vaddr = (unsigned long) __va(pfn << PAGE_SHIFT); for (m = 1; m && i < kmem_max_idx; m<<=1, vaddr+=PAGE_SIZE, i++) { if (v & m) { count++; kmem_add_memory(vaddr, PAGE_SIZE); } } } else { i+=BITS_PER_LONG; } pfn += BITS_PER_LONG; } BUG_ON(count == 0); /* * At this point, kmem_alloc() will work. The physical memory tracking * code relies on kmem_alloc(), so it cannot be initialized until now. * * Tell the physical memory tracking subsystem about the kernel-managed * pool and the remaining memory that will be managed by user-space. */ pfn = bdata->node_boot_start >> PAGE_SHIFT; /* first extant page of node */ map = bdata->node_bootmem_map; pmem_region_unset_all(&rgn); rgn.type_is_set = true; rgn.allocated_is_set = true; rgn.lgroup_is_set = true; for (i = 0; i < max_idx; ) { unsigned long v = ~map[i / BITS_PER_LONG]; unsigned long paddr = (unsigned long) pfn << PAGE_SHIFT; for (m = 1; m && i < max_idx; m<<=1, paddr+=PAGE_SIZE, i++) { rgn.start = paddr; rgn.end = paddr + PAGE_SIZE; if (v & m) { if (i < kmem_max_idx) { rgn.type = PMEM_TYPE_KMEM; rgn.allocated = true; rgn.lgroup = 0; ++kmem_total; } else { rgn.type = PMEM_TYPE_UMEM; rgn.allocated = false; rgn.lgroup = 0; ++umem_total; } } else { rgn.type = PMEM_TYPE_BOOTMEM; rgn.allocated = true; rgn.lgroup = 0; ++bootmem_total; } if (pmem_add(&rgn)) BUG(); } pfn += BITS_PER_LONG; } /* * Now free the allocator bitmap itself, it's not * needed anymore: */ vaddr = (unsigned long)bdata->node_bootmem_map; count = 0; pmem_region_unset_all(&rgn); rgn.type_is_set = true; rgn.allocated_is_set = true; rgn.lgroup_is_set = true; for (i = 0; i < ((bdata->node_low_pfn-(bdata->node_boot_start >> PAGE_SHIFT))/8 + PAGE_SIZE-1)/PAGE_SIZE; i++,vaddr+=PAGE_SIZE) { count++; rgn.start = __pa(vaddr); rgn.end = rgn.start + PAGE_SIZE; if (i < kmem_max_idx) { kmem_add_memory(vaddr, PAGE_SIZE); rgn.type = PMEM_TYPE_KMEM; rgn.allocated = true; rgn.lgroup = 0; } else { rgn.type = PMEM_TYPE_UMEM; rgn.allocated = false; rgn.lgroup = 0; } pmem_add(&rgn); } BUG_ON(count == 0); /* Mark the bootmem allocator as dead */ bdata->node_bootmem_map = NULL; printk(KERN_DEBUG "The boot-strap bootmem allocator has been destroyed:\n"); printk(KERN_DEBUG " %lu bytes released to the kernel-managed memory pool (kmem)\n", kmem_total << PAGE_SHIFT); printk(KERN_DEBUG " %lu bytes released to the user-managed memory pool (umem)\n", umem_total << PAGE_SHIFT); } /** * Initialize boot memory allocator. */ unsigned long __init init_bootmem(unsigned long start, unsigned long pages) { return init_bootmem_core(&bootmem_data, start, 0, pages); } /** * Reserve a portion of the boot memory. * This prevents the reserved memory from being allocated. */ void __init reserve_bootmem(unsigned long addr, unsigned long size) { reserve_bootmem_core(&bootmem_data, addr, size); } /** * Return a portion of boot memory to the free pool. * Note that the region freed is the set of pages covering * the byte range [addr, addr+size). */ void __init free_bootmem(unsigned long addr, unsigned long size) { free_bootmem_core(&bootmem_data, addr, size); } void __init free_all_bootmem(void) { free_all_bootmem_core(&bootmem_data); bootmem_destoyed = true; } static void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align, unsigned long goal) { bootmem_data_t *bdata; void *ptr; list_for_each_entry(bdata, &bdata_list, list) if ((ptr = __alloc_bootmem_core(bdata, size, align, goal, 0))) return(ptr); return NULL; } /** * Allocate a chunk of memory from the boot memory allocator. * * size = number of bytes requested * align = required alignment * goal = hint specifying address to start search. */ void * __init __alloc_bootmem(unsigned long size, unsigned long align, unsigned long goal) { void *mem = __alloc_bootmem_nopanic(size,align,goal); if (mem) return mem; /* * Whoops, we cannot satisfy the allocation request. */ printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size); panic("Out of memory"); return NULL; } /** * Allocates a block of memory of the specified size. */ void * __init alloc_bootmem(unsigned long size) { return __alloc_bootmem(size, SMP_CACHE_BYTES, 0); } /** * Allocates a block of memory of the specified size and alignment. */ void * __init alloc_bootmem_aligned(unsigned long size, unsigned long align) { return __alloc_bootmem(size, align, 0); } /** * Initializes the kernel memory subsystem. */ void __init mem_subsys_init(void) { /* We like powers of two */ if (!is_power_of_2(kmem_size)) { printk(KERN_WARNING "kmem_size must be a power of two."); kmem_size = roundup_pow_of_two(kmem_size); } printk(KERN_DEBUG "First %lu bytes of system memory reserved for the kernel.\n", kmem_size); /* Initialize the kernel memory pool */ kmem_create_zone(PAGE_OFFSET, kmem_size); free_all_bootmem(); arch_memsys_init(kmem_size); }