2 * This file is part of the Palacios Virtual Machine Monitor developed
3 * by the V3VEE Project with funding from the United States National
4 * Science Foundation and the Department of Energy.
6 * The V3VEE Project is a joint project between Northwestern University
7 * and the University of New Mexico. You can find out more at
10 * Copyright (c) 2008, Jack Lange <jarusl@cs.northwestern.edu>
11 * Copyright (c) 2008, The V3VEE Project <http://www.v3vee.org>
12 * All rights reserved.
14 * Author: Jack Lange <jarusl@cs.northwestern.edu>
16 * This is free software. You are permitted to use,
17 * redistribute, and modify it as specified in the file "V3VEE_LICENSE".
20 #include <devices/8254.h>
21 #include <palacios/vmm.h>
22 #include <palacios/vmm_time.h>
23 #include <palacios/vmm_util.h>
24 #include <palacios/vmm_intr.h>
30 #define PrintDebug(fmt, args...)
36 #define OSC_HZ 1193182
39 /* The 8254 has three counters and one control port */
40 #define CHANNEL0_PORT 0x40
41 #define CHANNEL1_PORT 0x41
42 #define CHANNEL2_PORT 0x42
43 #define COMMAND_PORT 0x43
46 #define PIT_INTR_NUM 0
48 /* The order of these typedefs is important because the numerical values correspond to the
49 * values coming from the io ports
51 typedef enum {NOT_RUNNING, PENDING, RUNNING} channel_run_state_t;
52 typedef enum {NOT_WAITING, WAITING_LOBYTE, WAITING_HIBYTE} channel_access_state_t;
53 typedef enum {LATCH_COUNT, LOBYTE_ONLY, HIBYTE_ONLY, LOBYTE_HIBYTE} channel_access_mode_t;
54 typedef enum {IRQ_ON_TERM_CNT, ONE_SHOT, RATE_GEN, SQR_WAVE, SW_STROBE, HW_STROBE} channel_op_mode_t;
58 channel_access_mode_t access_mode;
59 channel_access_state_t access_state;
60 channel_run_state_t run_state;
62 channel_op_mode_t op_mode;
65 // Time til interrupt trigger
68 ushort_t reload_value;
70 ushort_t latched_value;
72 enum {NOTLATCHED, LATCHED} latch_state;
74 enum {LSB, MSB} read_state;
76 uint_t output_pin : 1;
77 uint_t gate_input_pin : 1;
96 uint_t access_mode : 2;
100 struct pit_rdb_cmd_word {
101 uint_t rsvd : 1; // SBZ
105 uint_t latch_status : 1;
106 uint_t latch_count : 1;
107 uint_t readback_cmd : 2; // Must Be 0x3
110 struct pit_rdb_status_word {
113 uint_t access_mode : 2;
114 uint_t null_count : 1;
115 uint_t pin_state : 1;
121 * This should call out to handle_SQR_WAVE_tics, etc...
123 // Returns true if the the output signal changed state
124 static int handle_crystal_tics(struct vm_device * dev, struct channel * ch, uint_t oscillations) {
125 uint_t channel_cycles = 0;
126 uint_t output_changed = 0;
128 // PrintDebug("8254 PIT: %d crystal tics\n", oscillations);
129 if (ch->run_state == PENDING) {
131 ch->counter = ch->reload_value;
133 if (ch->op_mode == SQR_WAVE) {
134 ch->counter -= ch->counter % 2;
137 ch->run_state = RUNNING;
138 } else if (ch->run_state != RUNNING) {
139 return output_changed;
143 PrintDebug("8254 PIT: Channel Run State = %d, counter=", ch->run_state);
144 PrintTraceLL(ch->counter);
147 if (ch->op_mode == SQR_WAVE) {
151 if (ch->counter > oscillations) {
152 ch->counter -= oscillations;
153 return output_changed;
155 ushort_t reload_val = ch->reload_value;
156 oscillations -= ch->counter;
161 if (ch->op_mode == SQR_WAVE) {
162 reload_val -= reload_val % 2;
165 channel_cycles += oscillations / reload_val;
166 oscillations = oscillations % reload_val;
168 ch->counter = reload_val - oscillations;
171 // PrintDebug("8254 PIT: Channel Cycles: %d\n", channel_cycles);
175 switch (ch->op_mode) {
176 case IRQ_ON_TERM_CNT:
177 if ((channel_cycles > 0) && (ch->output_pin == 0)) {
183 if ((channel_cycles > 0) && (ch->output_pin == 0)) {
189 // See the data sheet: we ignore the output pin cycle...
190 if (channel_cycles > 0) {
195 ch->output_pin = (ch->output_pin + 1) % 2;
197 if (ch->output_pin == 1) {
212 return output_changed;
217 static void pit_update_time(ullong_t cpu_cycles, ullong_t cpu_freq, void * private_data) {
218 struct vm_device * dev = (struct vm_device *)private_data;
219 struct pit * state = (struct pit *)dev->private_data;
220 // ullong_t tmp_ctr = state->pit_counter;
222 uint_t oscillations = 0;
226 PrintDebug("updating cpu_cycles=");
227 PrintTraceLL(cpu_cycles);
230 PrintDebug("pit_counter=");
231 PrintTraceLL(state->pit_counter);
234 PrintDebug("pit_reload=");
235 PrintTraceLL(state->pit_reload);
239 if (state->pit_counter > cpu_cycles) {
241 state->pit_counter -= cpu_cycles;
244 // Take off the first part
245 cpu_cycles -= state->pit_counter;
246 state->pit_counter = 0;
249 if (cpu_cycles > state->pit_reload) {
250 // how many full oscillations
251 tmp_cycles = cpu_cycles;
253 cpu_cycles = do_divll(tmp_cycles, state->pit_reload);
255 oscillations += tmp_cycles;
258 // update counter with remainder (mod reload)
259 state->pit_counter = state->pit_reload - cpu_cycles;
261 //PrintDebug("8254 PIT: Handling %d crystal tics\n", oscillations);
262 if (handle_crystal_tics(dev, &(state->ch_0), oscillations) == 1) {
264 PrintDebug("8254 PIT: Injecting Timer interrupt to guest\n");
265 v3_raise_irq(dev->vm, 0);
268 //handle_crystal_tics(dev, &(state->ch_1), oscillations);
269 //handle_crystal_tics(dev, &(state->ch_2), oscillations);
280 /* This should call out to handle_SQR_WAVE_write, etc...
282 static int handle_channel_write(struct channel * ch, char val) {
284 switch (ch->access_state) {
287 ushort_t tmp_val = ((ushort_t)val) << 8;
288 ch->reload_value &= 0x00ff;
289 ch->reload_value |= tmp_val;
292 if ((ch->op_mode != RATE_GEN) || (ch->run_state != RUNNING)){
293 ch->run_state = PENDING;
296 if (ch->access_mode == LOBYTE_HIBYTE) {
297 ch->access_state = WAITING_LOBYTE;
300 PrintDebug("8254 PIT: updated channel counter: %d\n", ch->reload_value);
301 PrintDebug("8254 PIT: Channel Run State=%d\n", ch->run_state);
305 ch->reload_value &= 0xff00;
306 ch->reload_value |= val;
308 if (ch->access_mode == LOBYTE_HIBYTE) {
309 ch->access_state = WAITING_HIBYTE;
310 } else if ((ch->op_mode != RATE_GEN) || (ch->run_state != RUNNING)) {
311 ch->run_state = PENDING;
314 PrintDebug("8254 PIT: updated channel counter: %d\n", ch->reload_value);
315 PrintDebug("8254 PIT: Channel Run State=%d\n", ch->run_state);
322 switch (ch->op_mode) {
323 case IRQ_ON_TERM_CNT:
345 static int handle_channel_read(struct channel * ch, char * val) {
349 if (ch->latch_state == NOTLATCHED) {
350 myval = &(ch->counter);
352 myval = &(ch->latched_value);
355 if (ch->read_state == LSB) {
356 *val = ((char*)myval)[0]; // little endian
357 ch->read_state = MSB;
359 *val = ((char*)myval)[1];
360 ch->read_state = LSB;
361 if (ch->latch_state == LATCHED) {
362 ch->latch_state = NOTLATCHED;
374 static int handle_channel_cmd(struct channel * ch, struct pit_cmd_word cmd) {
375 ch->op_mode = cmd.op_mode;
376 ch->access_mode = cmd.access_mode;
381 switch (cmd.access_mode) {
383 if (ch->latch_state == NOTLATCHED) {
384 ch->latched_value = ch->counter;
385 ch->latch_state = LATCHED;
389 ch->access_state = WAITING_HIBYTE;
393 ch->access_state = WAITING_LOBYTE;
398 switch (cmd.op_mode) {
399 case IRQ_ON_TERM_CNT:
422 static int pit_read_channel(ushort_t port, void * dst, uint_t length, struct vm_device * dev) {
423 struct pit * state = (struct pit *)dev->private_data;
424 char * val = (char *)dst;
427 PrintError("8254 PIT: Invalid Read Write length \n");
431 PrintDebug("8254 PIT: Read of PIT Channel %d\n", port - CHANNEL0_PORT);
435 if (handle_channel_read(&(state->ch_0), val) == -1) {
440 if (handle_channel_read(&(state->ch_1), val) == -1) {
445 if (handle_channel_read(&(state->ch_2), val) == -1) {
450 PrintError("8254 PIT: Read from invalid port (%d)\n", port);
459 static int pit_write_channel(ushort_t port, void * src, uint_t length, struct vm_device * dev) {
460 struct pit * state = (struct pit *)dev->private_data;
461 char val = *(char *)src;
464 PrintError("8254 PIT: Invalid Write Length\n");
468 PrintDebug("8254 PIT: Write to PIT Channel %d (%x)\n", port - CHANNEL0_PORT, *(char*)src);
473 if (handle_channel_write(&(state->ch_0), val) == -1) {
478 if (handle_channel_write(&(state->ch_1), val) == -1) {
483 if (handle_channel_write(&(state->ch_2), val) == -1) {
488 PrintError("8254 PIT: Write to invalid port (%d)\n", port);
498 static int pit_write_command(ushort_t port, void * src, uint_t length, struct vm_device * dev) {
499 struct pit * state = (struct pit *)dev->private_data;
500 struct pit_cmd_word * cmd = (struct pit_cmd_word *)src;
502 PrintDebug("8254 PIT: Write to PIT Command port\n");
503 PrintDebug("8254 PIT: Writing to channel %d (access_mode = %d, op_mode = %d)\n", cmd->channel, cmd->access_mode, cmd->op_mode);
505 PrintError("8254 PIT: Write of Invalid length to command port\n");
509 switch (cmd->channel) {
511 if (handle_channel_cmd(&(state->ch_0), *cmd) == -1) {
516 if (handle_channel_cmd(&(state->ch_1), *cmd) == -1) {
521 if (handle_channel_cmd(&(state->ch_2), *cmd) == -1) {
540 static struct vm_timer_ops timer_ops = {
541 .update_time = pit_update_time,
545 static void init_channel(struct channel * ch) {
546 ch->run_state = NOT_RUNNING;
547 ch->access_state = NOT_WAITING;
552 ch->reload_value = 0;
554 ch->gate_input_pin = 0;
556 ch->latched_value = 0;
557 ch->latch_state = NOTLATCHED;
558 ch->read_state = LSB;
564 static int pit_init(struct vm_device * dev) {
565 struct pit * state = (struct pit *)dev->private_data;
566 uint_t cpu_khz = V3_CPU_KHZ();
567 ullong_t reload_val = (ullong_t)cpu_khz * 1000;
569 dev_hook_io(dev, CHANNEL0_PORT, &pit_read_channel, &pit_write_channel);
570 dev_hook_io(dev, CHANNEL1_PORT, &pit_read_channel, &pit_write_channel);
571 dev_hook_io(dev, CHANNEL2_PORT, &pit_read_channel, &pit_write_channel);
572 dev_hook_io(dev, COMMAND_PORT, NULL, &pit_write_command);
575 PrintDebug("8254 PIT: OSC_HZ=%d, reload_val=", OSC_HZ);
576 PrintTraceLL(reload_val);
580 v3_add_timer(dev->vm, &timer_ops, dev);
582 // Get cpu frequency and calculate the global pit oscilattor counter/cycle
584 do_divll(reload_val, OSC_HZ);
585 state->pit_counter = reload_val;
586 state->pit_reload = reload_val;
590 init_channel(&(state->ch_0));
591 init_channel(&(state->ch_1));
592 init_channel(&(state->ch_2));
595 PrintDebug("8254 PIT: CPU MHZ=%d -- pit count=", cpu_khz / 1000);
596 PrintTraceLL(state->pit_counter);
603 static int pit_deinit(struct vm_device * dev) {
609 static struct vm_device_ops dev_ops = {
611 .deinit = pit_deinit,
619 struct vm_device * create_pit() {
620 struct pit * pit_state = NULL;
621 pit_state = (struct pit *)V3_Malloc(sizeof(struct pit));
622 V3_ASSERT(pit_state != NULL);
624 struct vm_device * dev = create_device("PIT", &dev_ops, pit_state);